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Introduction

Tobias Colding taught a course (18.965) on Geometry of Manifolds at MIT in Fall 2012.
These are my “live-TEXed” notes from the course. The template is borrowed from Akhil
Mathew.

Please email corrections to holden1@mit.edu. Thanks to Fan Zheng for corrections.
Lectures 23–24 are unedited.



Lecture 1 Notes on Geometry of Manifolds

Lecture 1

Thu. 9/6/12

Today Bill Minicozzi (2-347) is filling in for Toby Colding.
We will follow the textbook Riemannian Geometry by Do Carmo. You have to spend a

lot of time on basics about manifolds, tensors, etc. and prerequisites like differential topology
before you get to the interesting topics in geometry. Do Carmo gets to the interesting topics
much faster than other books.

Today we give a quick overview of Riemannian geometry, and then introduce the basic
definitions (manifolds, tangent spaces, etc.) that we’ll need throughout the course. You will
see how these definitions generalize concepts you are already familiar with from calculus.

S1 What is Riemannian geometry?

On Euclidean space we can do calculus; we can measure distances, angles, volumes, etc.
However, we want to do all that geometry on more general spaces, called Riemannian

manifolds.
First, we’ll have to rigorously define what those spaces are. What is a manifold? We

need to generalize the basic notions of calculus in the manifold setting: what is a derivative?
A derivative is basically a linear approximation, because the tangent line is the best linear
approximation. We’ll define the notion of a tangent space for a manifold.

Once we have a manifold, we can define have functions, curves and (sub)surfaces on
the manifolds, and objects called tensors. The idea of tensors generalizes the idea of vector
fields, which are 1-tensors. We can differentiate tensors; for instance, the covariant derivative
of two-tensor is three-tensor.

Next, we’ll see that a Riemannian metric allows us to calculuate distance and angles.
A geodesic is the shortest path connecting two points, or more generally, paths that are
locally shortest. For instance, the equator of a sphere is a geodesic: any connected part
of the diameter that doesn’t include antipodal points gives the shortest path between two
points. We can view our spaces as metric spaces and do some geometry. We have comparison
theorems, where we use the geometry of the space to get information about the metric. For
instance, in the Bonnie-Meyer theorem, we use the curvature of a space to learn about its
metric.

Later in the course, we will cover topic such as Cartan-Hadamard manifolds, harmonic
maps, and minimal surfaces.

S2 Manifolds

We want to do calculus on more general spaces, called manifolds. In particular, we care
about (smooth) differential manifolds. Before we give a formal definition, we first develop
some intuition through examples.
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Lecture 1 Notes on Geometry of Manifolds

2.1 Examples

The following are all manifolds.

∙ R𝑛: 𝑛-dimensional Euclidean space

R𝑛 := {(𝑥1, . . . , 𝑥𝑛) : 𝑥𝑖 ∈ R} .

∙ 𝑆𝑛: the unit 𝑛-sphere
𝑆𝑛 :=

⌋︀
𝑥 ∈ R𝑛+1 : |𝑥| = 1

{︀
.

Here the Euclidean norm is defined by |𝑥|2 :=
∑︀𝑛

𝑖=1 𝑥
2
𝑖 . Note this is an example of a

“submanifold” of R𝑛+1.

Note that Euclidean geometry descends to geometry on any submanifold. A theorem of
Nash says any abstract manifold can be embedded (at least locally) in Euclidean space.
This means it is sufficient to learn about geometry of submanifolds of Euclidean space.

However, just as linear algebra is often simpler with “linear transformations” than with
matrices, we will see that geometry is often simpler when we think of manifolds in the
abstract.

Here are some more examples.

∙ 𝑇 𝑛: 𝑛-torus R𝑛/Z𝑛. This means that we are modding out R𝑛 by the equivalence
relation ∼ where 𝑥 ∼ (𝑥 + 𝑧) for every tuple 𝑧 = (𝑧1, . . . , 𝑧𝑛) with 𝑧𝑖 ∈ Z. Note any
small piece of 𝑇 𝑛 looks like R𝑛 because don’t see the wraparound.

This local property means we can calculate derivatives of a function defined on 𝑇 𝑛 the
same way we calculate derivatives of a function on R𝑛.

∙ R𝑃 𝑛: real projective 𝑛-space, the space of lines through 0 in R𝑛+1. Note R𝑃 𝑛 is closely
related to the 𝑆𝑛, as follows. Each line through origin cuts sphere in 2 points, so we
can think of R𝑃 𝑛 as 𝑆𝑛 modded out by the antipodal map 𝑝 ↦→ −𝑝.

These are all differential manifolds, but we don’t get a geometry on them until we get a
Riemannian metric (something we’ll develop later in the course).

We also need a notion of a tangent vector. We’ll give a formal definition of a manifold,
then go back to talk about tangent spaces on manifolds.

2.2 Formal definition

Definition 1.1: A (smooth) 𝑛-dimensional manifold 𝑀 (also written 𝑀𝑛) is...

1. a set, denoted 𝑀 , equipped with

2. a family of open sets 𝑈𝛼 ⊆ R𝑛 and injective maps 𝑥𝛼 : 𝑈𝛼 →˓ 𝑀 (together called a
chart) such that

∙ (The open sets cover the manifold)
⋃︀

𝛼 𝑥𝛼(𝑈𝛼) =𝑀 .
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Lecture 1 Notes on Geometry of Manifolds

∙ (Consistency of overlaps) Set 𝑊𝛼𝛽 := 𝑥𝛼(𝑈𝛼)∩𝑥𝛽(𝑈𝛽) for each 𝛼 and 𝛽. Suppose
𝑊𝛼𝛽 ̸= 𝜑. Then

(a) (Topological condition) 𝑥−1
𝛼 (𝑊𝛼𝛽) is open,

(b) (The maps between the subsets of R𝑛 are smooth) The maps 𝑥−1
𝛽 ∘ 𝑥𝛼 are

𝐶∞, i.e. infinitely differentiable.

(c) (* Technical condition) This family is maximal with respect to A and B.

Let’s analyze this definition. The open sets 𝑈𝛼 tell us that locally, each point is param-
eterized by an open set in Euclidean space. We saw this in each of the examples. (For 𝑆𝑛,
you can “flatten” any local part of the sphere.) Note that 𝑀 inherits a topology by deeming
that each 𝑥𝛼(𝑈𝛼) be a homeomorphism onto an open set of 𝑀 .

The technical overlap properties force the 𝑥𝛼 to be nice maps. (b) is why we call the
manifold “smooth.” We can loosen, tighten, or change the condition, for instance,

∙ A real analytic manifold is where 𝑥−1
𝛽 ∘ 𝑥𝛼 are all real analytic. (Stricter condition)

∙ A 𝐶𝑛 manifold is one where 𝑥−1
𝛽 ∘ 𝑥𝛼 are all 𝐶𝑛 (𝑛 times continuously differentiable).

(Looser condition)

∙ A complex manifold is one where we replace R with C and 𝐶𝑛 by holomorphic.

∙ A PL manifold is where 𝑥−1
𝛽 ∘ 𝑥𝛼 are all piecewise linear.

Without condition (c), we would have a lot of manifolds. Suppose we have (𝑀, {𝑥𝛼}, {𝑈𝛼)
satisfying all the conditions except (c). For each 𝑈𝛼, we can take a subset 𝑉 ⊆ 𝑈𝛼 and restrict
𝑥𝛼 to 𝑉 . This is still a good parameterization. Adding 𝑉 and 𝑥𝛼|𝑉 , we get a new manifold.

Thus (c) gives uniqueness: two manifolds that should be the same are the same.
An alternative approach is as follows: call something satisfying just (a) and (b) quasi-

manifolds. Define an equivalence relation: two manifolds are the same if you can refine the
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Lecture 1 Notes on Geometry of Manifolds

two families of mappings {(𝑈𝛼, 𝑥𝛼)} to be the same family. Modding out quasi-manifolds by
this equivalence relation gives a manifold.

Note 𝑛 has to be constant: A sphere with two 1-dimensional antlers is not a manifold.

2.3 Reconciling definition with example

Let’s show that R𝑃 𝑛 is a manifold. Define homogeneous coordinates as follows: Consider
{(𝑥1, . . . , 𝑥𝑛+1) ∈ R𝑛+1 : at least one 𝑥𝑖 ̸= 0}, and mod out by the equivalence relation

(𝑥1, . . . , 𝑥𝑛+1) ∼ 𝜆(𝑥1, . . . , 𝑥𝑛+1)

where 𝜆 ∈ R∖{0}. Let the [𝑥1, . . . , 𝑥𝑛+1] denote the equivalence class of (𝑥1, . . . , 𝑥𝑛+1); it is
called homogeneous coordinates.

Defining the open sets and maps:

Define sets 𝑉𝑖 = {[𝑥1, . . . , 𝑥𝑛+1] : 𝑥𝑖 ̸= 0}. It’s clear that
⋃︀
𝑉𝑖 = R𝑃 𝑛. Because we need

to get 𝑛+ 1 coordinates out of 𝑛 coordinates, we define maps 𝑥𝑖 : R𝑛 → 𝑉𝑖 by

𝑥𝑖(𝑦1, . . . , 𝑦𝑛) = [𝑦1, . . . , 1⏟ ⏞ 
𝑖

, . . . , 𝑦𝑛].

For instance, for R𝑃 3, we have

𝑥1(𝑦1, 𝑦2) = [1, 𝑦1, 𝑦2]

𝑥2(𝑦1, 𝑦2) = [𝑦1, 1, 𝑦2]

𝑥3(𝑦1, 𝑦2) = [𝑦1, 𝑦2, 1]

Note these maps are all bijective. They are onto because any element of [𝑥1, . . . , 𝑥𝑛] ∈ 𝑉𝑖
has 𝑥𝑖 ̸= 0, and [𝑥1, . . . , 𝑥𝑛] =

�
𝑥1

𝑥𝑖
, . . . , 𝑥𝑖

𝑥𝑖
= 1, . . . , 𝑥𝑛

𝑥𝑖

�
.

Verifying overlap properties:

(a) We have
𝑊12 = 𝑥1(R2) ∩ 𝑥2(R2) = 𝑉1 ∩ 𝑉2 = {[𝑧1, 𝑧2, 𝑧3] : 𝑧1𝑧2 ̸= 0} .

Consider 𝑥−1
1 (𝑊12). We have [𝑧1, 𝑧2, 𝑧3] ∼

�
1, 𝑧2

𝑧1
, 𝑧3
𝑧1

�
, so

𝑥−1
1 𝑊12 = {(𝑦1, 𝑦2) : 𝑦1 ̸= 0} .

which is open.

(b) Now consider 𝑥−1
2 ∘ 𝑥1 : 𝑊12 → 𝑊21. We have for 𝑦1 ̸= 0 that

(𝑦1, 𝑦2)
𝑥1−→ [1, 𝑦1, 𝑦2] =

�
1

𝑦1
, 1,

𝑦2
𝑦1

�
𝑥−1
2−−→

�
1

𝑦1
,
𝑦2
𝑦1

�
.

This is rational, so smooth.
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Lecture 1 Notes on Geometry of Manifolds

(c) To satisfy condition (c), we take a maximal family of (𝑉𝛼, 𝑥𝛼) satisfying (a) and (b)
and containing all the (𝑉𝑖, 𝑥𝑖). (I.e. take all intersections among all the (𝑉𝑖, 𝑥𝑖) and
add them in; now take all subsects, not take intersections again, ad infinitum.)

Because the calculations are straightforward, this is the first and last time we’re going to
check something is a manifold.

2.4 Maps between manifolds

Definition 1.2: Let 𝑀 and 𝑁 be smooth manifolds. We say that 𝜙 :𝑀 → 𝑁 is smooth at
𝑝 ∈𝑀 if 𝑥−1

𝑁 ∘ 𝜙 ∘ 𝑥𝑀 is smooth at 𝑥−1
𝑀 (𝑝).

Here, 𝑥𝑀 is any 𝑥𝛼 such that 𝑝 ∈ 𝑥𝛼(𝑈𝛼), and 𝑥𝑁 is any 𝑥𝛽 such that 𝜙(𝑝) ∈ 𝑥𝛽(𝑈𝛽).

Note the choice of 𝑥𝑀 = 𝑥𝛼 and 𝑥𝑁 = 𝑥𝛽 doesn’t matter, because the transition condition
will give that it is true for any choice.

Some particularly important smooth maps are those with domain or target inside R:

∙ Smooth functions on 𝑀 , i.e. smooth maps 𝑀 → R. This set is denoted by 𝒟.

∙ Curves, maps from an interval 𝐼 ⊆ R→𝑀 .

S3 Tangent vectors

There are two approaches to defining the derivative of a function on a manifold.

∙ The computational approach is to give it in terms of coordinates, and define how it
transforms when we change coordinates. In this approach we immediately know how
to compute with the derivative, but we have to show it is well defined.

∙ We can define it in a more abstract way, invariant under choice of charts. This is Do
Carmo’s approach and the approach we’ll take. This automatically forces what the
derivative has to be when we do express it in coordinates.

We’ll first look at derivatives/tangent vectors in R𝑛, and then generalize to manifolds.
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Lecture 1 Notes on Geometry of Manifolds

3.1 Tangent vectors in R𝑛

Definition 1.3: Let 𝛼 : (−𝜀, 𝜀) → R𝑛 and 𝑓 : R𝑛 → R be smooth, so that 𝑓 ∘ 𝛼 is a
smooth function (−𝜀, 𝜀) → R. Define the directional derivative or tangent vector in
the direction of 𝛼 of 𝑓 to be

(𝑓 ∘ 𝛼)′(0) =
𝑛∑︁

𝑖=1

𝜕𝑓

𝜕𝑥𝑖
(𝛼(0))𝛼′

𝑖(0) = ⟨∇𝑓, 𝛼′(0)⟩ .

(The equality is by the chain rule.) Thus, we can think of the tangent vector as a function
sending 𝛼 to the linear map 𝑓 ↦→ ⟨∇𝑓, 𝛼′(0)⟩.

Note the derivative depends only on 𝛼′(0). It didn’t matter what the curve was; we could
have covered all possibilities with curves that are straight lines, 𝛼(𝑡) = 𝑝+ 𝑡𝑞.

Definition 1.4: A derivation 𝐷 of an R-algebra 𝐴 is a R-linear function from 𝐴 to R that
satisfies the Leibniz rule

𝐷(𝑓𝑔) = (𝐷𝑓)𝑔 + 𝑓(𝐷𝑔), 𝑓, 𝑔 ∈ 𝐴.

Denote the space of derivations by Der(𝐴).

Proposition 1.5: Let 𝐶∞(𝑥1, . . . , 𝑥𝑛) be the set of 𝐶∞ functions on 𝑥1, . . . , 𝑥𝑛. The map
𝑣 ↦→ (𝑓 ↦→ ⟨∇𝑓, 𝑣⟩) is a vector space isomorphism from R𝑛 to Der(𝐶∞(𝑥1, . . . , 𝑥𝑛)).

(Proof of surjectivity is omitted.) Think of 𝑣 as 𝛼′(0), so the map is

𝑓 ↦→ ⟨∇𝑓, 𝛼′(0)⟩ .

Now why did we define the directional derivative in terms of 𝛼 instead of 𝑣 = 𝛼′(0)?
Because we want something that doesn’t depend on coordinates. Associated to 𝛼 we get a
linear map 𝑓 ↦→ ⟨∇𝑓, 𝛼′(0)⟩ that we can define without coordinates. This is why we define
the tangent vector as a linear map on a space of functions.

We define the tangent vector to be a linear map on a space of functions, so that it
does not depend on coordinates.

This will be important in the general manifold setting.

3.2 Tangent vectors in general

Our viewpoint naturally generalizes to manifolds.

10



Lecture 1 Notes on Geometry of Manifolds

Definition 1.6: Let 𝛼 : (−𝜀, 𝜀) → 𝑀 be a smooth curve. Then define the tangent vector
as the linear map 𝛼′(0) : 𝒟 → R given by

𝛼′(0)𝑓 = (𝑓 ∘ 𝛼)′(0)

The tangent space to 𝑀 at 𝑝 is

𝑇𝑝𝑀 = {All tangent vectors to curves through 𝑝}

Note that 𝑇𝑝 ∼= R𝑛. We will explain why.
To actually perform computations involving tangent vectors, we need to work on the

actual charts, so the maps (−𝜀, 𝜀) 𝛼−→ 𝑀
𝑓−→ R are unsatisfactory. So given a point 𝑝, let

𝑥 : 𝑈 →𝑀 be a parameterization around 𝑝. Then we can work on the chart 𝑈 , because we
have the following commutative diagram (for small enough 𝜀)

18965− 1− 𝑐𝑑 (−𝜀, 𝜀) 𝛼 //

𝑥−1∘𝛼
##

𝑀
𝑓
// R

𝑈
𝑓∘𝑥

??

𝑥

OO (1)

Note (−𝜀, 𝜀) 𝑥−1∘𝛼−−−→ 𝑈
𝑓∘𝑥−−→ R are maps staying in R, so we can do multivariable calculus

with them.

Write

𝑥−1 ∘ 𝛼(𝑡) = (𝛼1(𝑡), . . . , 𝛼𝑛(𝑡))

𝑓 ∘ 𝑥(𝑥1, . . . , 𝑥𝑛) = 𝑓(𝑥1, . . . , 𝑥𝑛) as shorthand

(𝑓 ∘ 𝛼)(𝑡) = (𝑓 ∘ 𝑥) ∘ (𝑥−1 ∘ 𝛼)(𝑡).

The chain rule gives
𝑛∑︁

𝑖=1

𝜕𝑓

𝜕𝑥𝑖
𝛼′
𝑖(0).
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Lecture 1 Notes on Geometry of Manifolds

(By abuse of notation 𝜕𝑓
𝜕𝑥𝑖

= 𝜕𝑓∘𝑥
𝜕𝑥𝑖

and 𝛼′
𝑖(0) is the 𝑖th component of (𝑥−1 ∘ 𝛼)′(0).) Think of

this as the directional derivative “in coordinates,” just like we can express a linear transfor-
mation as a matrix once we have coordinates.

Now if we had a different (𝑉, 𝑥′) ̸= (𝑈, 𝑥) with 𝑝 ∈ 𝑥′(𝑉 ), we can add 𝑉 to our com-
mutative diagram (1) We can then compute the directional derivative in the coordinates of
the chart 𝑉 instead of 𝑈 , and we can see how the derivative changes from 𝑈 to 𝑉 using the
chain rule on 𝑦−1 ∘ 𝑥.

Thus we see that the directional derivative is an invariant notion—we don’t need co-
ordinates to define it, but once we do have coordinates, we can calculate it in terms of
coordinates, and we know exactly how this expression changes when we change coordinates.

One thing to note is that if the 𝛼′(0) are all 0, then no matter what coordinates we
choose, all the 𝛼′

𝑖 are still 0. But if 𝛼′(0) is nonzero, then we can mix things up any way we
like.

Remarks:

1. 𝛼′(0) depends only on 𝛼′(0) in a coordinate system.

2. 𝑇𝑝(𝑀) is a 𝑛-dimensional vector space with a natural basis

𝜕

𝜕𝑥𝑖
:= tangent vector to curve where we only vary 𝑥𝑖.

(More precisely, we are considering the curve 𝛼(𝑡) = 𝑥(𝑥−1(𝑝)+ 𝑡𝑥𝑖).) We have 𝛼′
𝑖(0) =

𝛿𝑖𝑗.

S4 Differentials

Definition 1.7: A smooth map 𝜙 :𝑀 → 𝑁 induces linear maps

𝑑𝜙𝑝 : 𝑇𝑝𝑀 → 𝑇𝜙(𝑝)𝑁

by taking the curve 𝛼 to curve 𝜙 ∘ 𝛼:

𝑑𝜙𝑝(𝛼
′(0)) := (𝜙 ∘ 𝛼)′(0).

The map 𝑑𝜙𝑝 is called the differential of 𝜙 at 𝑝.

Again this does not depend on the choice of 𝛼, only on 𝛼′(0).

Any smooth map 𝜙 gives rise to a differential map on the tangent spaces.

Once we have the differential, we can talk about immersions and embeddings.

12
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Definition 1.8: We say that 𝜙 :𝑀 → 𝑁 is a diffeomorphism if it is

1. smooth

2. bijective, and

3. 𝜙−1 is smooth.

Definition 1.9: We say that 𝜙 : 𝑀 → 𝑁 is a local diffeomorphism at 𝑝 ∈ 𝑀 if there
exists an open set 𝑈 containing 𝑝 such that 𝜙𝑖 : 𝑈 → 𝜙(𝑈) is a diffeomorphism

Definition 1.10: 𝜙 :𝑀 → 𝑁 is an immersion if 𝑑𝜙𝑝 is injective at each 𝑝.

We have the following theorem

Theorem 1.11 (Inverse function theorem for manifolds): If 𝑑𝜙𝑝 is bijective, then 𝜙 is local
diffeomorphism to 𝑝.

This tells us that if the linearization of 𝜙, i.e. 𝑑𝜙𝑝, is a bijection at 𝑝, then 𝜙 is actually
a diffeomorphism at 𝑝.

Proof. Appeal to Euclidean Inverse Function Theorem (see Analysis on Manifolds, by Munkres)
and compose with charts at either end.

Lecture 2

Tue. 9/11/12

Today, Bill Minicozzi is teaching again.
We define tangent bundles and vector spaces on manifolds, and then define the Lie

derivative—the analogue of a derivative for vector fields. We’ll derive basic properties of the
Lie derivative, and understand why it is a natural thing to consider.

S1 Tangent bundle

The tangent bundle is basically built from considering

1. all possible points, and

2. all possible tangent vectors at that point.

At each point the tangent space is like R𝑛. We have a ntural basis for the tangent basis in a
given chart; namely, taking partial derivatives with respect to the coordinates of the chart.
We now give the formal definition.

Definition 2.1: Let 𝑀 be a 𝑛-dimensional manifold. The tangent bundle 𝑇𝑀 is a (2𝑛)-
dimensional manifold, defined as follows.

13
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1. As a set,
𝑇𝑀 = {(𝑝, 𝑣) : 𝑝 ∈𝑀, 𝑣 ∈ 𝑇𝑝𝑀} .

2. The charts are as follows. Start with the charts of 𝑀 , 𝑥𝛼 : 𝑈𝛼 →𝑀 . Define

𝑦𝛼 : 𝑈𝛼 × R𝑛 → 𝑇𝑀

by

𝑦𝛼(𝑥
𝛼
1 , . . . , 𝑥

𝛼
𝑛⏟  ⏞  

in 𝑈𝛼

, 𝑢1, . . . , 𝑢𝑛⏟  ⏞  
point in R𝑛

) = (𝑥𝛼(𝑥
𝛼
1 , . . . , 𝑥

𝛼
𝑛⏟  ⏞  

point in 𝑀

),
𝑛∑︁

𝑖=1

𝑢𝑖
𝜕

𝜕𝑥𝛼𝑖⏟  ⏞  
basis elements

)

This map is injective because 𝜕
𝜕𝑥𝛼

𝑖
are linearly independent basis elements. We need to

check that the overlap properties work—this is standard and left to the reader.
At first glance, the tangent bundle does not seem to give much more info than 𝑀 itself.

It looks like we’re taking the product of 𝑀 with R𝑛. In fact, we can contract 𝑇𝑀 to 𝑀 , by
contracting each set {𝑝} × 𝑇𝑝𝑀 to just {𝑝}.

But often 𝑇𝑀 ̸=𝑀×R𝑛. We get extra information because the tangent bundle can “spin
around.” When we trace out a loop in 𝑀 , the tangent space might spin around completely
once—so we get some nontrivial topology here.

For example, consider the tangent bundle of 𝑆1. At each point, the tangent space is R,
and it turns out that the tangent bundle is a cylinder (exercise),

𝑇𝑆1 = 𝑆1 × R.

However, if the tangent bundle had “spun around,” then we would get a Möbius band instead.
For those in the know, the tangent bundle is a special case of a fiber bundle. (We won’t

cover this more general notion, so that we can get more quickly to the geometry. But if
you’re interested, see http://en.wikipedia.org/wiki/Fiber_bundle.)

S2 Vector fields

We can now generalize the definition of a vector field to an arbitrary manifold.

Definition 2.2: A (smooth) vector field 𝑋 on 𝑀 is a map taking each point 𝑝 ∈ 𝑀 to
𝑋(𝑝) ∈ 𝑇𝑝𝑀 , such that the map 𝑀 → 𝑇𝑀 induced by this map sending 𝑝 ↦→ (𝑝,𝑋(𝑝)) (the
fiber above the point) is smooth.

We can also talk about continuous, 𝐶1, etc. vector fields, in which case we replace the
“smooth” condition by the appropriate condition.

In a chart, we can write

𝑋(𝑝) =
𝑛∑︁

𝑖=1

𝑎𝑖(𝑝)
𝜕

𝜕𝑥𝑖
.
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The fact that 𝑋 is smooth is equivalent to all the 𝑎𝑖(𝑝) being smooth. We get a function
𝑋 : 𝒟 → 𝒟 (recall 𝒟 is the space of smooth functions 𝑀 → R) that operates as

𝑋𝑓 =
𝑛∑︁

𝑖=1

𝑎𝑖
𝜕𝑓

𝜕𝑥𝑖

where implicitly at each point 𝑝 we take a chart containing 𝑝.
Since 𝑋 gives a tangent vector for each point of 𝑀 , it allows us to take directional

derivatives at each point. We call 𝑋𝑓 the derivative of 𝑓 with respect to 𝑋. Note that 𝑋
is a derivation: it is R-linear (𝑋(𝑓𝑔) = 𝑋𝑓 +𝑋𝑔, 𝑋(𝑎𝑓) = 𝑎𝑋𝑓) and satisfies the Leibniz
rule (𝑋(𝑓𝑔) = (𝑋𝑓)𝑔 + 𝑓(𝑋𝑔)).

S3 Lie derivatives

We’ve saw how to take the derivative of a function on the manifold with respect to a vector
field. Now we would like to take the derivative of vector field with respect to another vector
field, but we have a problem. Let 𝑋 and 𝑌 be vector fields on 𝑀 . Can we take a directional
derivative of 𝑌 in direction 𝑋? Suppose we wanted to take

lim
𝑡→0

𝑌 (𝑝+ 𝑡𝑋)− 𝑌 (𝑝)

𝑡
.

This is roughly what the derivative should be. Our first problem is that this is just for
Euclidean space, rather than general manifolds. For a general manifold, letting 𝛼 be a curve
𝛼 : (−𝜀, 𝜀)→𝑀 , and supposing 𝛼(0) = 𝑝, 𝛼′(0) = 𝑋(𝑝), we can try to define

lim
𝑡→0

𝑌 (𝛼(𝑡))− 𝑌 (𝑝)

𝑡

However, 𝑌 (𝛼(𝑡)) and 𝑌 (𝑝) do not live in the same vector space: 𝑌 (𝛼(𝑡)) lives in 𝑇𝛼(𝑡)𝑀
and 𝑌 (𝑝) lives in 𝑇𝑝(𝑀).

We are stuck unless we find a canonical way to identify these vector spaces!
There are two different ways to identify these spaces.

1. The first way is the Lie derivative, which we’ll cover today. The idea is to integrate
the vector field to get a diffeomorphism on the manifold, which allows us to move one
point to another point. Recall that a smooth map 𝜙 : 𝑀 → 𝑁 induces a differential
sending the tangent space of the first point to the tangent space of the second point,
𝑑𝜙𝑝 : 𝑇𝑝𝑀 → 𝑇𝜙(𝑝)𝑁 . We can go back as well, since we have a diffeomorphism.

2. The second way is to equip the manifold with extra structure, called a Riemannian
connection. We use parallel transport to identify vector spaces of different points. We
get what is called the covariant derivative.

15
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3.1 Lie derivative (bracket)

Definition 2.3: Define the Lie derivative (Lie bracket) [𝑋, 𝑌 ] = 𝐿𝑋𝑌 by

[𝑋, 𝑌 ]𝑓 := 𝑋(𝑌 (𝑓))− 𝑌 (𝑋(𝑓)).

From this definition it is not obvious that this is the “derivative” of anything; this will
be clear after we derive an alternate expression for it.

Note that we’re differentiating 𝑓 twice, so the Lie bracket depends on at most 2 derivatives
of 𝑓 ; it is sufficient for 𝑓 to be 𝐶2. In fact, [𝑋, 𝑌 ] depends only on the first derivatives of 𝑓
and is itself a vector field.

In a chart, we can write

𝑋 =
𝑛∑︁

𝑖=1

𝑎𝑖
𝜕

𝜕𝑥𝑖

𝑌 =
𝑛∑︁

𝑖=1

𝑏𝑗
𝜕

𝜕𝑥𝑗
.

We calculate, using the product rule,

𝑋(𝑌 (𝑓)) = 𝑋

�
𝑛∑︁

𝑗=1

𝑏𝑗
𝜕𝑓

𝜕𝑥𝑗

�
=
∑︁
𝑖,𝑗

𝑎𝑖
�
𝑏𝑗

𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑖
+
𝜕𝑏𝑗

𝜕𝑥𝑖

𝜕𝑓

𝜕𝑥𝑗

�
𝑌 (𝑋(𝑓)) = 𝑌

(︃
𝑛∑︁

𝑖=1

𝑎𝑖
𝜕𝑓

𝜕𝑥𝑗

)︃
=
∑︁
𝑖,𝑗

𝑏𝑗
�
𝑎𝑖

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
+
𝜕𝑎𝑖

𝜕𝑥𝑗

𝜕𝑓

𝜕𝑥𝑖

�
When we subtracting, the first terms (in blue) cancel, because partial derivatives in Euclidean
space commute. We switch 𝑖 and 𝑗 in the second terms and compute

[𝑋, 𝑌 ]𝑓 =
∑︁
𝑖,𝑗

𝑎𝑖
𝜕𝑏𝑗

𝜕𝑥𝑖

𝜕𝑓

𝜕𝑥𝑗
−
∑︁
𝑖,𝑗

𝑏𝑖
𝜕𝑎𝑗

𝜕𝑥𝑖

𝜕𝑓

𝜕𝑥𝑗

=
𝑛∑︁

𝑗=1

[︃
𝑛∑︁

𝑖=1

�
𝑎𝑖
𝜕𝑏𝑗

𝜕𝑥𝑖
− 𝑏𝑖𝜕𝑎

𝑗

𝜕𝑥𝑖

�
𝜕𝑓

𝜕𝑥𝑗

]︃
𝑒𝑞 : 18965− 2− 1[𝑋, 𝑌 ] =

𝑛∑︁
𝑗=1

[︃
𝑛∑︁

𝑖=1

�
𝑎𝑖
𝜕𝑏𝑗

𝜕𝑥𝑖
− 𝑏𝑖𝜕𝑎

𝑗

𝜕𝑥𝑖

�
𝜕

𝜕𝑥𝑗

]︃
(2)

In the Euclidean case, we have found a formula for [𝑋, 𝑌 ]. For the general manifold, we are
also done, but we should say a few more words. Equation (2) gives a formula in one chart.

What if write it in another chart; do we get the same vector field? In other words, do
we get the same result if we computed (2) for a different chart, and if we compute (2) in the
first chart and then use the Jacobian to change coordinates? Yes, because the Lie bracket is
uniquely defined by [𝑋, 𝑌 ]𝑓 = 𝑋𝑌 𝑓 − 𝑌 𝑋𝑓 .

If the vector field is a coordinate vector field, i.e. the 𝑎𝑗 and 𝑏𝑗 are constants, then the
Lie bracket is 0. For a vector field coming from any coordinate system, the Lie bracket is
always 0. In a sense the Lie derivative measures the obstruction to coordinates existing.
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3.2 Properties of [, ]

Proposition 2.4: Thie Lie bracket satisfies the following.

1. (Anti-commutativity) [𝑋, 𝑌 ] = −[𝑌,𝑋]

2. (R-linearity) [𝑋, 𝑎𝑌 + 𝑏𝑍] = 𝑎[𝑋, 𝑌 ] + 𝑏[𝑋,𝑍].

3. (Jacobi identity) [[𝑋, 𝑌 ], 𝑍] + [[𝑌, 𝑍], 𝑋] + [[𝑍,𝑋], 𝑌 ] = 0 (If you cyclically permute
[[𝑋, 𝑌 ], 𝑍] and sum, you get 0.

4. [𝑓𝑋, 𝑔𝑌 ] = 𝑓𝑔[𝑋, 𝑌 ] + 𝑓𝑋(𝑔)𝑦 − 𝑔𝑌 (𝑓)𝑋.

As we’ll explain after the proof, the Jacobi identity has a deeper reason for being true.

Proof. 1. We have [𝑋, 𝑌 ] = 𝑋(𝑌 (𝑓))− 𝑌 (𝑋(𝑓)) = −(𝑌 (𝑋(𝑓))−𝑋(𝑌 (𝑓))) = −[𝑌,𝑋].

2. Taking derivatives is linear.

3. Expand out each bracket, and add them all up. We have

[[𝑋, 𝑌 ], 𝑍]𝑓 = [𝑋, 𝑌 ]𝑍(𝑓)− 𝑍([𝑋, 𝑌 ]𝑓)

= 𝑋𝑌 𝑍(𝑓)− 𝑌 𝑋𝑍(𝑓)− 𝑍𝑋𝑌 (𝑓) + 𝑍𝑌 𝑋(𝑓).

=⇒ [[𝑋, 𝑌 ], 𝑍] = 𝑋𝑌 𝑍 − 𝑌 𝑋𝑍 − 𝑍𝑋𝑌 + 𝑍𝑌 𝑋 (in shorthand)

Cyclically permuting 𝑋 ↦→ 𝑌 ↦→ 𝑍 ↦→ 𝑋,

[[𝑌, 𝑍], 𝑋] = 𝑌 𝑍𝑋 − 𝑍𝑌 𝑋 −𝑋𝑌 𝑍 +𝑋𝑍𝑌

[[𝑍,𝑋], 𝑌 ] = 𝑍𝑋𝑌 −𝑋𝑍𝑌 − 𝑌 𝑍𝑋 + 𝑌 𝑋𝑍.

We find that all 6 permutations of 𝑋, 𝑌 , and 𝑍 occur, 6 of them are positive, and 6
of them are negative. Thus adding the 3 brackets gives 0.

4. First we find [𝑋, 𝑔𝑌 ]. We go nuts with the Leibniz rule, calculating

[𝑋, 𝑔𝑌 ](ℎ) = 𝑋(𝑔𝑌 (ℎ))− 𝑔𝑌 (𝑋(ℎ))

= 𝑋(𝑔)𝑌 (ℎ) + 𝑔𝑋(𝑌 (ℎ))− 𝑔𝑌 (𝑋(ℎ))

= 𝑋(𝑔)𝑌 (ℎ) + 𝑔[𝑋, 𝑌 ]ℎ

=⇒ [𝑋, 𝑌 ] = 𝑋(𝑔)𝑌 + 𝑔[𝑋, 𝑌 ].𝑒𝑞 : 18965− 2− 2 (3)

We have a similar formula for [𝑓𝑋,𝑊 ].

[𝑓𝑋,𝑊 ] = −[𝑊, 𝑓𝑋] = −𝑊 (𝑓)𝑋 − 𝑓 [𝑊,𝑋] = −𝑤(𝑓)𝑋 + 𝑓 [𝑋,𝑊 ].𝑒𝑞 : 18965− 2− 3
(4)
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Putting (3) and (4) together gives

[𝑓𝑋, 𝑔𝑌 ] = −𝑔𝑌 (𝑓)𝑋 + 𝑓 [𝑋, 𝑔𝑌 ]⏟  ⏞  
𝑋(𝑔)𝑌+𝑔[𝑋,𝑌 ]

= −𝑔𝑌 (𝑓)𝑋 + 𝑓𝑋(𝑔)𝑌 + 𝑓𝑔[𝑋, 𝑌 ]

We proved the Jacobi identity with computation; there’s a more general reason why it’s
true.

3.3 Flows and the Lie derivative

Let 𝑋 be a vector field in 𝑀 . Imagine if we were to start at some point 𝑝 at the manifold,
and then at every instant in time, go in the direction given by the vector field. The vector
field tells us how to “flow.” We would trace out a curve starting at 𝑝, whose tangent vector
everywhere is the vector field. We can think of this “flow” happening everywhere on the
manifold, i.e. the whole manifold is “flowing.” The curves that are traced out at different
points will not cross.

Formally, given 𝑝 ∈𝑀 , we want some curve 𝛼𝑝(𝑡) such that

𝛼𝑝(0) = 𝑝

𝛼′
𝑝(𝑡) = 𝑋(𝛼𝑝(𝑡)).

Theorem 2.5 (Existence and uniqueness of solutions): thm:odes There exists a unique
solution 𝛼𝑝(𝑡) in some interval (−𝜀, 𝜀). Moreover, 𝛼𝑝(𝑡) is a smooth function (with respect
to (𝑝, 𝑡)) defined on some open set in 𝑀 × R containing 𝑀 × {0}.

Proof. Take a coordinate chart, and appeal to the existence theorem for ODE’s in Euclidean
space. (See Theorems 4.3-5 in Guillemin’s 18.101 notes.)

(Note: if 𝑀 is compact, then 𝛼𝑝(𝑡) is defined for all 𝑡 ∈ R.)
Smooth dependence on initial conditions tells us that we can think of 𝑝 as another

parameter. We thus write
𝜙(𝑝, 𝑡) := 𝛼𝑝(𝑡).

Proposition 2.6: We have the following properties for 𝜙.

1. 𝜙(𝑝, 0) = 𝑝.

2. 𝜙(𝑝, 𝑠+ 𝑡) = 𝜙(𝜙(𝑝, 𝑠), 𝑡).

3. Each map 𝜙(∙𝑡) is locally invertible. The inverse to 𝜙(∙, 𝑡) is 𝜙(∙,−𝑡).
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We encapsulate these conditions with the following statement.

𝜙(∙, 𝑡) is a 1-parameter family of (local) diffeomorphisms with 𝜙(∙, 0) = id. The
tangent at 0 is just the vector field.

Thus we see that 𝜙(∙, 𝑡) (thought of as a function of 𝑡, whose output is a function on
the manifold) is a path in the space of diffeomorphisms. It goes through the identity at
𝑡 = 0, and its tangent space is given by the vector field. Thus, the vector field is the Lie
algebra associated to the Lie group of diffeomorphisms. The Jacobi identity holds in any Lie
algebra. Thus it comes from something deeper, and is not just a miracle with 6 positive and
6 negative terms. (Don’t worry if you don’t understand this.)

Proof. 1. By definition.

2. This follows from uniqueness for ODE’s (Theorem 2.5) and reparameterizing.

3. Follows from part 2. Think of this as “reversing time.”

Remark: Note that solutions may blow up in finite time. For example, consider 𝛼(𝑡) on R
starting at 1, satisfying

𝛼(0) = 1

𝛼′(𝑡) = 𝑋(𝛼(𝑡)) = 𝛼𝑝(𝑡).

We have

(𝛼1−𝑝)′ = (1− 𝑝)𝛼
′

𝛼𝑝
= (1− 𝑝)

Since the RHS is constant, we have 𝛼1−𝑝 → 0 in finite time, and 𝛼 blows up when 𝑝 > 1.
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There is no uniform interval (−𝜀, 𝜀) that works for every point; 𝜙 is not globally defined
on R for any 𝑝 > 1. However, if 𝛼 is initially in a finite neighborhood of 0, it will be defined
for some period of time (−𝜀, 𝜀). Given a time interval, there is a small enough neighborhood
in 𝑀 where 𝜙 is defined.

We can now see in what sense the Lie derivative is a “derivative,” by relating it to 𝜙.

Proposition 2.7: Let 𝜙𝑡 be the local flow of 𝑋. Then

[𝑋, 𝑌 ] = − 𝑑

𝑑𝑡

⃒⃒⃒⃒
⃒
𝑡=0

𝑑𝜙−𝑡(𝑌 ) ∘ 𝜙𝑡.

In other words,

([𝑋, 𝑌 ]𝑓)(𝑝) = − 𝑑

𝑑𝑡

⃒⃒⃒⃒
⃒
𝑡=0

𝑑𝜙−𝑡(𝑌 )𝑓(𝜙𝑡(𝑝)).

Proof. See do Carmo, [3, Prop. 5.4, p. 28].

In order to define the derivative of a vector field with respect to another vector field,
we need a way to identify different tangent spaces. The Lie derivative is one such
way; it identifies tangent spaces using the flow 𝜙𝑡 of the vector field.

We’ll make 2 assumptions from now on: Manifolds are “nice” in the following sense.

1. Hausdorff: Given 𝑝 ̸= 𝑞, there exist open sets 𝑈𝑝, 𝑈𝑞 such that 𝑝 ∈ 𝑈𝑝 and 𝑞 ∈ 𝑈𝑞 such
that 𝑈𝑝 ∩ 𝑈𝑞 = 𝜑.

2. Countable basis: 𝑀 is covered by a countable collection of coordinate charts.

Lecture 3

Thu. 9/13/12

Today Toby Colding is lecturing. His office is 2-280.
Grades will be based on weekly homework and attendance. There will be 8–10 weekly

homeworks. The first assignment is due on Tuesday Sept. 25, by 3pm in the undergraduate
office 2-285. The grader will grade 1

3
of each pset, randomly.
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S1 Riemannian metric

Suppose that 𝑀𝑛 is a smooth 𝑛-dimensional manifold. For each 𝑝 ∈ 𝑀 , 𝑇𝑝𝑀 is the vector
space of tangent vectors. If 𝑉 is a 𝑛-dimensional vector space, then ⟨·, ·⟩ is an inner product
if it is a function

⟨·, ·⟩ : 𝑉 × 𝑉 → R

that is

1. linear in each variable

⟨𝑣1 + 𝑎𝑣2, 𝑤⟩ = ⟨𝑣1, 𝑤⟩+ 𝑎 ⟨𝑣2, 𝑤⟩ , 𝑣1, 𝑣2, 𝑤 ∈ 𝑉, 𝑎 ∈ R

2. symmetric
⟨𝑣, 𝑤⟩ = ⟨𝑤, 𝑣⟩ , 𝑣, 𝑤 ∈ 𝑉

and

3. positive definite
⟨𝑣, 𝑣⟩ ≥ 0 with equality iff 𝑣 = 0.

We’ll denote inner products by 𝑔 or by ⟨·, ·⟩.

Definition 3.1: ARiemannian metric is a smoothly varying inner product on the tangent

space, i.e. if 𝑋 and 𝑌 are any two vector fields, then the function 𝑝
𝑓−→ ⟨𝑋, 𝑌 ⟩ (𝑝) is a smooth

function 𝑓 : 𝑀 → R. A manifold with a Riemannian metric is also called a Riemannian
manifold.

Equivalently, if 𝑝 ∈ 𝑀 , 𝑝 is in the chart 𝑈 ⊆ 𝑀 and 𝑝 is given by coordinates 𝑥 =
(𝑥1, . . . , 𝑥𝑛), then 𝑔𝑖𝑗 =

¬
𝜕
𝜕𝑥𝑖
, 𝜕
𝜕𝑥𝑖

)︂
is a smooth function.

To see the equivalence, note every vector field can be written as a linear combination of
the 𝜕

𝜕𝑥𝑖
, whose coefficients are smooth functions. For 𝑋 =

∑︀
𝑖 𝑎𝑖

𝜕
𝜕𝑥𝑖

(which we will write in

shorthand as 𝑎𝑖
𝜕
𝜕𝑥𝑖

, with the convention that we sum over the indices) and 𝑌 =
∑︀

𝑖 𝑏𝑖
𝜕
𝜕𝑥𝑖

, we
have

⟨𝑋, 𝑌 ⟩ = 𝑎𝑖𝑏𝑗

⟩︀
𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥𝑗

]︂
= 𝑎𝑖𝑏𝑗𝑔𝑖𝑗.

If we know the 𝑔𝑖𝑗 then we can recover the inner product.

Example 3.2: The simplest example is 𝑀 = R𝑛, 𝑔 = ⟨·, ·⟩.

Definition 3.3: Suppose we have a smooth map 𝑓 :𝑀𝑚 → 𝑁𝑛 that is an immersion, i.e.

𝑑𝑝𝑓 : 𝑇𝑝𝑀 →˓ 𝑇𝑓(𝑝)𝑁

is injective.
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Now suppose (𝑁, 𝑔𝑁) has a Riemannian metric. Then there is a natural metric on 𝑀 ,
called the pullback, (𝑀, 𝑔𝑀), defined by

𝑔𝑀(𝑣, 𝑤) = 𝑔𝑁(𝑑𝑝𝑓(𝑣), 𝑑𝑝𝑓(𝑤)), 𝑣, 𝑤 ∈ 𝑇𝑝𝑀.

If 𝑀𝑚 →˓ 𝑁𝑛, then we call the pullback the induced metric.

Proof that this is a Riemannian metric. 𝑔𝑀 sends ordered pairs of tangent vectors to R. The
differential is linear and 𝑔𝑁 is linear, so 𝑔𝑀 is linear. Symmetry is obvious because 𝑔𝑁 is
symmetric. 𝑔𝑀 is clearly positive semidefinite; it is definite becase 𝑓 is an immersion: if
𝑤 = 𝑣 ̸= 0, then 𝑑𝑝𝑓(𝑣) ̸= 0, so the RHS is strictly positive.

The Nash embedding theorem, proven by John Nash, says that every Riemannian man-
ifold can be imbedded in Euclidean space, such that its metric is just the induced metric
from Euclidean space.

Example 3.4: Consider 𝑁 = R3. Then (R3, ⟨·, ·⟩) is a Riemannian metric. Suppose Σ2 is a
surface and 𝑓 : Σ2 → R3 is an immersion. Then we get an induced metric on Σ. In general,
an inclusion is an immersion, so an inner product on Euclidean space gives an inner product
on the submanifold.

If you take a manifold and a smooth function ℎ :𝑀𝑚 → R, and 𝑡 ∈ R is a regular value,
then ℎ−1(𝑡) is a smooth manifold of dimension 𝑚− 1 (a hypersurface).

For example, consider ℎ : R3 → R, ℎ(𝑥1, 𝑥2, 𝑥3) = 𝑥21 + 𝑥22 + 𝑥23. Then any positive value
is a regular value, so ℎ(𝑥1, 𝑥2, 𝑥3) = 𝑐 is 2-manifold for any 𝑐 > 0.

Historically, Riemannian manifolds came out of looking at surfaces in Euclidean 3-space.
At each point you have a natural inner product; we want to see what this inner product tells
us about the geometry of the surface. Gauss pioneered this viewpoint and Riemann cast this
in the more general language of manifolds. See Spivak’s book; it’s amusing to read about
Riemann’s thesis, the starting point for Riemannian geometry—a generalization of the inner
product in R3.

We need a notion of what it means for two Riemannian metrics to be the same.

Definition 3.5: Let (𝑀𝑚, 𝑔𝑀) and (𝑁𝑛, 𝑔𝑁) be Riemannian manifolds. A isometry is a
diffeomorphism 𝑓 :𝑀 → 𝑁 such that for all 𝑝 ∈𝑀 , and for all 𝑣, 𝑤 ∈ 𝑇𝑝𝑀 ,

⟨𝑣, 𝑤⟩𝑀 = ⟨𝑑𝑝𝑓(𝑣), 𝑑𝑝𝑓(𝑤)⟩𝑁 .

The Riemannian manifolds are said to be isometric.

Note the fact that 𝑓 is a diffeomorphism requires 𝑚 = 𝑛.

Definition 3.6: Let 𝐺 is a Lie group (a manifold that is also a group, such that group
operations are smooth). For each 𝑔 ∈ 𝐺, we have the left action 𝐿𝑔 : 𝐺 → 𝐺 given by
𝐿𝑔ℎ = 𝑔ℎ and the right action 𝑅𝑔ℎ = ℎ𝑔.
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Suppose (𝐺, ⟨·, ·⟩) is a smooth 𝑛-dimensional Riemannian manifold. We say that the
Riemannian metric 𝐷 is left invariant if for all 𝑔 ∈ 𝐺, 𝐿𝑔 : 𝐺 → 𝐺 is an isometry. (Note
it is a diffeomorphism since 𝐿𝑔−1 = 𝐿−1

𝑔 .) Similarly define right invariance.

Let 𝐺 be a Lie group with a left invariant Riemannian metric. It is determined completely
by the inner product at the tangent space at the identity 𝑇𝑒𝐺 (the Lie algebra), because 𝐿𝑔

is an isometry seding 𝑒 to 𝑔. Given an inner product on the tangent space on 𝑇𝑒𝐺, requiring
that 𝐿𝑔 is an isometry for each 𝑔 we get a left-invariant metric. We have a correspondence
between inner products on 𝑇𝑒𝐺 and Riemannian metrics on 𝐺.

If we have a Lie group, it’s natural for us to connect the group structure with the inner
product.

Definition 3.7: A metric on a Lie group that is both left and right invariant is said to be
bi-invariant.

If 𝐺 is bi-invariant, then map 𝐺 → 𝐺 given by ℎ ↦→ 𝑔ℎ𝑔−1 is an isometry because it is

the composition of isometries ℎ
𝐿𝑔−→ 𝑔ℎ

𝑅𝑔−1−−−→ (𝑔ℎ)𝑔−1. This gives a necessary condition for a
metric to be bi-invariant.

If a Lie group is compact, then you can average over the group and construct a bi-
invariant metric. Take any inner product at the tangent space of the identity, look at all the
other inner products that are pullbacks, and average over the group. This construction only
make sense if we can average, i.e. if 𝑀 is compact.

Let 𝑀𝑛 be a smooth manifold (that is Hausdorff with countable basis).

Claim 3.8: There exist many Riemannian metrics on 𝑀 .

Let (𝑈𝛼, 𝑥𝛼) be an atlas. Take a partition of unity {𝜑𝛼} subordinate to this cover, i.e.

𝜑𝛼 :𝑀 → [0,∞), Supp𝜑𝛼 ⊆ 𝑈𝛼

such that given any point 𝑝, there exist at most finitely many 𝛼 with 𝜑𝛼(𝑝) ̸= 0, and∑︀
𝛼 𝜑𝛼(𝑝) = 1.
We have 𝑥𝛼 : 𝑈𝛼 → R𝑛; we can choose any inner product on R𝑛 (such as the standard

inner product) to get an inner product on 𝑈𝛼. Then
∑︀

𝛼 𝜑𝛼𝑔𝛼 is a inner product on 𝑀 . Only
finitely many terms are nonzero at each point. It is linear in each variable; it is positive
semidefinite because 𝜑𝛼 are nonnegative; it is positive definite because

∑︀
𝛼 𝜑𝛼(𝑝) = 1 > 0.

Make any choice of metric on the open subsets.

S2 Length of a curve

Definition 3.9: Let 𝑀 be a manifold, 𝐼 be an interval, and 𝐶 be a curve (smooth map)
𝐼 →𝑀 . Note 𝑑𝑡𝑐

(︀
𝜕
𝜕𝑡

�
= 𝑐′(𝑡). By definition, the length of the curve is∫︁

𝐼

È
⟨𝑐′(𝑡), 𝑐′(𝑡)⟩ 𝑑𝑡 =

∫︁
𝐼
|𝑐′(𝑡)|.
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Let’s talk about another construction.

Definition 3.10: Let (𝑀1, 𝑔1) and (𝑀2, 𝑔2) be Riemannian manifolds. Then define the
product to be (𝑀1 ×𝑀2, 𝑔) as follows. A tangent vector at (𝑝1, 𝑝2) can be thought of as
(𝑣1, 𝑣2) where 𝑣𝑖 ∈ 𝑇𝑝𝑖𝑀𝑖. Taking (𝑣1, 𝑣2), (𝑤1, 𝑤2) ∈ 𝑇(𝑝1,𝑝2)(𝑀1 ×𝑀2), we define

𝑔((𝑣1, 𝑣2), (𝑤1, 𝑤2)) := 𝑔1(𝑣1, 𝑤1) + 𝑔2(𝑣2, 𝑤2).

Linearity in each variable is clear because 𝑔1, 𝑔2 are linear. Symmetry follows from 𝑔1, 𝑔2
being symmetric. For positive definiteness, take 𝑣𝑖 = 𝑤𝑖; the expression is nonnegative and
is 0 only if 𝑣1 and 𝑣2 are 0.

Consider (𝑀𝑛, 𝑔). Suppose 𝑋1, . . . , 𝑋𝑛 ∈ 𝑇𝑝𝑀 . Suppose 𝑒1, . . . , 𝑒𝑛 is an orthonormal
basis for 𝑇𝑝𝑀 . Write 𝑋𝑖 = 𝑎𝑖𝑗𝑒𝑗. Then the (signed) volume spanned by 𝑋1, . . . , 𝑋𝑛 is just
det(𝑎𝑖𝑗).

When 𝑋𝑖 = 𝑎𝑖𝑘𝑒𝑘 then ⟨𝑋𝑖, 𝑋𝑗⟩ = 𝑎𝑖𝑘𝑎𝑗𝑘. I.e. it’s given by the entries of 𝐴𝐴𝑇 where
𝐴 = (𝑎𝑖𝑗). Hence È

det(𝑔𝑖𝑗) = |det(𝑎𝑖𝑗)| .

Definition 3.11: Define the volume of a set 𝑈 to be

Vol(𝑈) =
∫︁
𝑈

È
det(𝑔𝑖𝑗).

We sum over pieces contained in different coordinate charts, as necessary.

A Riemannian metric gives us a way to define length and volume on a manifold.

We have more or less covered everything in chapter 1. The first several classes included
lots of notation; we’ll soon go on to more geometry.

Lecture 4

Tue. 9/18/12

The course website is http://math.mit.edu/~tfei. The first homework is due on Tuesday
of next week.

Recall that to differentiate a vector field in the directino of another, we needed to identify
different vector spaces; one way to do so was with the Lie derivative. Another way is to equip
the manifold with extra structure, a Riemannian connection. We’ll cover this today, and
show how from an affine connection we can also define the covariant derivative, which is a
generalization of differentiating a vector field along a curve.
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S1 Affine connection

For 𝑀 a smooth 𝑛-dimensional manifold, let X(𝑀) be the set of vector fields on 𝑀 .

Definition 4.1: An affine connection on 𝑀 is a function ∇ : X(𝑀) × X(𝑀) → X(𝑀)
with the following properties.

1. ∇𝑍(𝑋 + 𝑓𝑌 ) = ∇𝑍𝑋 + 𝑍(𝑓)𝑌 + 𝑓∇𝑍𝑌

2. ∇𝑋+𝑓𝑌𝑍 = ∇𝑋𝑍 + 𝑓∇𝑌𝑍.

Example 4.2: ex:Rn-ac The affine connection on R𝑛 is given as follows. Suppose 𝑋 =∑︀𝑛
𝑖=1 𝑎𝑖

𝜕
𝜕𝑥𝑖

and 𝑌 =
∑︀𝑛

𝑖=1 𝑏𝑖
𝜕
𝜕𝑥𝑖

. Then

∇𝑋𝑌 =
∑︁
𝑖,𝑗

𝑎𝑖
𝜕𝑏𝑗
𝜕𝑥𝑖

𝜕

𝜕𝑥𝑗
;

i.e. the affine connection is just differentiating (𝑏1, . . . , 𝑏𝑛) in the direction of 𝑋.

Note an affine connection basically tells us how to differentiate one vector field with
respect to another.

Definition 4.3: Suppose 𝑀𝑛 is a smooth manifold, ∇ is a connection, and 𝑐 : 𝐼 →𝑀 is an
interval. A vector field 𝑉 along the curve 𝑐 is a function such that for 𝑡 ∈ 𝐼, 𝑉 (𝑡) ∈ 𝑇𝑐(𝑡)𝑀
and 𝑡 ↦→ 𝑉 (𝑡) is smooth.

Note 𝑉 (𝑡) is not necessarily the restriction of a vector field on 𝑀 , but is a vector field
along the curve. For instance, the velocity field along the following self-intersecting curve
is a vector field along the curve that is not the restriction of a vector field on R2. This is
becaue at the point of intersection, there are two vectors.

Definition 4.4: df:covar-der Let 𝑐 : 𝐼 → 𝑀 be a smooth curve and ∇ be a connection.
There is a unique operation 𝐷

𝜕𝑡
called the covariant derivative along the curve (sending

vector fields along the curve to vector fields along the curve) with the following properties.

25



Lecture 4 Notes on Geometry of Manifolds

1. (Additivity and Leibniz rule) If 𝑉,𝑊 are vector fields along the curve and 𝑓 : 𝐼 → R,
then

𝐷

𝜕𝑡
(𝑉 + 𝑓𝑊 ) =

𝐷

𝜕𝑡
𝑉 + 𝑓

𝐷

𝜕𝑡
𝑊 + 𝑓 ′𝑊.

2. If 𝑋 ∈ X(𝑀) then
𝐷

𝜕𝑡
𝑋 = ∇𝑐′𝑋.

Think of this as the derivative of a vector field along the curve.

Proposition 4.5: Suppose∇ is a connection, 𝑋, 𝑌, 𝑍 ∈ X(𝑀), and 𝑝 ∈𝑀 . If 𝑋(𝑝) = 𝑌 (𝑝),
then

(∇𝑋𝑍)(𝑝) = (∇𝑌𝑍)(𝑝).

Consider the canonical connection on R𝑛 as in Example 4.2, ∇𝑌𝑋 = 𝑑𝑋(𝑌 ). If you
evaluate at 𝑝, it depends on what 𝑋 is close to 𝑝, but as for 𝑌 , it only depends on the value
of 𝑌 at 𝑝.

Proof. Use the fact
∇𝑋+𝑓𝑌𝑍 = ∇𝑋𝑍 + 𝑓∇𝑌𝑍.

Suppose we have local coordinates (𝑥1, . . . , 𝑥𝑛) on 𝑀 . Write 𝑋 = 𝑎𝑖
𝜕
𝜕𝑥𝑖

and 𝑌 = 𝑏𝑖
𝜕
𝜕𝑥𝑖

(repeated indices are summed) where 𝑎𝑖 and 𝑏𝑖 are smooth functions on𝑀 . Now by linearity
in the subscript,

∇𝑋𝑍 = ∇𝑎𝑖
𝜕

𝜕𝑥𝑖

𝑍 = 𝑎𝑖∇ 𝜕
𝜕𝑥𝑖

𝑍,

and the same is true for 𝑌 . Evaluating at 𝑝, we get that they are equal at 𝑝.

Definition 4.6: Given local coordinates on a manifold with an affine connection, define the
christoffel symbols as the constants Γ𝑘

𝑖𝑗 that make the following true:

∇ 𝜕
𝜕𝑥𝑖

𝜕

𝜕𝑥𝑗
=: Γ𝑘

𝑖𝑗

𝜕

𝜕𝑥𝑘
.

If we have two vector fields 𝑋 and 𝑌 , writing 𝑋 = 𝑎𝑖
𝜕
𝜕𝑥𝑖

and 𝑌 = 𝑏𝑗
𝜕

𝜕𝑥𝑗
, then

∇𝑋𝑌 = ∇𝑎𝑖
𝜕

𝜕𝑥𝑖

�
𝑏𝑗

𝜕

𝜕𝑥𝑗

�
= 𝑎𝑖∇ 𝜕

𝜕𝑥𝑖

�
𝑏𝑗

𝜕

𝜕𝑥𝑗

�
= 𝑎𝑖𝑏𝑗∇ 𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥𝑗
+ 𝑎𝑖

𝜕

𝜕𝑥𝑖
(𝑏𝑗)

𝜕

𝜕𝑥𝑗

= 𝑎𝑖𝑏𝑗Γ
𝑘
𝑖𝑗

𝜕

𝜕𝑥𝑘
+ 𝑎𝑖

𝜕

𝜕𝑥𝑖
(𝑏𝑗)

𝜕

𝜕𝑥𝑗
.

Note in the case of R𝑛 that Γ𝑘
𝑖𝑗 = 0 for all 𝑖, 𝑗, 𝑘.
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S2 Covariant derivative

Proof of existence and uniqueness of Definition 4.4. Given an affine connection ∇, 𝑐 : 𝐼 →
𝑀 , and ∇, 𝑉 , 𝑊 vector fields along 𝑐, 𝑋 ∈ X(𝑀), 𝐷

𝜕𝑡
is another vector field along 𝑐.

From the condition 𝐷
𝜕𝑡
𝑋 = ∇𝑐′𝑋, if we want to know value at some point, than we just

need to know the velocity at that point.
Given 𝑉 = 𝑎𝑖

𝜕
𝜕𝑥𝑖

, 𝑎𝑖 : 𝐼 → R, we must have

𝑒𝑞 : 965− 4− 1
𝐷

𝜕𝑡
𝑉 = 𝑎′𝑖

𝜕

𝜕𝑥𝑖
+ 𝑎𝑖

𝐷

𝜕𝑡

�
𝜕

𝜕𝑥𝑖

�
= 𝑎′𝑖

𝜕

𝜕𝑥𝑖
+ 𝑎𝑖∇𝑐′

𝜕

𝜕𝑥𝑖
(5)

where in the last equality we used that 𝜕
𝜕𝑥𝑖

is a global vector field. We’ve shown that 𝐷
𝜕𝑡

only

defined one way, by (5). Conversely, if 𝐷
𝜕𝑡

is defined by this, it is easy to see that it has the
right properties.

Definition 4.7: Given a manifold 𝑀 , a curve 𝑐 : 𝐼 → 𝑀 , an affine connection ∇, and the
corresponding covariant derivative 𝐷

𝜕𝑡
, we say that a vector field 𝑉 along 𝑐 is parallel if

𝐷

𝜕𝑡
𝑉 = 0.

Writing 𝑎 : 𝐼 → R, 𝑉 = 𝑎𝑖
𝜕
𝜕𝑥𝑖

, 𝑐′ = 𝑐′𝑗
𝜕

𝜕𝑥𝑗
, we have

𝐷

𝜕𝑡
𝑉 = 𝑎′𝑖

𝜕

𝜕𝑥𝑖
+ 𝑎𝑖∇𝑐′

𝜕

𝜕𝑥𝑖

= 𝑎′𝑖
𝜕

𝜕𝑥𝑖
+ 𝑎𝑖𝑐

′
𝑗Γ

𝑘
𝑗𝑖

𝜕

𝜕𝑥𝑘
.

To say that 𝑉 is parallel is just saying

0 = 𝑎′𝑖
𝜕

𝜕𝑥𝑖
+ 𝑎𝑖𝑐

′
𝑗Γ

𝑘
𝑗𝑖

𝜕

𝜕𝑥𝑘

⇐⇒ 0 = (𝑎′ℓ + 𝑎𝑖𝑐
′
𝑗Γ

ℓ
𝑗𝑖)

𝜕

𝜕𝑥𝑘
⇐⇒ 0 = 𝑎′ℓ + 𝑎𝑖𝑐

′
𝑗Γ

ℓ
𝑗𝑖 for all ℓ.

This is an ODE! Thus, if we prescribe what the 𝑎𝑖 are initially, then by existence and
uniqueness of solutions to a first-order linear ODE, we have the following proposition.

Proposition 4.8: pr:parallel-vf Let 𝑐 be a curve 𝐼 = [0, 1] → 𝑀 . For each value 𝑉 (0) ∈
𝑇𝑐(0), there exists a unique vector field 𝑉 along 𝑐 that is parallel and initially has this value.

If 𝑉 and 𝑊 are parallel, then 𝑉 + 𝜆𝑊 is also parallel.
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Definition 4.9: Let 𝑐 : 𝐼 = [0, 1]→𝑀 be a curve. Define the parallel transport map

𝑃 : 𝑇𝑐(0)𝑀 → 𝑇𝑐(1)𝑀

as follows. For 𝑣 ∈ 𝑇𝑐(0)𝑀 , let 𝑉 be a parallel vector field along 𝑐 with 𝑉 (0) = 𝑣. Define

𝑃 (𝑣) = 𝑉 (1).

𝑃 is a linear map by Proposition 4.8.

Example 4.10: Take a curve in a plane; think of the plane as a manifold. Take a vector
at one end of the curve. What vector on the other end of the curve does it make sense to
identify the vector with? The same one!

The vector at the other end does not depend on curve. But, in general, parallel transport
depends on the curve. For instance, consider the case of a sphere.

In fact, we will see later that the difference is given by the curvature.

An affine connection and a curve allows us to identify the tangent space at one point
with the tangent space of another point.

It also allows us to differentiate one vector field in the direction of another.

In general, without a given curve, we cannot identify tangent spaces at different points
without imposing coordinates. If we have a curve, though, we get at least one way to identify
those tangent spaces.

Suppose again that we have 𝑀,∇, 𝑐, 𝐷
𝜕𝑡
(𝑉 ). Suppose for convenience that 𝑐 : [0, 1]→𝑀 .

Write 𝑉 = 𝑎𝑖
𝜕
𝜕𝑥𝑖

. Suppose that at 𝑐(0), 𝑋1, . . . , 𝑋𝑛 is a basis for 𝑇𝑐(0). Then there exists a
unique 𝑋𝑖(𝑡) defined as follows:

𝑋𝑖(𝑡) = 𝑃𝑐|[0,𝑡]𝑋𝑖.

We get 𝑛 vector fields along the curve. At each point on the curve 𝑐 that {𝑋𝑖(𝑡)}𝑖 are
linearly independent. To see this, note that they are linearly dependent initially, and that
by uniqueness in Proposition 4.8, parallel translation is symmetric; going forwards and then
backwards on the curve gives the identity. If the 𝑋𝑖(𝑡) were linearly dependent at time
𝑡, we can parallel transport backwards to get a linear dependence relation at time 𝑡 = 0,
contradiction.

28



Lecture 5 Notes on Geometry of Manifolds

We can write any vector field as 𝑉 = 𝑎𝑖𝑋𝑖 where 𝑎𝑖 are smooth functions 𝐼 → R. Now

𝐷

𝜕𝑡
𝑉 = 𝑎𝑖

𝐷

𝜕𝑡
𝑋𝑖 + 𝑎′𝑖𝑋𝑖 = 𝑎′𝑖𝑋𝑖

where the first term is 0 because 𝑋𝑖 is a parallel basis. Thus we see that the covariant
derivative is especially simple.

Recall that given 𝑀 , 𝑝 ∈ 𝑀 , a Riemannian metric is a smoothly varying inner product
on the tangent space.

Other structures are interesting, too: Instead of inner product, we could have indefinite
(nondegenerate symmetric bilinear) forms. For example, we could consider a Lorentzian.
If you study general relativity, then it’s all about the Lorentzian metric. Think about a
manifold as both space and time; on space we have a Riemannian metric, and on time, we
have another bilinear form that is negative definite.

S3 Compatibility of metric and connection

Note that in our study of connections so far, the metric didn’t play a role at all. We now
bring in the metric. We want the connection to be compatible with the Riemannian metric.

Definition 4.11: Let (𝑀𝑛, 𝑔) be a smooth Riemannian manifold and a connection ∇. We
say that 𝑔 is compatible with ∇ if whenever 𝑐 : 𝐼 →𝑀 is a curve and 𝑉 and𝑊 are parallel
vector fields along 𝑐, then 𝑔(𝑉,𝑊 ) is constant along 𝑐.

If 𝐶 : [0, 1]→𝑀 and 𝑉 (0) ⊥ 𝑊 (0), then 𝑉 ⊥ 𝑊 everywhere along the curve and |𝑉 ||𝑊 |
is constant.

Example 4.12: Take the canonical example R𝑛, ∇. Let 𝑔 = ⟨·, ·⟩ be the usual inner
product. Then the connection is compatible with the metric: The inner product of parallel
vector fields is constant along the curve.

Next time we will prove that any Riemannian metric gives rise to a unique connection,
and show that our definition of a connection is equivalent to a more standard definition.

Lecture 5

Thu. 9/20/12

As a reminder, homework is due Tuesday by 3PM in 2-285.
Today we’ll finally relate the Riemannian metric on a manifold with an affine connection.

Our main theorem is the Levi-Civita Theorem 5.6, which says that a Riemannian metric
automatically gives a unique symmetric compatible connection. We’ll give ways to explicitly
calculate what the connection is, i.e. calculate the christoffel symbols.
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S1 Symmetric connections

Given a manifold 𝑀 , an affine connection ∇ is a way of differentiating one vector field in
the direction of another. It is linear, and satisfies the Leibniz rule in one variable (and only
depends on the value at the point for the other variable).

Definition 5.1: For vector fields 𝑋, 𝑌 ∈ X(𝑀), ∇ is a symmetric connection if

∇𝑋𝑌 −∇𝑌𝑋 = [𝑋, 𝑌 ].

In particular, if on 𝑀 we have coordinates (𝑥1, . . . , 𝑥𝑛) and 𝑋 = 𝜕
𝜕𝑥𝑖

and 𝑌 = 𝜕
𝜕𝑥𝑗

then

[𝑋, 𝑌 ] = 0, so it doesn’t matter which order we take the derivative:

∇ 𝜕
𝜕𝑥𝑖

𝜕

𝜕𝑥𝑗
= ∇ 𝜕

𝜕𝑥𝑗

𝜕

𝜕𝑥𝑖
.

Recall that we defined the Christoffel symbols by

∇ 𝜕
𝜕𝑥𝑖

𝜕

𝜕𝑥𝑖
= Γ𝑘

𝑖𝑗

𝜕

𝜕𝑥𝑘
.

If ∇ is symmetric,

∇ 𝜕
𝜕𝑥𝑖

𝜕

𝜕𝑥𝑗
= ∇ 𝜕

𝜕𝑥𝑗

𝜕

𝜕𝑥𝑖

=⇒ Γ𝑘
𝑖𝑗

𝜕

𝜕𝑥𝑘
= Γ𝑘

𝑗𝑖

𝜕

𝜕𝑥𝑘
=⇒ Γ𝑘

𝑖𝑗 = Γ𝑘
𝑗𝑖.

The converse is true as well.

Proposition 5.2: ∇ is symmetric if and only if there are local coordinates everywhere such
that Γ𝑘

𝑖𝑗 = Γ𝑘
𝑗𝑖.

Let (𝑥1, . . . , 𝑥𝑚) be coordinates of a point on𝑀 . The points of 𝑇𝑀 are (𝑝, 𝑣) with 𝑝 ∈𝑀
and 𝑣 ∈ 𝑇𝑝𝑀 . The coordinates of a point on 𝑇𝑀 are�

𝑥1, . . . , 𝑥𝑛, 𝑦1
𝜕

𝜕𝑥1
, . . . , 𝑦𝑛

𝜕

𝜕𝑥𝑛

�
.

If 𝑀 is a Riemannian manifold, another tangent bundle is often used.

Definition 5.3: Let (𝑀, 𝑔) be a Riemannian manifold. Then

𝑇 1𝑀 = 𝑇 1𝑀/𝑆𝑀 := {(𝑝, 𝑣) : 𝑝 ∈𝑀, 𝑇𝑝𝑀, 𝑔(𝑣, 𝑣) = 1}

is called the unit tangent bundle or unit sphere bundle.
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Note that 𝑆𝑀 has dimension 2𝑛−1. In the study of dynamic systems, one looks at flows
on unit tangent bundles.

From now on, we assume all connections to be symmetric. We give an alternate condition
for a symmetric connection to be compatible with the metric (in some texts this is taken as
a definition).

Proposition 5.4: pr:965-5-4 Let (𝑀, 𝑔) be a manifold with a Riemannian metric and ∇
be a connection. We say that a symmetric connection is compatible with the metric if for
𝑋, 𝑌, 𝑍 ∈ X(𝑀),

𝑋(𝑔(𝑌, 𝑍)) = 𝑔(∇𝑋𝑌, 𝑍) + 𝑔(𝑌,∇𝑋𝑍).

Proof. See Do Carmo [3, p. 52, Corollary 3.3]. (Note this is a corollary of Proposition 3.2 in
the book, which is Proposition 5.8 here. The order is somewhat inverted in the lecture and
in these notes.)

Example 5.5: In the canonical example𝑀 = R𝑛, 𝑔 = ⟨·, ·⟩, and the condition holds because
it is just the Leibniz rule.

S2 Levi-Civita connection

Suppose again we have a smooth manifold with a connection compatible with the metric.
We’ll try to “isolate” ∇𝑋𝑌 , so we can express it only using information from the Riemannian
metric (i.e. without other terms ∇*∙), as follows. We write (permuting the variables)

𝑋(𝑔(𝑌, 𝑍)) = 𝑔(∇𝑋𝑌, 𝑍) + 𝑔(𝑌,∇𝑋𝑍)

𝑌 (𝑔(𝑍,𝑋)) = 𝑔(∇𝑌𝑍,𝑋) + 𝑔(𝑍,∇𝑌𝑋)

−( 𝑍(𝑔(𝑋, 𝑌 )) = 𝑔(∇𝑍𝑋, 𝑌 ) + 𝑔(𝑋,∇𝑍𝑌 ) )

Adding the first two equations and subtracting the third,

𝑋𝑔(𝑌, 𝑍) + 𝑌 𝑔(𝑍,𝑋)− 𝑍𝑔(𝑋, 𝑌 ) = 𝑔(∇𝑋𝑌, 𝑍) + 𝑔(𝑌,∇𝑋𝑍) + 𝑔(∇𝑌𝑍,𝑋)

+ 𝑔(∇𝑌𝑍,𝑋) + 𝑔(𝑍,∇𝑌𝑋)− 𝑔(∇𝑍𝑋, 𝑌 )− 𝑔(𝑋,∇𝑍𝑌 )

𝑒𝑞 : 965− 5− 1 = 𝑔(𝑌, [𝑋,𝑍]) + 𝑔(𝑋, [𝑌, 𝑍]) + 𝑔(∇𝑋𝑌, 𝑍) + 𝑔(𝑍,∇𝑌𝑋).
(6)

We used the fact that 𝑔 is linear and symmetric. Now using ∇𝑌𝑋 = ∇𝑋𝑌 + [𝑌,𝑋] =
∇𝑋𝑌 − [𝑋, 𝑌 ],

𝑔(∇𝑋𝑌, 𝑍) + 𝑔(𝑍,∇𝑌𝑋) = 𝑔(𝑍,∇𝑋𝑌 ) + 𝑔(𝑍,∇𝑌𝑋)

= 2𝑔(𝑍,∇𝑋𝑌 )− 𝑔(𝑍, [𝑋, 𝑌 ]).

We hence get that (6) equals

𝑔(𝑌, [𝑋,𝑍]) + 𝑔(𝑋, [𝑌, 𝑍])− 𝑔(𝑍, [𝑋, 𝑌 ]) + 2𝑔(𝑍,∇𝑋𝑌 ).
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Moving the connection to the left-hand side gives

𝑔(𝑍,∇𝑋𝑌 ) =
1

2
(𝑋𝑔(𝑌, 𝑍) + 𝑌 𝑔(𝑍,𝑋)− 𝑍𝑔(𝑋, 𝑌 ) + 𝑔(𝑍, [𝑋, 𝑌 ])− 𝑔(𝑌, [𝑋,𝑍])− 𝑔(𝑋, [𝑌, 𝑍]))

(7)
Note that if want to know how a connection is defined, it suffices to know the inner product
of ∇𝑋𝑌 with any vector field field (Just let 𝑍 vary over an orthonormal basis at a point).
Thus we see from (7) that there is only one connection that is compatible. This proves that
given (𝑀, 𝑔) there exists at most one compatible connection.

Conversely, defining the connection by (7), it is easy to check that the connection is
compatible with the metric.

Theorem 5.6 (Levi-Civita): thm:levi-civita Given a Riemannian manifold, there is a unique
symmetric and compatible connection called the Levi-Civita connection. It is given by (7).

Note that positive definiteness wasn’t necessary here (but non-degeneracy matters).
Suppose we have a Riemannian manifold and coordinates (𝑥1, . . . , 𝑥𝑛). Defining (locally)

𝑔𝑖𝑗 = 𝑔

�
𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥𝑗

�
,

because 𝑔 is symmetric we have that (𝑔𝑖𝑗)𝑖𝑗 is a symmetric 𝑛× 𝑛 matrix at each point.
Define (𝑔𝑖𝑗)𝑖𝑗 = (𝑔𝑖𝑗)

−1, i.e. so that
∑︀

𝑘 𝑔𝑖𝑘𝑔
𝑘𝑗 = 𝛿𝑖𝑗. Since (𝑔𝑖𝑗) is symmetric, so is (𝑔𝑖𝑗).

Specializing the formula (7) to 𝑋 = 𝜕
𝜕𝑥𝑖

, 𝑌 = 𝜕
𝜕𝑥𝑗

, and 𝑍 = 𝜕
𝜕𝑥𝑘

, noting the Lie brackets
are 0 we get

𝑔

�
𝜕

𝜕𝑥𝑘
,∇ 𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥𝑗

�
=

1

2

�
𝜕

𝜕𝑥𝑖
𝑔𝑗𝑘 +

𝜕

𝜕𝑥𝑗
𝑔𝑘𝑖 −

𝜕

𝜕𝑥𝑘
𝑔𝑖𝑗

�
(8)

We rewrite the LHS using Christoffel symbols:

𝑔

�
𝜕

𝜕𝑥𝑘
,Γℓ

𝑖𝑗

𝜕

𝜕𝑥ℓ

�
= Γℓ

𝑖𝑗𝑔

�
𝜕

𝜕𝑥𝑘
,
𝜕

𝜕𝑥ℓ

�
= Γℓ

𝑖𝑗𝑔𝑘ℓ.

From inverse matrices, (note 𝑔𝑘ℓ = 𝑔ℓ𝑘)∑︁
ℓ,𝑘

Γℓ
𝑖𝑗𝑔ℓ𝑘𝑔

𝑘𝑠 =
∑︁
ℓ

Γℓ
𝑖𝑗𝛿ℓ𝑠 = Γ𝑠

𝑖𝑗. (9)

To find a Christoffel symbol, we use (8) and (9) to get

Γ𝑠
𝑖𝑗 =

∑︁
ℓ,𝑘

Γℓ
𝑖𝑗𝑔ℓ𝑘𝑔

𝑘𝑠 =
1

2

�
𝜕

𝜕𝑥𝑖
𝑔𝑗𝑘 +

𝜕

𝜕𝑥𝑗
𝑔𝑘𝑖 −

𝜕

𝜕𝑥𝑗
𝑔𝑘𝑖 −

𝜕

𝜕𝑥𝑘
𝑔𝑖𝑗

�
𝑔𝑘𝑠.

This shows in a even more transparent way that there is only one connection; it tells us what

Γ𝑠
𝑖𝑗 =

⟨︀
𝜕

𝜕𝑥𝑠
,Γ𝑖𝑗∇ 𝜕

𝜕𝑥𝑖

𝜕
𝜕𝑥𝑗

[︂
has to be for each 𝑖, 𝑗, 𝑠.
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Example 5.7: In R𝑛, for 𝑣 = (𝑣1, . . . , 𝑣𝑛) and 𝑤 = (𝑤1, . . . , 𝑤𝑛). We have the usual inner
product

⟨𝑣, 𝑤⟩ = 𝑣1𝑤1 + · · ·+ 𝑣𝑛𝑤𝑛.

We have R𝑛+1 = R𝑛 × R; think of R𝑛 as space, and R as time. Define the inner product

⟨(𝑣1, . . . , 𝑣𝑛, 𝑡1), (𝑤1, . . . , 𝑤𝑛, 𝑡2)⟩ = 𝑣1𝑤1 + · · ·+ 𝑣𝑛𝑤𝑛 − 𝑡1𝑡2.

This is a nondegenerate symmetric bilinear form. It gives us a natural metric on spacetime,
which is positive definite on space but not time. General relativity is about this kind of
structure on a manifold.

Let (𝑀, 𝑔) be equipped with a Levi-Civita connection ∇. Let 𝐼 → 𝑀 be a curve and
𝑉 a vector field along the curve. Remember that there is just one covariant derivative,
determined by ∇ and the conditions it has to satisfy (Leibniz rule, etc.).

Proposition 5.8: Let 𝑉 and 𝑊 be vector fields along the curve. We have

𝑒𝑞 : 965− 5− 5
𝑑

𝑑𝑡
𝑔(𝑉,𝑊 ) = 𝑔

(︂
𝐷

𝜕𝑡
𝑉,𝑊

)︂
+ 𝑔

(︂
𝑉,
𝐷

𝜕𝑡
𝑊
)︂
. (10)

Proof. Writing 𝑉 = 𝑎𝑖
𝜕
𝜕𝑥𝑖

, 𝑊 = 𝑏𝑗
𝜕

𝜕𝑥𝑗
, and 𝑎𝑖 = 𝑎𝑖(𝑡), we have 𝑔(𝑉,𝑊 ) = 𝑎𝑖𝑏𝑗𝑔

(︁
𝜕
𝜕𝑥𝑖
, 𝜕
𝜕𝑥𝑗

)︁
.

Taking the derivative,

𝑒𝑞 : 965− 5− 6
𝑑

𝑑𝑡
𝑔(𝑉,𝑊 ) = 𝑎′𝑖𝑏𝑗𝑔𝑖𝑗 + 𝑎𝑖𝑏

′
𝑗𝑔𝑖𝑗 + 𝑎𝑖𝑏𝑗

𝑑

𝑑𝑡
𝑔𝑖𝑗. (11)

We have

𝑑

𝑑𝑡
𝑔𝑖𝑗 = 𝑐′(𝑔𝑖𝑗) = 𝑐′𝑔

�
𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥𝑗

�
= 𝑔

�
∇𝑐′

𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥𝑗

�
+ 𝑔

�
𝜕

𝜕𝑥𝑖
,∇𝑐′

𝜕

𝜕𝑥𝑗

�
compatibility

Equation (11) then becomes

𝑑

𝑑𝑡
𝑔(𝑉,𝑊 ) = 𝑎′𝑖𝑏𝑗𝑔𝑖𝑗 + 𝑎𝑖𝑏

′
𝑗𝑔𝑖𝑗 + 𝑎𝑖𝑏𝑗

�
(∇𝑐′

𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥𝑗

�
+ 𝑎𝑖𝑏𝑗𝑔

�
𝜕

𝜕𝑥𝑖
,∇𝑐′

𝜕

𝜕𝑥𝑗

�
. (12)

We have

965− 5− 7
𝐷

𝜕𝑡
𝑉 = 𝑎𝑖

𝐷

𝜕𝑡

𝜕

𝜕𝑥𝑖
+ 𝑎′𝑖

𝜕

𝜕𝑥𝑖

𝐷

𝜕𝑡
𝑊 = 𝑏𝑗

𝐷

𝜕𝑡

𝜕

𝜕𝑥𝑗
+ 𝑏′𝑗

𝜕

𝜕𝑥𝑗
(13)

Using (13), the right-hand side of (10) becomes

𝑔
(︂
𝐷

𝜕𝑡
𝑉,𝑊

)︂
+ 𝑔

(︂
𝑉,
𝐷

𝜕𝑡
𝑊
)︂
= 𝑎𝑖𝑏𝑗𝑔

�
𝐷

𝜕𝑡

𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥𝑗

�
+ 𝑎′𝑖𝑏𝑗𝑔𝑖𝑗 + 𝑎𝑖𝑏𝑗𝑔

�
𝜕

𝜕𝑥𝑖
,
𝐷

𝜕𝑡

𝜕

𝜕𝑥𝑗

�
+ 𝑎𝑖𝑏

′
𝑗𝑔𝑖𝑗

which equals (12), as needed.
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Proposition 5.9: Suppose 𝑐 is a curve and 𝑉1, 𝑉2 are parallel vector fields along 𝑐, i.e.
𝐷
𝜕𝑡
𝑉𝑖 = 0. Then 𝑔(𝑉1, 𝑉2) is constant along the curve. In particular, the length of a parallel

vector field |𝑉 | :=
È
𝑔(𝑉, 𝑉 ) is constant along the curve.

Proof. This follows from Proposition 5.8.

Take an orthonormal basis {𝑒1, . . . , 𝑒𝑛} for the tangent space at 𝑐(0). We know that if
we parallel translate, then we get a unique parallel vector field. This gives 𝑛 parallel vector
fields along the curve. Now 𝑔(𝑒𝑖, 𝑒𝑗) is constant; initially it was 𝑔(𝑒𝑖, 𝑒𝑗) = 𝛿𝑖𝑗, so it remains
so on the curve. We have constructed an orthonormal frame along the curve; for each point
we get an orthonormal basis. Next time we’ll use this idea to talk about geodesics.

Lecture 6

Tue. 9/25/12

Let 𝑀 be a smooth manifold. We’ve looked at vector fields on 𝑀 , X(𝑀). We’ve also talked
about

∙ a connection ∇ : X(𝑀)× X(𝑀)→ X(𝑀), and

∙ a covariant derivative 𝐷
𝜕𝑡

along a curve.

A priori, this has nothing to do with geometric structure.
We brought in the geometric structure using a Riemannian metric 𝑔. More generally, we

can let 𝑔 be a symmetric nondegenerate bilinear form

𝑔 : 𝑇𝑝𝑀 × 𝑇𝑝𝑀 → R

(smoothly varying in 𝑝).
Last time, we saw that given a smooth manifold and such a structure, we can define a

compatible connection.
The canonical example is 𝑀 = R𝑛, 𝑔 = ⟨·, ·⟩, with ⟨(𝑣1, . . . , 𝑣𝑛), (𝑤1, . . . , 𝑤𝑛)⟩ = 𝑣𝑖𝑤𝑖.

The Levi-Civita connection is just taking the derivative of one vector-valued function in the
direction of another.

Another example of particular interest is the following.

Example 6.1 (Minkowski space): The space is R𝑛 × R𝑛+1, with coordinates (𝑥, 𝑡). The
metric is given by

⟨(𝑣1, . . . , 𝑣𝑛, 𝑠1), (𝑤1, . . . , 𝑤𝑛, 𝑠2)⟩R𝑛+1 = 𝑣𝑖𝑤𝑖 − 𝑠1𝑠2.

This is a nondegenerate symmetric bilinear form but it is not positive definite.
This is the canonical example of space-time.

Keep in mind these examples.
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S1 Geodesics

If we take a curve 𝑐 and a vector field 𝑉 along 𝑐, then we can define a covariant derivative
𝐷
𝜕𝑡
𝑉 . We said that 𝑉 is parallel if

𝐷

𝜕𝑡
𝑉 = 0.

If we take vector fields 𝑉1 and 𝑉2, then

𝑑

𝑑𝑡
⟨𝑉1, 𝑉2⟩ =

⟨
𝐷

𝜕𝑡
𝑉1, 𝑉2

⟩
+
⟨
𝑉1,

𝐷

𝜕𝑡
𝑉2

⟩
.

Definition 6.2: Let 𝑐 : 𝐼 → 𝑀 . Then 𝑐′ is a vector field along the curve. We say 𝑐 is a
geodesic if 𝑐′ is a parallel vector field, i.e.

𝐷

𝜕𝑡
𝑐′ = 0.

We now express numerically the condition for 𝑐 to be a geodesic.

Write the curve as 𝑐(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑛(𝑡)) in local coordinates. Think of 𝑐′(𝑡) as on 𝑇𝑀 ,
which has coordinates

(︀
𝑥1, . . . , 𝑥𝑛; 𝑦1

𝜕
𝜕𝑥1
, . . . , 𝑦𝑛

𝜕
𝜕𝑥𝑛

�
. We have 𝑐′(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑛(𝑡), 𝑥

′
1(𝑡), . . . , 𝑥

′
𝑛(𝑡)),

where 𝑐′ = 𝑥′𝑗
𝜕

𝜕𝑥𝑗
. Then

𝑒𝑞 : 965− 6− 1
𝐷

𝜕𝑡
𝑐′ =

𝐷

𝜕𝑡

�
𝑥′𝑗

𝜕

𝜕𝑥𝑗

�
= 𝑥′′𝑗

𝜕

𝜕𝑥𝑗
+ 𝑥′𝑗

𝐷

𝜕𝑡

𝜕

𝜕𝑥𝑗
. (14)

We can express 𝜕
𝜕𝑥𝑗

using the christoffel symbols

𝑒𝑞 : 965− 6− 2
𝐷

𝜕𝑡

𝜕

𝜕𝑥𝑗
= ∇𝑐′

𝜕

𝜕𝑥𝑗
= 𝑥′𝑖∇ 𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥𝑗
= 𝑥′𝑖Γ

𝑘
𝑖𝑗

𝜕

𝜕𝑥𝑘
. (15)

Substituting (15) with (14) gives

𝐷

𝜕𝑡
𝑐′ = 𝑥′′𝑗

𝜕

𝜕𝑥𝑗
+ 𝑥′𝑗𝑥

′
𝑖Γ

𝑘
𝑖𝑗

𝜕

𝜕𝑥𝑘

= 𝑥′′𝑗
𝜕

𝜕𝑥𝑗
+ 𝑥′𝑘𝑥

′
𝑖Γ

𝑗
𝑖𝑘

𝜕

𝜕𝑥𝑗

= (𝑥′′𝑗 + 𝑥′𝑘𝑥
′
𝑖Γ

𝑗
𝑖𝑘)

𝜕

𝜕𝑥𝑗
.
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The condition that 𝑐 is a geodesic is hence equivalent to

𝑒𝑞 : 965− 6− 3𝑥′′𝑗 + 𝑥′𝑖𝑥
′
𝑘Γ

𝑗
𝑖𝑘 = 0 for all 𝑗 (16)

Supposing 𝑐 is a function on 𝐼 = [𝑎, 𝑏], by the theory of ODE’s, there is a unique solution
given any choice of initial conditions

𝑥𝑖(𝑎), 𝑥′𝑖(𝑎),

and we have smooth dependence on initial conditions. We have just proved the following.

Theorem 6.3: thm:unique-geodesic Given a point 𝑝 ∈ 𝑀 and a direction 𝑣 ∈ 𝑇𝑝𝑀 , there
is a unique geodesic 𝑐 starting at the point and going in that direction, i.e. with 𝑐(0) = 𝑝
and 𝑐′(0) = 𝑣.

Moreover, the curve depends smoothly on the initial conditions.

Because 𝑐′ is a geodesic we have

𝑑

𝑑𝑡
𝑔(𝑐′, 𝑐′) = 𝑔(

�
�
��7
0

𝐷

𝜕𝑡
𝑐′, 𝑐′) + 𝑔(𝑐′,

�
�
��7
0

𝐷

𝜕𝑡
𝑐′) = 0

We give several easy observations. Let 𝑐 : [𝑎, 𝑏]→𝑀 .

c(a)

c : [a, b]→M

c

t

M

Let 𝐸1, . . . , 𝐸𝑛 be a orthonormal basis at 𝑇𝑐(𝑎)𝑀 . By parallel transport we get an or-
thonormal basis on every point of 𝑐; by abuse of notation we also denote them by 𝑃𝑡𝐸𝑖 = 𝐸𝑖.
They remain orthonormal: 𝑑

𝑑𝑡
𝑔(𝐸𝑖, 𝐸𝑗) = 𝛿𝑖𝑗. If 𝑐 is a geodesic with unit speed, i.e.

|𝑐′| :=
È
𝑔(𝑐′, 𝑐′) = 1.

The following is elementary.

Proposition 6.4: pr:geodesic-repar Suppose 𝑐 : [𝑎, 𝑏] is a geodesic and 𝑘 is a constant.

1. Define the shifted curve 𝑐𝑘(𝑡) = 𝑐(𝑡+ 𝑘), 𝑐𝑘 : [𝑎− 𝑘, 𝑏− 𝑘]→𝑀 .

2. Define scaled curve 𝑐𝑘(𝑡) = 𝑐(𝑘𝑡), 𝑐 :
�
𝑎
𝑘
, 𝑏
𝑘

�
→𝑀 .

Then 𝑐𝑘 and 𝑐𝑘 are also geodesics.

To keep our geodesic, we can’t reparameterize by arbitrarily slowing down or speeding
up, but we can shift the interval or go through the interval at a steady pace, but slower or
faster.
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S2 Exponential map

Definition 6.5: Given 𝑝 ∈𝑀 , define the exponential map1 exp𝑝 : 𝑇𝑝𝑀 →𝑀 as follows.
For 𝑣 ∈ 𝑇𝑝𝑀 , let 𝑐 be the geodesic with 𝑐(0) = 𝑝 and 𝑐′(0) = 𝑣

exp𝑝(𝑣) = 𝑐(1).

This depends smoothly on the vector, by Theorem 6.3 (which came from smoothness of
ODE solutions in (16)).

TpM

p v

Dropping the subscript, we think of exp as a map from the tangent bundle to 𝑀 , exp :
𝑇𝑀 →𝑀 , such that if (𝑝, 𝑣) ∈ 𝑇𝑀 (𝑝 ∈𝑀 , 𝑣 ∈ 𝑇𝑝𝑀), we have

exp((𝑝, 𝑣)) = exp𝑝 𝑣.

This is also smooth; we make use of the fact that the 𝑥𝑖 depend initially on both the initial
conditions on the 𝑥′𝑖 and the 𝑥𝑖.

2.1 Parameterized surface

Definition 6.6: df:psurf A parameterized surface is a smooth map

𝐹 : [𝑎, 𝑏]× (−𝜀, 𝜀)→𝑀.

It may be an embedding, but this is not a requirement: it is allowed to map everything
to a point.

a b

ε

−ε

s

t

1Note this is called the exponential map because for a Lie group, if we expand it out in Taylor series, it
is just an exponential.
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Given a parameterized surface, we can look at two vector fields 𝜕𝐹
𝜕𝑠

and 𝜕𝐹
𝜕𝑡
.

∂F
∂s

∂F
∂t

Proposition 6.7: pr:covar-commute We have the following:

𝐷

𝜕𝑡

𝜕𝐹

𝜕𝑠
=
𝐷

𝜕𝑠

𝜕𝐹

𝜕𝑡
.

Think of this as saying that “derivatives commute.”

Proof. Writing 𝐹 = (𝐹1, . . . , 𝐹𝑛), we have

𝜕𝐹

𝜕𝑠
=
𝜕𝐹𝑖

𝜕𝑠

𝜕

𝜕𝑥𝑖
𝜕𝐹

𝜕𝑡
=
𝜕𝐹𝑗

𝜕𝑡

𝜕

𝜕𝑥𝑗
𝐷

𝜕𝑡

𝜕𝐹

𝜕𝑠
=
𝐷

𝜕𝑡

�
𝜕𝐹𝑖

𝜕𝑠

𝜕

𝜕𝑥𝑖

�
=
𝜕2𝐹𝑖

𝜕𝑠𝜕𝑡

𝜕

𝜕𝑥𝑖
+
𝜕𝐹𝑖

𝜕𝑠

𝐷

𝜕𝑡

𝜕

𝜕𝑥𝑖

=
𝜕2𝐹𝑖

𝜕𝑠𝜕𝑡

𝜕

𝜕𝑥𝑖
+
𝜕𝐹𝑖

𝜕𝑠
∇ 𝜕𝐹𝑗

𝜕𝑡
𝜕

𝜕𝑥𝑗

𝜕

𝜕𝑥𝑖

=
𝜕2𝐹𝑖

𝜕𝑠𝜕𝑡

𝜕

𝜕𝑥𝑖
+
𝜕𝐹𝑗

𝜕𝑡

𝜕𝐹𝑖

𝜕𝑠
Γ𝑘
𝑗𝑖

𝜕

𝜕𝑥𝑘
.

This is symmetric in 𝑠 and 𝑡. The proposition follows.

2.2 Gauss Lemma

We now make an observation about the exponential map. Usually we fix a point 𝑝 ∈𝑀 and
just think about exp𝑝 : 𝑇𝑝𝑀 → 𝑀 . We define by exp𝑝(𝑣) = 𝑐(1) with 𝑣 ∈ 𝑇𝑝𝑀 , 𝑐(0) = 𝑝
and 𝑐′(0) = 𝑣.

We can think of this another way. Recall that if we change the parameterization in a
linear way, we still a geodesic (Proposition 6.4).

Now defining the geodesic 𝑐 such that 𝑐(0) = 𝑝 and 𝑐′(0) = 𝑡𝑣, and letting 𝛾 be the
geodesic with 𝛾(0) = 𝑝 and 𝛾′(0) = 𝑣, we have by reparameterization that 𝑐(1) = 𝛾(𝑡). In
other words,

exp𝑝(𝑡𝑣) = 𝛾(𝑡).

38



Lecture 7 Notes on Geometry of Manifolds

From this we see that the exponential map sends lines in the tangent space at 𝑝 passing
through 0 to geodesics passing through 𝑝 on the manifold.2

If𝑀 were a two-dimensional, then exp𝑝 : 𝑇𝑝𝑀 →𝑀 is a parameterized surface. Further-
more, we could consider polar coordinates (𝑟, 𝜃) on 𝑇𝑝𝑀 . If the manifold is not 2-dimensional,
restrict exp to a 2-dimensional subspace of 𝑇𝑝𝑀 , exp : 𝑉 →𝑀 .

In either case we have a parameterized surface.

Lemma 6.8: lem:gauss Let𝑀 be a manifold and 𝑝 ∈𝑀 . Let exp𝑝 : 𝑇𝑝𝑀 →𝑀 . Let 𝑉 be a
2-dimensional subspace of 𝑇𝑝𝑀 , expressed in polar coordinates, and consider exp𝑝 : 𝑉 →𝑀
as a function of 𝑟 and 𝜃. Then

𝑔

�
𝜕

𝜕𝑟
exp𝑝,

𝜕

𝜕𝜃
exp𝑝

�
= 0.

In other words, the images of the circles in the tangent space are orthogonal to the
geodesics starting at 𝑝.

→

Proof. We can think of 𝑔
(︀

𝜕
𝜕𝑟

exp𝑝,
𝜕
𝜕𝜃

exp𝑝

�
as a function of 𝑟 and 𝜃. We have, because

exp𝑝(𝑟𝑣) is a geodesic for any 𝑣, that

𝑑

𝑑𝑟
𝑔

�
𝜕

𝜕𝑟
exp𝑝,

𝜕

𝜕𝜃
exp𝑝

�
= 𝑔

�
��

�
��
�*0

𝐷

𝜕𝑟

𝜕

𝜕𝑟
exp𝑝,

𝜕

𝜕𝜃
exp𝑝

�
+ 𝑔

�
𝜕

𝜕𝑟
exp𝑝,

𝐷

𝜕𝑟

𝜕

𝜕𝜃
exp𝑝

�
.

= 𝑔

�
𝜕

𝜕𝑟
exp𝑝,

𝐷

𝜕𝜃

𝜕

𝜕𝑟
exp𝑝

�
by Proposition 6.7

=
1

2

𝜕

𝜕𝜃
𝑔

�
𝜕

𝜕𝑟
exp𝑝,

𝜕

𝜕𝑟
exp𝑝

�
= 0

where the last equality follows from the fact that the velocity vector for a geodesic always
has the same length. Hence 𝑔

(︀
𝜕
𝜕𝑟

exp𝑝,
𝜕
𝜕𝜃

exp𝑝

�
is constant. We just need to evaluate at

origin, but it is clearly 0 at the origin.

Next time we’ll use the Gauss lemma to show geodesics are locally the shortest route.

2If you a line or half-line in 𝑇𝑝𝑀 starting at some other point besides 0, then it may not get mapped to
a geodesic.
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Lecture 7

Thu. 9/27/12

Get graed homeworks on Fridays in 2-285 (same box where you turn it in).

S1 Gradient and related quantities

Let (𝑀, 𝑔) be a manifold with 𝑔 a Riemannian metric.3 (𝑔 will always be a symmetric
nondegenerate bilinear form, and smoothly depend on the point. Riemannian means that it
is positive definite.)

Suppose we have a function 𝑓 : 𝑀 → R and a vector field 𝑋 ∈ X(𝑀). We define the
following quantities.

1. The gradient ∇𝑓
2. The divergence div(𝑋)

3. The Hessian of 𝑓 and Laplacian of 𝑓

Definition 7.1: The gradient ∇𝑓 is a vector field such that

𝑔(∇𝑓,𝑋) = 𝑋(𝑓).

(To know what the gradient is, we just need to know its projection onto every vector field.)

1.1 Gradient

Let’s write the gradient in coordinates. Let (𝑥1, . . . , 𝑥𝑛) be local coordinates on 𝑀 . Recall

that we let 𝑔𝑖𝑗 = 𝑔
(︁

𝜕
𝜕𝑥𝑖
, 𝜕
𝜕𝑥𝑗

)︁
, and (𝑔𝑖𝑗) is the inverse matrix of 𝑔𝑖𝑗. Write the gradient as

∇𝑓 = 𝑓𝑖
𝜕
𝜕𝑥𝑖

.

By definition, 𝑋(𝑓) = 𝑔(∇𝑓,𝑋); letting 𝑋 = 𝜕
𝜕𝑥𝑗

we get that

𝜕𝑓

𝜕𝑥𝑗
=

𝑛∑︁
𝑖=1

𝑔𝑖𝑗𝑓𝑖.

Then (we are implicitly summing over 𝑖, 𝑗 below)

𝜕𝑓

𝜕𝑥𝑗
𝑔𝑗𝑘 = 𝑔𝑖𝑗𝑓𝑖𝑔

𝑗𝑘 = 𝑓𝑖𝑔𝑖𝑗𝑔
𝑗𝑘 = 𝑓𝑖𝛿𝑖𝑘 = 𝑓𝑘.

We hence have

𝑒𝑞 : 787− 7− 1∇𝑓 = 𝑓𝑘
𝜕

𝜕𝑥𝑘
where 𝑓𝑘 =

𝜕𝑓

𝜕𝑥𝑗
𝑔𝑗𝑘. (17)

As long as 𝑔 is nondegenerate symmetric bilinear form, everything works (it doesn’t have
to be positive definite).

3We will use 𝑔 and ⟨·, ·⟩ interchangeably.
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1.2 Divergence, Hessian, and Laplacian

Example 7.2: On R𝑛, 𝑔𝑖𝑗 = 𝛿𝑖𝑗, so 𝑔
𝑗𝑘 = 𝛿𝑗𝑘, and we are reduced to

∇𝑓 =
𝑛∑︁

𝑗=1

𝜕𝑓

𝜕𝑥𝑗

𝜕

𝜕𝑥𝑗
.

This is the usual definition of the gradient on R𝑛.

Definition 7.3: Define the divergence of a vector field𝑋 ∈ X(𝑀) as the (smooth) function
on 𝑀 given by

div(𝑋) = 𝑔(∇𝑒𝑖𝑋, 𝑒𝑖)

where 𝑒1, . . . , 𝑒𝑛 is an orthonormal basis at 𝑇𝑝𝑀 and ∇ is the Levi-Civita connection corre-
sponding to 𝑔.

Think of it as a kind of “trace.” This easily seen to be independent of the orthonormal
basis (by interpreting it as a kind of trace).

Definition 7.4: Define the Hessian of 𝑓 as a function

Hess𝑓 : 𝑇𝑝𝑀 × 𝑇𝑝𝑀 → R

given by
Hess𝑓 (𝑣, 𝑤) = 𝑔(∇𝑣∇𝑓, 𝑤), 𝑣, 𝑤 ∈ 𝑇𝑝𝑀.

We explain the notation ∇𝑣. Recall that if we have vector fields 𝑋, 𝑌 ∈ X(𝑀), and we’re
looking at ∇𝑋(𝑌 ) at the point 𝑝, the dependence on 𝑋 is just on 𝑋(𝑝) (the dependence on
𝑌 is more complicated). Hence we could write

∇𝑋𝑌 (𝑝) = ∇𝑋(𝑝)𝑌

if we wanted. “∇𝑣” just means “∇𝑋” for any 𝑋 such that 𝑋 at 𝑝 is 𝑣.

Proposition 7.5: Hess𝑓 is a symmetric bilinear form.

Proof. It is clearly bilinear. To see it’s symmetric, let𝑋 and 𝑌 be vector fields with𝑋(𝑝) = 𝑣
and 𝑌 (𝑝) = 𝑤. Then

𝑔(∇𝑣∇𝑓, 𝑤) = 𝑔(∇𝑋∇𝑓, 𝑌 ) = 𝑋𝑔(∇𝑓, 𝑌 )− 𝑔(∇𝑓,∇𝑋𝑌 ) = 𝑋𝑌 𝑓 − 𝑔(∇𝑓,∇𝑋𝑌 ).

Switching 𝑣 and 𝑤,

𝑔(∇𝑤∇𝑓, 𝑣) = 𝑔(∇𝑌∇𝑓,𝑋) = 𝑌 𝑔(∇𝑓, 𝑌 )− 𝑔(∇𝑓,∇𝑌𝑋) = 𝑌 𝑋𝑓 − 𝑔(∇𝑓,∇𝑌𝑋).

Thus for 𝑋 = 𝜕
𝜕𝑥𝑖

and 𝑌 = 𝜕
𝜕𝑥𝑗

we have that the two equations are equal. Since every vector

field is a linear combination of these, we get by bilinarity that

Hess𝑓 (𝑣, 𝑤) = Hess𝑓 (𝑤, 𝑣).
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Definition 7.6: Define the Laplacian of a function 𝑔 by

Δ𝑓 = div(∇𝑓).

The Laplacian of a function is a function because the gradient of a function is a vector
field and the divergence of a vector field is a function on the manifold.

We give another expression for the Laplacian. Let 𝑒1, . . . , 𝑒𝑛 be an orthonormal basis of
𝑇𝑝𝑀 . Then

Δ𝑓 = div(∇𝑓) = ⟨∇𝑒𝑖∇𝑓, 𝑒𝑖⟩ = Hess𝑓 (𝑒𝑖, 𝑒𝑖).

Now we compute the Hessian in local coordinates. We have

Hess𝑓

�
𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥𝑗

�
= 𝑔

�
∇ 𝜕

𝜕𝑥𝑖

∇𝑓, 𝜕

𝜕𝑥𝑗

�
.

From (17) we have ∇𝑓 = 𝜕𝑓
𝜕𝑥ℓ
𝑔ℓ𝑘 𝜕

𝜕𝑥𝑘
so this equals

𝑔

�
∇ 𝜕

𝜕𝑥𝑖

�
𝜕𝑓

𝜕𝑥ℓ
𝑔ℓ𝑘

𝜕

𝜕𝑥𝑘

�
,
𝜕

𝜕𝑥𝑗

�
=

𝜕

𝜕𝑥𝑗

�
𝜕𝑓

𝜕𝑥𝑘
𝑔ℓ𝑘
�
𝑔𝑘𝑗 +

𝜕𝑓

𝜕𝑥𝑘
𝑔ℓ𝑘𝑔(∇ 𝜕

𝜕𝑥𝑖

𝜕

𝜕𝑥𝑘
,
𝜕

𝜕𝑥𝑗
).

=
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥ℓ
𝑔ℓ𝑘𝑔𝑘𝑗 +

𝜕𝑓

𝜕𝑥ℓ

𝜕𝑔ℓ𝑘

𝜕𝑥𝑗
𝑔𝑘𝑗 +

𝜕𝑓

𝜕𝑥ℓ
𝑔ℓ𝑘Γ𝑠

𝑖𝑗𝑔𝑠𝑗, ∇ 𝜕
𝜕𝑥𝑖

𝜕

𝜕𝑥𝑘
= Γ𝑠

𝑖𝑘

𝜕

𝜕𝑥𝑠

=
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥ℓ
𝛿ℓ𝑗⏟  ⏞  

𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

+
𝜕𝑓

𝜕𝑥ℓ

𝜕𝑔ℓ𝑘

𝜕𝑥𝑗
𝑔𝑘𝑗 +

𝜕𝑓

𝜕𝑥ℓ
𝑔ℓ𝑘Γ𝑠

𝑖𝑗𝑔𝑠𝑗

Example 7.7: If 𝑀 = R𝑛, 𝑔𝑖𝑗 = 𝛿𝑖𝑗, 𝑔
𝑖𝑗 = 𝛿𝑖𝑗, and Γ𝑘

𝑖𝑗 = 0 (recall the christoffel symbols

were defined ∇ 𝜕
𝜕𝑥𝑖

𝜕
𝜕𝑥𝑗

= Γ𝑘
𝑖𝑗

𝜕
𝜕𝑥𝑘

). Hence the second and third terms above are 0, and we just

get the usual Hessian:

Hess𝑓

�
𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥𝑗

�
=

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
.

S2 Geodesics as locally minimizing distances

Given (𝑀, 𝑔), recall that we defined exp𝑝 : 𝑇𝑝𝑀 → 𝑀 by exp𝑝(𝑣) = 𝑐(1) where 𝑐 is the
geodesic such that 𝑐(0) = 𝑝 and 𝑐′(0) = 𝑣. By reparameterization, we can write exp𝑝(𝑣) =

𝛾(|𝑣|) where 𝛾 is the geodesic such that 𝛾(0) = 𝑝, 𝛾′(0) = 𝑣
|𝑣| , where |𝑣| =

È
𝑔(𝑣, 𝑣).

The Gauss lemma says that the image of rays coming out of the origin meet the circles
on the manifold orthogonally.

Theorem 7.8: Geodesics locally minimize distances.

Proof. The exponential map exp𝑝 : 𝑇𝑝𝑀 →𝑀 satisfies

(𝑑 exp𝑝)0 = id.
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Hence exp is a local diffeomorphism near the origin in 𝑇𝑝𝑀 . The exponential map gives
coordinates in a neighborhood of 𝑝.

We can use polar coordinates (𝑟, 𝜃), which gives coordinates in a neighborhood where we
remove the origin (corresponding to 𝑝). What is 𝑔𝑖𝑗 with respect to polar coordinates?

Consider the map in (0,∞)×[−𝜋, 𝜋) given by (𝑟, 𝜃) ↦→ (𝑟 cos 𝜃, 𝑟 sin 𝜃), and then composed
with the exponential map exp𝑝.

This ia a diffeomorphism in some pointed neighborhood of the origin.
We now calculate 𝑔𝑖𝑗 for coordinates (𝑟, 𝜃). We have

1 = 𝑔11 = 𝑔

�
𝜕

𝜕𝑟
,
𝜕

𝜕𝑟

�
0 = 𝑔12 = 𝑔21 = 𝑔

�
𝜕

𝜕𝑟
,
𝜕

𝜕𝜃

�
by Gauss lemma

𝑔22 = 𝑔

�
𝜕

𝜕𝜃
,
𝜕

𝜕𝜃

�
.

To see 𝑔11, note that as we go increase 𝑟 at constant speed, we’re travelling along a geodesic
on𝑀 with constant speed. If we travel at unit speed, we travel the geodesic with unit speed.

Note the only information really is in 𝑔22.
Now we start the proof for real. Let 𝑐 : [0, 1]→𝑀 . We show that for some 𝜀, 𝑐 : [0, 𝜀]→

𝑀 is the shortest curve betweent he endpoints.
Suppose 𝑐(0) = 𝑝. Take another curve (a competing curve).
In Euclidean space, how do we know that the a straight line is the shortest path between

two endpoints? If we take any competing curve, break it as a component in the direction
along the straight line and another direction.
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Write 𝛾 = (𝛾1, 𝛾2) and 𝛾
′ = (𝛾′1, 𝛾

′
2), with |𝛾′| ≥ | ≥′

1 |, so∫︁ 𝑏

𝑎
|𝛾′| ≥

∫︁ 𝑏

𝑎
|𝛾′1|

In a plane, the shortest past between two points is a straight line. We think of any curve as
having that component and an orthogonal curve.

We break up our curve into a component in the 𝑟 direction and a component in the 𝜃
direction and use the same idea.

Lecture 8

Tue. 10/2/12

S1 Curvature

Let 𝑀𝑛 be a Riemannian manifold with Levi-Civita connection ∇. Define the curvature as
follows.

Definition 8.1: For 𝑋, 𝑌, 𝑍 ∈ X(𝑀) define the curvature operator as follows.

𝑅(𝑋, 𝑌 )𝑍 := ∇𝑌∇𝑋𝑍 −∇𝑋∇𝑌𝑍 +∇[𝑋,𝑌 ]𝑍

Think of this as a difference in second order derivatives. Note there are different conven-
tions for the curvature operator.

Proposition 8.2: pr:965-8-1 𝑅 is linear in each variable:

𝑅(𝑋1 +𝑋2, 𝑌 )𝑍 = 𝑅(𝑋1, 𝑌 )𝑍 +𝑅(𝑋2, 𝑌 )𝑍

𝑅(𝑋, 𝑌1 + 𝑌2)𝑍 = 𝑅(𝑋, 𝑌1)𝑍 +𝑅(𝑋, 𝑌2)𝑍

𝑅(𝑋, 𝑌 )(𝑍1 + 𝑍2) = 𝑅(𝑋, 𝑌 )𝑍1 +𝑅(𝑋, 𝑌 )𝑍2

and for 𝑓 ∈ 𝐶∞(𝑀),

𝑅(𝑓𝑋, 𝑌 )𝑍 = 𝑅(𝑋, 𝑓𝑌 )𝑍 = 𝑅(𝑋, 𝑌 )𝑓𝑍 = 𝑓𝑅(𝑋, 𝑌 ).

Assuming that this is the case, (𝑅(𝑋, 𝑌 )𝑍)(𝑝) only depends on the value of 𝑋, 𝑌 , and
𝑍 at 𝑝. Indeed, write 𝑋 = 𝑎𝑖

𝜕
𝜕𝑥𝑖

, 𝑌 = 𝑏𝑗
𝜕

𝜕𝑥𝑗
, and 𝑍 = 𝑐𝑘

𝜕
𝜕𝑥𝑘

. Then using linearity in each

variable,

𝑅(𝑋, 𝑌 )𝑍 = 𝑅

�
𝑎𝑖

𝜕

𝜕𝑥𝑖
, 𝑏𝑗

𝜕

𝜕𝑥𝑗

��
𝑐𝑘

𝜕

𝜕𝑥𝑘

�
= 𝑎𝑖𝑏𝑗𝑐𝑘𝑅

�
𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥𝑗

�
𝜕

𝜕𝑥𝑘
.
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Proof. The connection is linear in each variable, so the first set of equations holds.
Now using

[𝑋, 𝑌 ]ℎ = 𝑋𝑌 ℎ− 𝑌 𝑋ℎ
[𝑓𝑋, 𝑌 ]ℎ = 𝑓𝑋𝑌 (ℎ)− 𝑌 (𝑓)𝑋(ℎ)− 𝑓𝑌 𝑋(ℎ) = 𝑓 [𝑋, 𝑌 ](ℎ)− 𝑌 (𝑓)𝑋(ℎ)

we calculate

𝑅(𝑓𝑋, 𝑌 )𝑍 = ∇𝑌∇𝑓𝑋𝑍 −∇𝑓𝑋∇𝑌𝑍 +∇[𝑓𝑋,𝑌 ]𝑍

= ∇𝑌 𝑓∇𝑋𝑍 − 𝑓∇𝑋∇𝑌𝑍 + 𝑓∇[𝑋,𝑌 ]𝑍 − 𝑌 (𝑓)∇𝑋𝑍

=���
���𝑌 (𝑓)∇𝑋𝑍 + 𝑓∇𝑌∇𝑋𝑍 − 𝑓∇𝑋∇𝑌𝑍 + 𝑓∇[𝑋,𝑌 ]𝑍 −����

��
𝑌 (𝑓)∇𝑋𝑍

= 𝑓𝑅(𝑋, 𝑌 )𝑍.

The proof for 𝑌 is similar; we carry out the proof for 𝑍.

𝑅(𝑋, 𝑌 )(𝑓𝑍) = ∇𝑌∇𝑋(𝑓𝑍)−∇𝑋∇𝑌 (𝑓𝑍) +∇[𝑋,𝑌 ]𝑍

= ∇𝑌𝑋(𝑓)𝑍 +∇𝑌 𝑓∇𝑋𝑍 −∇𝑋𝑌 (𝑓)𝑍 −∇𝑋𝑓∇𝑌𝑍 + [𝑋, 𝑌 ](𝑓)𝑍 + 𝑓∇[𝑋,𝑌 ]𝑍

=���
��𝑌 𝑋(𝑓)𝑍 +���

���𝑋(𝑓)∇𝑌𝑍 +���
���𝑌 (𝑓)∇𝑋𝑍 +���

���𝑓∇𝑌∇𝑋𝑍

−����
�

𝑋𝑌 (𝑓)𝑍 −����
��

𝑌 (𝑓)∇𝑋𝑍 −����
��

𝑋(𝑓)∇𝑌𝑍 −����
��

𝑓∇𝑋∇𝑌𝑍 +���
���[𝑋, 𝑌 ](𝑓)𝑍 + 𝑓∇[𝑋,𝑌 ]𝑍

= 𝑓𝑅(𝑋, 𝑌 )𝑍.

Let’s look at the special case of coordinate fields. Let 𝑋 = 𝜕
𝜕𝑥𝑖

, 𝑌 = 𝜕
𝜕𝑥𝑗

, and 𝑍 = 𝜕
𝜕𝑥𝑘

.

The Lie bracket is 0, so

𝑅

�
𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥𝑗

�
𝜕

𝜕𝑥𝑘
= ∇ 𝜕

𝜕𝑥𝑗

∇ 𝜕
𝜕𝑥𝑖

𝜕

𝜕𝑥𝑘
−∇ 𝜕

𝜕𝑥𝑖

∇ 𝜕
𝜕𝑥𝑗

𝜕

𝜕𝑥𝑘

If we want to define the curvature in this way on coordinate fields, then we are forced to add
the term ∇[𝑋,𝑌 ] on noncoordinate fields in order for the linearity properties to hold. This
ensures that 𝑅 depends only on 𝑋, 𝑌 , and 𝑍 at a point.

Definition 8.3: Define the curvature symbols by

𝑅

�
𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥𝑗

�
𝜕

𝜕𝑥𝑘
= 𝑅ℓ

𝑖𝑗𝑘

𝜕

𝜕𝑥ℓ
.

Suppose now we have a parametrized surface 𝑓 : [𝑎, 𝑏]× (−𝜀, 𝜀)→𝑀 (see Definition 6.6)
and a smooth curve 𝑐 : [𝑎, 𝑏] → 𝑀 . Let 𝑉 is a vector field along 𝑐. We know the covariant
derivative 𝐷

𝜕𝑡
𝑉 is a linear operator, satisfies the Leibniz rule, and if 𝑉 = 𝑋|𝑐 then it should

coincide with the connection. Recall that (Proposition 6.7)

𝐷

𝜕𝑡

𝜕𝑓

𝜕𝑠
=
𝐷

𝜕𝑠

𝜕𝑓

𝜕𝑡
.

Just like we defined vector fields on curves, we can define vector fields on surfaces.
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Definition 8.4: Define a vector field along a parametrized surface to be a smooth
map

𝑉 : [𝑎, 𝑏]× (−𝜀, 𝜀)→ 𝑇𝑀

with 𝑉 (𝑠, 𝑡) ∈ 𝑇𝑓(𝑠,𝑡)𝑀 .

We derive a nice formula for the curvature of a vector field along a parametrized surface,
in terms of covariant derivatives.

Lemma 8.5: lem:vf-ps We have

𝐷

𝜕𝑡

𝐷

𝜕𝑠
𝑉 − 𝐷

𝜕𝑠

𝐷

𝜕𝑡
𝑉 = 𝑅

�
𝜕𝑓

𝜕𝑠
,
𝜕𝑓

𝜕𝑡

�
𝑉.

Proof. First assume that 𝑉 is the restriction of a vector field on 𝑀 . Then

𝐷

𝜕𝑠
𝑉 = ∇ 𝜕𝑓

𝜕𝑠
𝑉,

𝐷

𝜕𝑡
𝑉 = ∇ 𝜕𝑓

𝜕𝑡
𝑉.

Writing 𝑓 = (𝑓1, . . . , 𝑓𝑛) and letting the basis elements be (𝑋1, . . . , 𝑋𝑛) where 𝑋𝑖 =
𝜕
𝜕𝑥𝑖

, we

have 𝜕𝑓
𝜕𝑠

= 𝜕𝑓𝑖
𝜕𝑠

𝜕
𝜕𝑥𝑖

and hence

∇ 𝜕𝑓
𝜕𝑠
𝑉 =

𝜕𝑓𝑖
𝜕𝑠
∇ 𝜕

𝜕𝑥𝑖

𝑉

Thus we get

𝐷

𝜕𝑡

𝐷

𝜕𝑠
𝑉 =

𝐷

𝜕𝑡

�
𝜕𝑓𝑖
𝜕𝑠
∇ 𝜕

𝜕𝑥𝑖

𝑉

�
=
𝜕2𝑓𝑖
𝜕𝑡𝜕𝑠

∇ 𝜕
𝜕𝑥𝑖

𝑉 +
𝜕𝑓𝑖
𝜕𝑠

𝐷

𝜕𝑡
∇ 𝜕

𝜕𝑥𝑖

𝑉

=
𝜕2𝑓𝑖
𝜕𝑡𝜕𝑠

∇ 𝜕
𝜕𝑥𝑖

𝑉 +
𝜕𝑓𝑖
𝜕𝑠

𝜕𝑓𝑗
𝜕𝑡
∇ 𝜕

𝜕𝑥𝑗

∇ 𝜕
𝜕𝑥𝑖

𝑉.

Switching the variables we get

𝐷

𝜕𝑠

𝐷

𝜕𝑡
𝑉 =

𝜕2𝑓𝑖
𝜕𝑠𝜕𝑡

∇ 𝜕
𝜕𝑥𝑖

𝑉 +
𝜕𝑓𝑖
𝜕𝑡

𝜕𝑓𝑗
𝜕𝑠
∇ 𝜕

𝜕𝑥𝑗

∇ 𝜕
𝜕𝑥𝑖

𝑉.

Subtracting gives (since partial derivatives commute)

𝐷

𝜕𝑡

𝐷

𝜕𝑠
𝑉 − 𝐷

𝜕𝑠

𝐷

𝜕𝑡
𝑉 =

𝜕𝑓𝑖
𝜕𝑠

𝜕𝑓𝑗
𝜕𝑡
∇ 𝜕

𝜕𝑥𝑗

∇ 𝜕
𝜕𝑥𝑖

𝑉 − 𝜕𝑓𝑖
𝜕𝑡

𝜕𝑓𝑗
𝜕𝑠
∇ 𝜕

𝜕𝑥𝑗

∇ 𝜕
𝜕𝑥𝑖

𝑉.

Note that
�
𝜕𝑓
𝜕𝑡
, 𝜕𝑓
𝜕𝑠

�
= 0.

In the general case, write 𝑉 = 𝑐𝑖(𝑠, 𝑡)
𝜕
𝜕𝑥𝑖

, so we have

𝐷

𝜕𝑠
𝑉 =

𝜕𝑐𝑖
𝜕𝑠

𝜕

𝜕𝑥𝑖
+ 𝑐𝑖

𝐷

𝜕𝑠

𝜕

𝜕𝑥𝑖
𝐷

𝜕𝑡

𝐷

𝜕𝑠
𝑉 =

𝜕2𝑐𝑖
𝜕𝑡𝜕𝑠

𝜕

𝜕𝑥𝑖
+
𝜕𝑐𝑖
𝜕𝑠

𝐷

𝜕𝑡

𝜕

𝜕𝑥𝑖
+
𝜕𝑐𝑖
𝜕𝑡

𝐷

𝜕𝑠

𝜕

𝜕𝑥𝑖
+ 𝑐𝑖

𝐷

𝜕𝑡

𝐷

𝜕𝑠

𝜕

𝜕𝑥𝑖
.
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Switching 𝑡 and 𝑠, we get an equation for 𝐷
𝜕𝑠

𝐷
𝜕𝑡
𝑉 . Subtracting the two equations we get

𝐷

𝜕𝑡

𝐷

𝜕𝑠
𝑉 − 𝐷

𝜕𝑠

𝐷

𝜕𝑡
𝑉 = 𝑐𝑖

𝐷

𝜕𝑡

𝐷

𝜕𝑠

𝜕

𝜕𝑥𝑖
− 𝑐𝑖

𝐷

𝜕𝑠

𝐷

𝜕𝑡

𝜕

𝜕𝑥𝑖

= 𝑐𝑖𝑅

�
𝜕𝑓

𝜕𝑠
,
𝜕𝑓

𝜕𝑡

�
𝜕

𝜕𝑥𝑖
from the first part = 𝑅

�
𝜕𝑓

𝜕𝑠
,
𝜕𝑓

𝜕𝑡

��
𝑐𝑖
𝜕

𝜕𝑥𝑖

�
= 𝑅

�
𝜕

𝜕𝑠
,
𝜕

𝜕𝑡

�
𝑉.

Example 8.6: Consider the case 𝑀 = R𝑛. Then

𝑅

�
𝜕

𝜕𝑥𝑖
,
𝜕

𝜕𝑥𝑗

�
𝜕

𝜕𝑥𝑘
= ∇ 𝜕

𝜕𝑥𝑗

∇ 𝜕
𝜕𝑥𝑖

𝜕

𝜕𝑥𝑘
−∇ 𝜕

𝜕𝑥𝑖

∇ 𝜕
𝜕𝑥𝑗

𝜕

𝜕𝑥𝑘
+∇[ 𝜕

𝜕𝑥𝑖
, 𝜕
𝜕𝑥𝑗

]

𝜕

𝜕𝑥𝑘
= 0.

since ∇𝑋

(︀
𝜕
𝜕𝑥𝑖

�
= 0 for all 𝑖 and 𝑋.

Proposition 8.7 (Bianchi identity): We have

𝑅(𝑋, 𝑌 )𝑍 +𝑅(𝑌, 𝑍)𝑋 +𝑅(𝑍,𝑋)𝑌 = 0

Proof. This follows from the Jacobi identity for the Lie bracket. We’ll give a detailed proof
next lecture.

S2 Sectional curvature

We want to represent the curvature with a number.
Let 𝑉 be a 𝑛-dimensional vector space, and 𝑣1, 𝑣2 ∈ 𝑉 . Then

|𝑣1 ∧ 𝑣2| =
√︁
|𝑣1|2|𝑣2|2 − ⟨𝑣1, 𝑣2⟩2.

Let 𝑀 be a manifold and 𝑝 ∈𝑀 . Let 𝑟1, 𝑟2 ∈ 𝑅. Define

𝐾(𝑝, 𝜋) =
𝑔(𝑅(𝑣1, 𝑣2)𝑣1, 𝑣2)

|𝑣1 ∧ 𝑣2|2

where 𝜋 is the linear span of 𝑣1 and 𝑣2.
Suppose we have a surface in 3-space, say a sphere, and we take a point. The curvature

at that point is given by the formula for 𝐾(𝑝, 𝜋). However, this formula is difficult to work
with. How can we think intuitively thing about the curvature? Imagine the points that
are a distance of 𝜀 away from a point; they form a curve. We compare the length of this
curve with the corresponding curve in Euclidean space. Look at the corresponding curve
in Euclidean space. Look at the difference between the two lengths and dividing by some
power of the radius, as 𝑟 → 0 this quantity goes to the curvature.

A circle on a sphere has smaller length than in Euclidean space, so a circle has positive
curvature. We’ll give the details in the next few lectures.
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Given a manifold 𝑀 with a symmetric connection ∇, recall that we defined 𝑅(𝑋, 𝑌 )𝑍 =
∇𝑌∇𝑋𝑍 −∇𝑋∇𝑌𝑍 +∇[𝑋,𝑌 ]𝑍. In fact, this is a function 𝑅 : 𝑇𝑝𝑀 × 𝑇𝑝𝑀 × 𝑇𝑝𝑀 → 𝑇𝑝𝑀
since it only depends on the value at the point.

S1 Symmetries of the curvature operator

We prove the Bianchi identity.

Proof. The LHS is

∇𝑌∇𝑋𝑍 −∇𝑋∇𝑌𝑍 +∇[𝑋,𝑌 ]𝑍

+∇𝑍∇𝑌𝑋 −∇𝑌∇𝑍𝑋 +∇[𝑌,𝑍]𝑋

+∇𝑋∇𝑍𝑌 −∇𝑍∇𝑋𝑌 +∇[𝑍,𝑋]𝑌

= ∇𝑋 [𝑍, 𝑌 ] +∇𝑌 [𝑋,𝑍] +∇𝑍 [𝑌,𝑋] ∇ is symmetric

+∇[𝑋,𝑌 ]𝑍 +∇[𝑌,𝑍]𝑋 +∇[𝑍,𝑋]𝑌

= [𝑋, [𝑍, 𝑌 ]] + [𝑌, [𝑋,𝑍]] + [𝑍, [𝑌,𝑋]]

= 0.

We see the Bianchi identity holds because of the Jacobi identity.

Now we explore some other symmetries of the curvature operator.

Proposition 9.1: pr:965-9-1 Let (𝑀, 𝑔) be a manifold with a non-degenerate symmetric
bilinear form, and let ∇ be the Levi-Civita connection.

Let 𝑋, 𝑌, 𝑍, 𝑉 ∈ 𝑇𝑝𝑀 . Define

(𝑋, 𝑌, 𝑍, 𝑉 ) := 𝑔(𝑅(𝑋, 𝑌 )𝑍, 𝑉 ).

Then the following hold.

(𝑋, 𝑌, 𝑍, 𝑉 ) + (𝑌, 𝑍,𝑋, 𝑉 ) + (𝑍,𝑋, 𝑌, 𝑉 ) = 0

(𝑋, 𝑌, 𝑍, 𝑉 ) = −(𝑌,𝑋,𝑍, 𝑉 )

(𝑋, 𝑌, 𝑍, 𝑉 ) = −(𝑋, 𝑌, 𝑉, 𝑍)
(𝑋, 𝑌, 𝑍, 𝑉 ) = (𝑍, 𝑉,𝑋, 𝑌 )

Proof. The first follows from the Bianchi identity.
For the second identity, we use

𝑅(𝑋, 𝑌 )𝑍 = ∇𝑌∇𝑋𝑍 −∇𝑋∇𝑌𝑍 +∇[𝑋,𝑌 ]𝑍 = −𝑅(𝑌,𝑋)𝑍.
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To see the third identity, it is enough to show (𝑋, 𝑌, 𝑍, 𝑍) = 0. Then by linearity

0 = (𝑋, 𝑌, 𝑍 + 𝑉, 𝑍 + 𝑉 )

= (𝑋, 𝑌, 𝑍, 𝑉 ) + (𝑋, 𝑌, 𝑉, 𝑍) +���
���

�:0
(𝑋, 𝑌, 𝑍, 𝑍) +���

��
��:0

(𝑋, 𝑌, 𝑉, 𝑉 )

=⇒ (𝑋, 𝑌, 𝑍, 𝑉 ) = −(𝑋, 𝑌, 𝑉, 𝑍).

We now prove that (𝑋, 𝑌, 𝑍, 𝑍) = 0 by using the fact that ∇ is compatible with the connec-
tion, i.e. 𝑋𝑔(𝑌, 𝑍) = 𝑔(∇𝑋𝑌, 𝑍) + 𝑔(𝑌,∇𝑋𝑍) (Proposition 5.4). We have

(𝑋, 𝑌, 𝑍, 𝑍) = 𝑔(𝑅(𝑋, 𝑌 )𝑍,𝑍)

= 𝑔(∇𝑌∇𝑋𝑍 −∇𝑋∇𝑌𝑍 +∇[𝑋,𝑌 ]𝑍,𝑍)

= 𝑌 𝑔(∇𝑋𝑍,𝑍)− 𝑔(∇𝑋𝑍,∇𝑌𝑍)−𝑋𝑔(∇𝑌𝑍,𝑍) + 𝑔(∇𝑌𝑍,∇𝑋𝑍) + 𝑔(∇[𝑋,𝑌 ]𝑍,𝑍)

=
1

2
𝑌 𝑋𝑔(𝑍,𝑍)− 1

2
𝑋𝑌 𝑔(𝑍,𝑍) + 𝑔(∇[𝑋,𝑌 ]𝑍,𝑍)𝑒𝑞 : 787− 9− 1 (18)

=
1

2
[𝑌,𝑋]𝑔(𝑍,𝑍) + 𝑔(∇[𝑋,𝑌 ]𝑍,𝑍)

= 𝑔(∇[𝑌,𝑋]𝑍,𝑍) + 𝑔(∇[𝑋,𝑌 ]𝑍,𝑍) = 0.

where (18) follows from 𝑋𝑔(𝑍,𝑍) = 2𝑔(∇𝑋𝑍,𝑍), i.e. 𝑔(∇𝑋𝑍,𝑍) =
1
2
𝑋𝑔(𝑍,𝑍).

The proof of the last identity is similar.

S2 Curvature

We now define the curvature from the curvature tensor. There are 3 types of curvatures
(that we will be concerned with):

1. sectional curvature

2. Ricci curvature

3. scalar curvature

2.1 Sectional curvature

Definition 9.2: Let 𝑉 be a 𝑛-dimensional vector space with an inner product. Let 𝑋, 𝑌 ∈
𝑉 . Consider the area4

|𝑋 ∧ 𝑌 | =
√︁
|𝑋|2|𝑌 |2 − ⟨𝑋, 𝑌 ⟩2

Define the sectional curvature as follows. At (𝑀, 𝑔) with 𝑝 ∈𝑀 , let Π be a 2-dimensional
subspace of 𝑇𝑝𝑀 and define

𝐾(𝑝,Π) :=
(𝑋, 𝑌,𝑋, 𝑌 )

|𝑋 ∧ 𝑌 |2
where 𝑋, 𝑌 span Π.

4If you compute this thinking of 𝑋,𝑌 in R2, this is just the formula for the area of a parallelogram.
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A priori this depends on 𝑋 and 𝑌 . We have to show this is well-defined, i.e. 𝐾 depends
only on Π and not on the basis {𝑋, 𝑌 }.

Proof that 𝐾 is well-defined. We show changing the basis does not change 𝐾. It suffices to
show 𝐾 is invariant under

1. scaling. We have
(𝑋, 𝑌,𝑋, 𝑌 )

|𝑋 ∧ 𝑌 |2 =
(𝜆𝑋, 𝑌, 𝜆𝑋, 𝑌 )

|𝜆𝑋 ∧ 𝑌 |2
and this is likewise true if we replace 𝑌 by 𝜆𝑌 .

2. replacing 𝑋 ←[ 𝑋 + 𝑌 or 𝑌 ←[ 𝑋 + 𝑌 . We have by expanding that

(𝑋 + 𝑌, 𝑌,𝑋, 𝑌 )

|(𝑋 + 𝑌 ) ∧ 𝑌 |2 =
(𝑋, 𝑌,𝑋, 𝑌 )

|𝑋 ∧ 𝑌 |2 =
(𝑋,𝑋 + 𝑌,𝑋,𝑋 + 𝑌 )

|𝑋 ∧ (𝑋 + 𝑌 )|2 .

We can go from any basis to another using these operations, which don’t change 𝐾, so 𝐾 is
well-defined.

Saying that a manifold has positive sectional curvature is philosophically like saying a
function is convex. This is a strong condition.

2.2 Ricci curvature

In contrast, saying that a manifold has positive Ricci curvature is like saying a function is
subharmonic.

Definition 9.3: Fix an element𝑋 ∈ 𝑇𝑝𝑀 . Define the bilinear form𝑄(𝑌, 𝑍) : 𝑇𝑝𝑀×𝑇𝑝𝑀 →
R by

𝑄(𝑌, 𝑍) := (𝑋, 𝑌,𝑋, 𝑍);

note that 𝑄 is a symmetric bilinear form. Define the Ricci curvature as the trace of the
bilinear form:5

Ric(𝑋,𝑋) := Tr(𝑄).

For |𝑋| = 1, i.e. 𝑔(𝑋,𝑋) = 1, take an orthonormal basis 𝑒1 = 𝑋, . . . , 𝑒𝑛 for 𝑇𝑝𝑀 . Then
we have

Ric(𝑋,𝑋) = Tr(𝑄)

=
𝑛∑︁

𝑖=1

𝑄(𝑒𝑖, 𝑒𝑖) = (𝑋, 𝑒𝑖, 𝑋, 𝑒𝑖) =���
���

��:0
(𝑋, 𝑒1, 𝑋, 𝑒1) +

∑︁
1<𝑖≤𝑛

(𝑋, 𝑒𝑖, 𝑋, 𝑒𝑖).

Think of the Ricci curvature as follows: Given some point and some direction, we look at
the average curvature in all 2-planes that contain that direction.

5Ric(𝑋,𝑌 ) is not defined. In my opinion this notation is a bit odd. (The book just writes Ric(𝑋).)
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The Ricci curvature is like an average or trace. The following analogy may be helpful:
Given a function, the Hessian is a quadratic form, and the Laplacian is the trace of the
Hessian. Knowing the sectional curvature is like knowing the Hessian of a function, and
knowing the Ricci curvature is like knowing the Laplacian.

2.3 Scalar curvature

The scalar curvature is the most flexible notion of curvature, in the sense that conditions
on the scalar curvature are weaker than conditions on the other curvatures. In fact, it is so
flexible that these conditions say little unless we are in dimension 3; the Ricci curvature is
usually the most useful.

To get to scalar curvature from Ricci curvature, we take another trace.

Definition 9.4: Let 𝑝 ∈𝑀 . Define the scalar curvature Scal𝑝 ∈ R by

Scal𝑝 =
𝑛∑︁

𝑖=1

Ric(𝑒𝑖, 𝑒𝑖)

where 𝑒𝑖 is an orthonormal basis of 𝑇𝑝𝑀 .

Lecture 10

Thu. 10/11/12

S1 Jacobi fields

If we have a manifold 𝑀 with a symmetric connection ∇, then the curvature is defined by

𝑅(𝑋, 𝑌 )𝑍 = ∇𝑌∇𝑋𝑍 −∇𝑋∇𝑌𝑍 +∇[𝑋,𝑌 ]𝑍.

(It was initially defined for vector fields, but it really only depends on tangent vectors.) We
proved that if 𝑓 : [𝑎, 𝑏] → [−𝜀, 𝜀] is a parameterized surface (i.e. smooth map), and 𝑉 is a
vector field along 𝑓 , then (Lemma 8.5)

𝐷

𝜕𝑡

𝐷

𝜕𝑠
𝑉 − 𝐷

𝜕𝑠

𝐷

𝜕𝑡
𝑉 = 𝑅

�
𝜕𝑓

𝜕𝑠
,
𝜕𝑓

𝜕𝑡

�
𝑉.

We also showed (Proposition 6.7)

𝐷

𝜕𝑠

𝜕𝑓

𝜕𝑡
=
𝐷

𝜕𝑡

𝜕𝑓

𝜕𝑠
.
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If 𝑓 is a parametrized surface, and 𝑠 ↦→ 𝑓(𝑠, 𝑡) for each fixed 𝑡 is a geodesic, then

0 =
𝐷

𝜕𝑠

𝜕𝑓

𝜕𝑠

=⇒ 0 =
𝐷

𝜕𝑡

𝐷

𝜕𝑠

𝜕𝑓

𝜕𝑠

= 𝑅

�
𝜕𝑓

𝜕𝑠
,
𝜕𝑓

𝜕𝑡

�
𝜕𝑓

𝜕𝑠
+
𝐷

𝜕𝑠

𝐷

𝜕𝑡

𝜕𝑓

𝜕𝑠
Lemma 8.5

= 𝑅

�
𝜕𝑓

𝜕𝑠
,
𝜕𝑓

𝜕𝑡

�
𝜕𝑓

𝜕𝑠
+
𝐷

𝜕𝑠

𝐷

𝜕𝑠

𝜕𝑓

𝜕𝑡
Proposition 6.7𝑒𝑞 : 965− 10− 1 (19)

Fix 𝑡, say 𝑡 = 0. Denote the map 𝑠 ↦→ 𝑓(𝑠, 0) by 𝛾(𝑠); it is a geodesic by assumption. Define

𝐽 =
𝜕𝑓

𝜕𝑡

to be the variational vector field. Think of 𝑓(𝑠, 0) as a single curve, sitting inside a whole
family of curves given by 𝑓(𝑠, 𝑡). We say 𝑓(𝑠, 𝑡) is a variation of curves in the 𝑡-direction.
Now putting in 𝐽 = 𝜕𝑓

𝜕𝑡
in (19) gives

0 = 𝑅(𝛾′, 𝐽)𝛾′ +
𝐷

𝜕𝑠

𝐷

𝜕𝑠
𝐽 = 𝑅(𝛾′, 𝐽)𝛾′ + 𝐽 ′′.

Definition 10.1: If 𝛾 is a geodesic, and 𝐽 is a vector field along 𝛾, then 𝐽 is said to be a
Jacobi field if

𝐽 ′′ +𝑅(𝛾′, 𝐽)𝛾′ = 0.

We proved that Jacobi fields naturally occur: if we take a variation of geodesics, then
the variational vector field is a Jacobi field. We’ll see how the Jacobi equations gives us the
first explanation for a geometric notion of curvature.

Now we make some calculations. Let 𝛾 be a geodesic. Then 𝛾′ is a parallel vector field.
Let 𝐸1, . . . , 𝐸𝑛−1 be orthonormal parallel vector fields along 𝛾 such that each is orthogonal
to 𝛾′.

At each point along 𝛾, we have that 𝛾′, 𝐸1, . . . , 𝐸𝑛−1 is an orthonormal basis along 𝑇𝛾(𝑠)𝑀 .
Suppose 𝐽 is a vector field along 𝛾. Write

𝐽 = 𝑗0𝛾
′ + 𝑗1𝐸1 + · · ·+ 𝑗𝑛−1𝐸𝑛−1

where the 𝑗𝑖 are functions of 𝑠. Note 𝐽0 = 𝑔(𝛾′, 𝐽), 𝐽𝑖 = 𝑔(𝐽,𝐸𝑖), 𝑖 > 0; it is clear that the
𝑗𝑖 are smooth functions.
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Now 𝐸 ′
𝑖 = 0 and 𝐸 ′′

𝑖 = 0 so (using the fact 𝛾 is a geodesic),

𝐽 ′ = 𝑗′0𝛾
′ +��

�*0
𝑗0𝛾

′′ + 𝑗′𝑖𝐸𝑖 +�
��>

0
𝑗𝑖𝐸

′
𝑖

= 𝑗′0𝛾
′ + 𝑗′𝑖𝐸𝑖

𝑒𝑞 : 965− 10− 2𝐽 ′′ = 𝑗′′0𝛾
′ + 𝑗′′𝑖 𝐸

′
𝑖. (20)

Recall that the sectional curvature of a 2-plane Π was defined by

𝐾(Π) =
𝑔(𝑅(𝑣1, 𝑣2)𝑣1, 𝑣2)

|𝑣1 ∧ 𝑣2|2

where |𝑣1∧ 𝑣2|2 = |𝑣1|2|𝑣2|2− 𝑔(𝑣1, 𝑣2)2. In the particular case where 𝑣1, 𝑣2 is an orthonormal
basis, the denominator is 1 so

𝐾(Π) = 𝑔(𝑅(𝑣1, 𝑣2)𝑣1, 𝑣2).

Now substituting (20) into the equation for the Jacobi field 𝐽 ′′ +𝑅(𝛾′, 𝐽)𝛾′ = 0 we get

𝑗′′0𝛾
′ + 𝑗′′𝑖 𝐸𝑖 +���

���
�:0

𝑗0𝑅(𝛾
′, 𝛾′)𝛾′ + 𝑗𝑖𝑅(𝛾

′, 𝐸𝑖)𝛾
′ = 0

𝑗′′0𝛾
′ + 𝑗′′𝑖 𝐸𝑖 + 𝑗𝑖𝑅(𝛾

′, 𝐸𝑖)𝛾
′ = 0

Now 𝑅(𝛾′, 𝐸𝑖)𝛾
′ is a vector field along 𝛾. By Proposition 9.1, this vector field is orthogonal

to 𝛾:
0 = 𝑔(𝑅(𝛾′, 𝐸𝑖)𝛾

′, 𝛾′).

Write 𝑅(𝛾′, 𝐸𝑖)𝛾
′ = 𝑅𝑘

𝑖𝐸𝑘. Then we can write the Jacobi equation as

𝑗′′0𝛾
′ + 𝑗′′𝑖 𝐸𝑖 + 𝑗𝑖𝑅

𝑘
𝑖𝐸𝑘 = 0

𝑗′′0𝛾
′ + 𝑗′′𝑖 𝐸𝑖 + 𝑗𝑘𝑅

𝑖
𝑘𝐸𝑖 = 0.

This is true iff it is zero componentwise:

𝑗′′0 = 0

𝑗′′𝑖 = 𝑗𝑘𝑅
𝑖
𝑘.

This is a system of ordinary differential equations. The solution is unique given initial data.
We have that 𝑗0 is a linear function, so 𝑗0 = 𝑑𝑠+ 𝑒 for some constants 𝑑 and 𝑒. Usually

we look at Jacobi fields that are orthogonal to the geodesic. In the case where (𝑀, 𝑔) is
2-dimensional, we can write 𝐽 = 𝑗0𝛾

′ + 𝑗1𝐸1. We have 𝑗′ = 𝑗′0𝛾
′ + 𝑔′1𝐸1.

Let 𝐽 be a Jacobi field with 𝐽(0) ⊥ 𝛾 and 𝐽 ′(0) ⊥ 𝛾′. Let 𝐽 = 𝑗1𝐸1; we write this in
short as 𝐽 = 𝑗𝐸. The Jacobi equation is 𝐽 ′′ +𝑅(𝛾′, 𝐽)𝛾′ = 0 which becomes

𝑗′′𝐸 + 𝑗𝑅(𝛾′, 𝐸)𝛾′ = 0.
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Now
𝑅(𝛾′, 𝐸)𝛾′ = 𝑘𝐸 where 𝑘 = 𝑔(𝑅(𝛾′, 𝐸)𝛾′, 𝐸).

For a surface, the sectional curvature is the Ricci curvature (under the correct normalization).
We get

𝑗′′𝐸 + 𝑗𝑘𝐸 = 0 ⇐⇒ 𝑗′′ + 𝑘𝑗 = 0.

This is the Jacobi equation for a 2-dimensional manifold. Consider 3 cases when 𝑘 is constant.

∙ If 𝑘 = 0 then 𝑗′′ = 0 and 𝑗 = (𝑑𝑠+ 𝑒)𝐸.

∙ When the curvature equals 1 everywhere, i.e. 𝑘 ≡ 1, then we get 𝑗′′+ 𝑗 = 0.6 The only
solutions are 𝑗 = 𝑑 cos 𝑠+ 𝑒 sin 𝑠.

For instance, the unit sphere has constant curvature 1. Its geodesics are the great
circles are geodesics. Think of a family (variation) of great circles going through the
north and south poles, with each great circle parametrized by unit speed. Then it
makes sense that 𝑗 = 𝑒 sin 𝑠 (it vanishes at 𝑠 = 0 and 𝜋, and has minimum absolute
value in the middle; we have the geodesics are together at 𝑠 = 0, 𝜋 and farthest apart
in the middle).

∙ When the sectional curvature is constantly −1, the Jacobi equation is 𝑗′′ − 𝑗 = 0. We
also know what the solution is in this case; the general solution is 𝑗 = 𝑑 cosh 𝑠+𝑒 cosh 𝑠.

Suppose 𝐽1 and 𝐽2 are Jacobi fields along 𝛾. Let

𝑓(𝑠) = 𝑔(𝐽 ′
1, 𝐽2)− 𝑔(𝐽1, 𝐽 ′

2).

Then

𝑓 ′ = 𝑔(𝐽 ′′
1 , 𝐽2)− 𝑔(𝐽1, 𝐽 ′′

2 )

+���
��𝑔(𝐽 ′

1, 𝐽
′
2)−�����𝑔(𝐽 ′

1, 𝐽
′
2)

= −𝑔(𝑅(𝛾′, 𝐽1)𝛾′, 𝐽2) + 𝑔(𝐽1, 𝑅(𝛾
′, 𝐽2)𝛾

′) = 0

In other words, 𝑓 is constant along a geodesic. Note 𝛾′ is a Jacobi field since 𝛾′′ +
𝑅(𝛾′, 𝛾′)𝛾′ = 0.7 Thus specializing to 𝐽1 = 𝛾′, this equation says 𝑔(𝛾′, 𝐽 ′

2) is constant along
a geodesic.

Let’s revist our geometric intuition for curvature. Consider (for simplicity) the case of
a 2-dimensional surface. Fix a point 𝑃 . We give a geometric definition of the sectional
curvature at 𝑃 . Consider the image under the exponential map of a small sphere of radius
𝜀 at the origin of the tangent space.

6This is the 1-dimensional Schrödinger equation.
7Think of 𝛾 as a family of geodesics, sliding forward along itself like a snake.

54



Lecture 11 Notes on Geometry of Manifolds

Geometrically, as 𝜀 → 0, the sectional curvature is first nontrivial coefficient of the
Taylor expansion of the length of the the image. This is why we wanted to look at 𝑓 . I.e.
the sectional curvature measures the distortion of geodesics. Next time we will derive the
geometric description of the curvature from our original definition.

Lecture 11

Tue. 10/16/12

sec:11

S1 Jacobi fields and curvature

sec:jac-curv Recall that for a manifold with metric (𝑀, 𝑔) where 𝑔 is symmetric and non-
degenerate, we have a Levi-Civita connection ∇. Suppose we have a parametrized surface
𝑓 where 𝑠 ↦→ 𝑓(𝑠, 𝑡) is a geodesic. Then the variational field 𝐽 = 𝜕𝑓

𝜕𝑡
satisfies the Jacobi

equation
𝐽 ′′ +𝑅(𝛾′, 𝐽)𝛾′ = 0

where 𝐽 ′′ = 𝐷
𝜕𝑠

𝐷
𝜕𝑠
𝐽 .

For instance, consider the exponential map exp𝑝 : 𝑇𝑝𝑀 →𝑀 . We can consider it in polar

coordinates, so it takes (𝑟, 𝜃) as arguments, where −𝜋 < 𝜃 ≤ 𝜋 and 0 < 𝑟. Then 𝜕
𝜕𝜃

exp𝑝 = 𝐽
satisfies the Jacobi equation. The Jacobi field measures the “distortion” of the exponential
map; moreover

⃒⃒⃒
𝜕
𝜕𝑟

exp𝑝

⃒⃒⃒
= 1.

Consider the special case where 𝑀2 is a surface. Letting 𝛾 be a geodesic starting at 𝑝,
𝛾(𝑡) = exp𝑝(𝑡, 𝜃), we have by Gauss’s Lemma 6.8,

𝑒𝑞 : 965− 11− 1
𝜕

𝜕𝜃
exp𝑝 ⊥ 𝛾′. (21)

Note 𝛾′′ = 0 since 𝛾′ is a parallel vector field along 𝛾. The normal 𝑛⃗ to the curve is also
parallel along 𝛾 (by parallel translation). By (21), 𝐽 is perpendicular to 𝛾 so we can write
𝐽 = 𝑗𝑛⃗ ,𝐽 ′ = 𝑗′𝑛⃗, and 𝐽 ′′ = 𝑗′′𝑛⃗. The Jacobi equation tells us

𝑗′′𝑛⃗+ 𝑗𝑅(𝛾′, 𝑛⃗)𝛾′ = 0.

Writing 𝑅(𝛾′, 𝑛⃗)𝛾′ = 𝑘𝑛⃗, we get

𝑗′′𝑛⃗+ 𝑗𝑘𝑛⃗ = 0 ⇐⇒ 𝑗′′ + 𝑘𝑗 = 0.
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Now 𝐽(0) = 𝜕
𝜕𝜃

exp𝑝(0, 0) = 0 so 𝑗(0) = 0, and we get 𝜕
𝜕𝑟

𝜕
𝜕𝜃

exp𝑝

⃒⃒⃒
𝑟=0

= 𝑛⃗ gives 𝑗′(0) = 1.

Taylor expansion gives

𝑗 = 𝑗(0) + 𝑗′(0)𝑟 +
𝑗′′(0)

2
𝑟2 +

𝑗′′′(0)

6
𝑟3 + · · ·

where

𝑗(0) = 0

𝑗′(0) = 1

𝑗′′(0) = −𝑗(0)𝑘(0) = 0

𝑗′′′(0) = −𝑗′(0)𝑘(0)− 𝑗(0)𝑘′(0)
= −𝑘(0).

Thus

𝑒𝑞 : 965− 11− 2𝑗 = 𝑟 − 𝑘

6
𝑟3 + (higher order terms) . (22)

This gives us a way of thinking about the curvature. Suppose we have a surface, and we
want to know the curvature at 𝑝. Consider a sphere (circle) of radius 𝑟 at 0 in 𝑇𝑝𝑀 ; call it
𝑆𝑟. Then exp𝑝(𝑆𝑟) is a curve on the manifold; call it 𝜕𝐵𝑟. What is the length of 𝜕𝐵𝑟?

We’d like to compute the length 𝑐(𝜃) = exp𝑝(𝑟, 𝜃). We have

𝜕𝑐

𝜕𝜃
=

𝜕

𝜕𝜃
exp𝑝 = 𝐽.

Hence the length is

𝑒𝑞 : 965− 11− 3

⃒⃒⃒⃒
⃒𝜕𝑐𝜕𝜃

⃒⃒⃒⃒
⃒ ≈ 𝑟 − 𝑘

6
𝑟3. (23)

Integrating this from −𝜋 to 𝜋, the length of 𝜕𝐵𝑟 is∫︁ 𝜋

−𝜋

⃒⃒⃒⃒
⃒𝜕𝑐𝜕𝜃

⃒⃒⃒⃒
⃒ 𝑑𝜃 ≈

�
𝑟 − 𝑘

6
𝑟3
�
2𝜋 = 2𝜋𝑟 − 𝑘

3
𝜋𝑟3.

Thus we see

length(𝜕𝐵𝑟)− length(𝑆𝑟) ≈ −
𝑘

3
𝜋𝑟3.

For instance, for the sphere, this difference is negative so the curvature is positive.

The curvature measures the difference between the length of distance spheres in Eu-
clidean space, and the length of the distance spheres on the manifold.

∙ Positive curvatures means that spheres on the manifold have smaller length.
Geodesics coming from a point don’t spread out as fast.

∙ Negative curvature means the opposite.

We can get a similar expression in any dimension.
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S2 Conjugate points

Suppose 𝛾 is a geodesic, 𝛾 : [𝑎, 𝑏]→𝑀 . Let 𝐽 be a Jacobi field. Given (𝑣, 𝑤) ∈ 𝑇𝑝𝑀 × 𝑇𝑝𝑀
where 𝛾(𝑎) = 𝑝, there exists a unique Jacobi field with

𝐽(𝑎) = 𝑣, 𝐽 ′(𝑎) = 𝑤.

In particular, letting 𝐽 be the Jacobi field with 𝐽(𝑎) = 0 and 𝐽 ′(𝑎) = 𝑣, we get a lnear map

𝐹 : 𝑇𝛾(𝑎)𝑀 → 𝑇𝛾(𝑏)𝑀

sending 𝑤 ∈ 𝑇𝛾(𝑎)𝑀 to 𝐽(𝑏).

Definition 11.1: We say that 𝑏 is a conjugate point to 𝑎 along 𝛾 if there is a non-trivial
Jacobi field with 𝐽(𝑎) = 0 and 𝐽(𝑏) = 0.

The manifold is nicer if we have no conjugate point.

S3 Isometric immersions

Consider a submanifold 𝑀2 ⊆ R3 or more generally, any isometric immersion 𝑀𝑚 →˓ 𝑁𝑛.
The following are natural questions:

∙ How do the connection on 𝑀 and 𝑁 relate?

∙ How do the curvatures of 𝑀 and 𝑁 relate?

Let ∇ be the connection on 𝑁 and ∇ be the connection on 𝑀 . The following says that if
we want to calculate (∇𝑋𝑌 )𝑝, we extend 𝑋 and 𝑌 in any way to 𝑁 , calculate the covariant
derivative and then take the tangential component.

Proposition 11.2: Let 𝑋, 𝑌 ∈ X(𝑀), and 𝑋, 𝑌 are (local) extensions of 𝑋 and 𝑌 to a
vector field on 𝑁 , then

∇𝑋𝑌 = (∇𝑋𝑌 )𝑇

where 𝑇 means tangential component.

To see that we can extend the vector field, note that because 𝑀 is a submanifold of 𝑁 ,
by the implicit function theorem there is a coordinate system (𝑥1, . . . , 𝑥𝑚, 𝑥𝑚+1, . . . , 𝑥𝑛) on
which the manifold sits like a plane, (𝑥1, . . . , 𝑥𝑚, 0, . . . , 0). Extend the vector field trivially
in the other directions.

Proof. Define ∇𝑋𝑌 by (∇𝑋𝑌 )𝑇 . We need to check ∇ is a symmetric compatible connection.
We check

1. ∇ is linear in each variable (clear).

2. If we multiply 𝑋 by a function it pops out linearly (clear).

57



Lecture 11 Notes on Geometry of Manifolds

3. If we multiply 𝑌 be a function, the Leibniz rule holds. Extending 𝑓 to a function on
a neighborhood of 𝑀 near a point,

∇𝑋(𝑓𝑌 ) = (∇𝑋(𝑓𝑌 ))𝑇 =
(︀
𝑋(𝑓)𝑌 + 𝑓∇𝑋𝑌

�𝑇
= 𝑋(𝑓)𝑌 + 𝑓(∇𝑋𝑌 )𝑇 .

4. Symmetry: We have

∇𝑋𝑌 −∇𝑌𝑋 = (∇𝑋𝑌 )𝑇 − (∇𝑌𝑋)𝑇

= (∇𝑋𝑌 −∇𝑌𝑋)𝑇

=
(︀
[𝑋,𝑌 ]

�𝑇
= [𝑋, 𝑌 ].

5. Compatibility with connection: Given 𝑋, 𝑌, 𝑍 ∈ X(𝑀), we need to check

𝑍𝑔(𝑋, 𝑌 ) = 𝑔(∇𝑍𝑋, 𝑌 ) + 𝑔(𝑋,∇𝑍𝑌 ).

But taking the derivative in direction 𝑍 is the same whether we are thinking in 𝑀 or
in 𝑁 . Thus this is equivalent to

𝑍𝑔(𝑋,𝑌 ) = 𝑔(∇𝑍𝑋,𝑌 ) + 𝑔(𝑋,∇𝑍𝑌 ),

which holds.

6. Well-definedness: ∇ doesn’t depend on the extension.

S4 Second fundamental form

Given 𝑀 →˓ 𝑁 , 𝑋, 𝑌 ∈ X(𝑀) and 𝑋,𝑌 ∈ X(𝑀) such that 𝑋|𝑀 = 𝑋, 𝑌 |𝑀 = 𝑌 , we claim

(∇𝑋𝑌 )⊥(𝑝)

depends only on the value of 𝑋(𝑝) and 𝑌 (𝑝).
We have, for a function 𝑓 extended in a neighborhood in 𝑁 ,

(∇𝑋(𝑓𝑌 ))⊥ = (𝑓∇𝑋𝑌 )⊥ +
(︀
𝑋(𝑓)𝑌

�⊥
= 𝑓

(︀
∇𝑋𝑌

�⊥
+𝑋(𝑓)(𝑌 (𝑝))⊥⏟  ⏞  

0

because 𝑌 (𝑝) = 𝑌 (𝑝) has no perpendicular component. Thus ∇⊥
is linear in both its bottom

and top variable; we’ve seen that anything with such a linearity property (where functions
just pop out) just depend on values at 𝑝. Thus (∇𝑋𝑌 )⊥(𝑝) depends only on 𝑋, 𝑌 at 𝑝.
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Definition 11.3: The bilinear map 𝐵 : 𝑇𝑝𝑀 × 𝑇𝑝𝑀 → R is defined by

𝐵(𝑋, 𝑌 ) := (∇𝑋𝑌 )⊥(𝑝).

and is called the second fundamental form.

We claim that 𝐵 is also symmetric. We have

𝐵(𝑌,𝑋) = (∇𝑌𝑋)⊥ = (∇𝑋𝑌 )⊥ + ([𝑋,𝑌 ])⊥ = 𝐵(𝑋, 𝑌 )

because the Lie bracket of two vectors in the tangent space of𝑀 is still in the tangent space,
and hence has orthogonal component 0.

Lecture 12

Thu. 10/18/12

Last time we considered isometric immersions 𝑀𝑚 →˓ 𝑁𝑛. This means that the map is an
immersion and the metric is just induced by inclusion. Let 𝑋, 𝑌, 𝑍 ∈ X(𝑀). We proved that
if 𝑋 and 𝑌 are extensions of 𝑋 and 𝑌 to a tubular neighborhood of 𝑝, then

(∇𝑋𝑌 )𝑇 = ∇𝑋𝑌.

Last time we also defined the second fundamental form 𝐵(𝑋, 𝑌 ) by

𝐵(𝑋, 𝑌 ) = (∇𝑋𝑌 )⊥.

We have that 𝐵 is symmetric bilinear form

𝐵 : 𝑇𝑝𝑀 × 𝑇𝑝𝑀 → (𝑇𝑝𝑀)⊥ ⊆ 𝑇𝑝𝑁.

Suppose 𝐸 is a vector field perpendicular to 𝑀 . Then

⟨𝐵(𝑋, 𝑌 ), 𝐸⟩ (𝑝) =
¬
(∇𝑋𝑌 )⊥, 𝐸

)︂
=
¬
∇𝑋𝑌 ,𝐸

)︂
𝐸 is perpendicular

= 𝑋
¬
𝑌 ,𝐸

)︂⏟  ⏞  
0

−
¬
𝑌 ,∇𝑋𝐸

)︂
𝑒𝑞 : 965− 12− 1 (24)

= −
¬
𝑌 ,∇𝑋𝐸

)︂
In (24) we noted that 𝑌 is tangent to 𝑀 and 𝐸 is normal to 𝑀 , so the first term is 0.

Since 𝐵 is symmetric, if we switch 𝑋, 𝑌 we get the same thing:

⟨𝑌,∇𝑋𝐸⟩ = ⟨𝑋,∇𝑌𝐸⟩ .
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S1 Weingarten map

Suppose that 𝑀𝑛−1 ⊆ 𝑁𝑛 is a hypersurface. Then up to sign, locally there is a unique
normal vector field 𝑛 to 𝑀 .

Definition 12.1: The Weingarten map is the map 𝑊 : 𝑇𝑝𝑀 → 𝑇𝑝𝑀 defined by

𝑊 (𝑣) = ∇𝑣𝑛.

It is clear that 𝑊 is linear. We need to show that 𝑊 (𝑇𝑝𝑀) ⊆ 𝑇𝑝𝑀 is actally in 𝑇𝑝𝑀 , or
equivalently, ⟨𝑊 (𝑣), 𝑛⟩ = 0 for all 𝑣 ∈ 𝑇𝑝𝑀 . Let 𝑋 extend 𝑣. We have

⟨𝑊 (𝑣), 𝑛⟩ = ⟨∇𝑋𝑛, 𝑛⟩ =
1

2
𝑋 ⟨𝑛, 𝑛⟩⏟  ⏞  

1

= 0

Next we show that 𝑊 is symmetric (self-adjoint):

⟨𝑊 (𝑣), 𝑢⟩ = ⟨𝑣,𝑊 (𝑢)⟩ .

We calculate

⟨𝑊 (𝑣), 𝑢⟩ = ⟨∇𝑣𝑛, 𝑢⟩
= −⟨𝐵(𝑣, 𝑢), 𝑛⟩
= −⟨𝐵(𝑢, 𝑣), 𝑛⟩
= ⟨∇𝑢𝑛, 𝑣⟩ .

This implies by the spectral theorem that 𝑊 has a basis of eigenvectors.

Definition 12.2: The eigenvectors of 𝑊 are called principal directions and the eigenval-
ues are called principal curvatures.

Note it is easy to generalize the theory to arbitrary isometric immersions 𝑀 →˓ 𝑁 ; see
the book.

We now relate the curvature of 𝑀 to the curvature of 𝑁 using the Gauss equations.

S2 Gauss equations

Let 𝐸1, 𝐸2, and 𝐸3 be vector fields tangent to 𝑀 . Then8

𝑅(𝐸1, 𝐸2)𝐸3 = ∇𝐸2∇𝐸1𝐸3 −∇𝐸1∇𝐸2𝐸3 +∇[𝐸1,𝐸2]𝐸3,

𝑅(𝐸1, 𝐸2)𝐸3 = ∇𝐸2∇𝐸1𝐸3 −∇𝐸1∇𝐸2𝐸3 +∇[𝐸1,𝐸2]𝐸3.

8We implicitly extend the vector fields to 𝑁 . We may as well just work with vector fields on 𝑀 , though,
because the definition doesn’t depend on the extension.
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Because we are working with a hypersurface, we can write

∇𝐸1𝐸3 = ∇𝐸1𝐸3 + ⟨𝐵(𝐸1, 𝐸3), 𝑛⟩𝑛,
∇𝐸2𝐸3 = ∇𝐸2𝐸3 + ⟨𝐵(𝐸2, 𝐸3), 𝑛⟩𝑛.

Then we have using the above and the Leibniz rule,

∇𝐸2∇𝐸1𝐸3 = ∇𝐸2∇𝐸1𝐸3 +∇𝐸2(⟨𝐵(𝐸1, 𝐸3), 𝑛⟩𝑛)
= ∇𝐸2∇𝐸1𝐸3 + 𝐸2(⟨𝐵(𝐸1, 𝐸3), 𝑛⟩)𝑛+ ⟨𝐵(𝐸1, 𝐸3), 𝑛⟩∇𝐸2𝑛

= ∇𝐸2∇𝐸1𝐸3 + ⟨𝐵(∇𝐸1𝐸3, 𝐸2), 𝑛⟩𝑛+ 𝐸2(⟨𝐵(𝐸1, 𝐸3), 𝑛⟩)𝑛+ ⟨𝐵(𝐸1, 𝐸3), 𝑛⟩∇𝐸2𝑛.

Then (noting the normal terms don’t contribute to the inner product),¬
∇𝐸2∇𝐸1𝐸1, 𝐸2

)︂
= ⟨∇𝐸2∇𝐸1𝐸1, 𝐸2⟩+ ⟨𝐵(𝐸1, 𝐸1), 𝑛⟩

¬
∇𝐸2

𝑛,𝐸2

)︂
= ⟨∇𝐸2∇𝐸1𝐸1, 𝐸2⟩ − ⟨𝐵(𝐸1, 𝐸1), 𝑛⟩ ⟨𝐵(𝐸2, 𝐸2), 𝑛⟩ 𝑒𝑞 : 965− 12− 2 (25)

We similarly have

𝑒𝑞 : 965− 12− 3
¬
∇𝐸1∇𝐸2𝐸1, 𝐸2

)︂
= ⟨∇𝐸1∇𝐸2𝐸1, 𝐸2⟩ − ⟨𝐵(𝐸2, 𝐸1), 𝑛⟩2 . (26)

Finally,
𝑒𝑞 : 965− 12− 4

¬
∇[𝐸1,𝐸2]𝐸1, 𝐸2

)︂
=
¬
∇[𝐸1,𝐸2]𝐸1, 𝐸2

)︂
(27)

From (25), (26), and (27) we get¬
𝑅(𝐸1, 𝐸2)𝐸1, 𝐸2

)︂
= ⟨𝑅(𝐸1, 𝐸2)𝐸1, 𝐸2⟩ − ⟨𝐵(𝐸1, 𝐸1), 𝑛⟩ ⟨𝐵(𝐸2, 𝐸2), 𝑛⟩+ ⟨𝐵(𝐸1, 𝐸2), 𝑛⟩2

Choosing 𝐸1, 𝐸2 to be orthonormal, we get the Gauss equation

𝑒𝑞 : 965− 𝑔𝑎𝑢𝑠𝑠− 𝑒𝑞𝐾 = 𝐾 − ⟨𝐵(𝐸1, 𝐸1), 𝑛⟩ ⟨𝐵(𝐸2, 𝐸2), 𝑛⟩+ ⟨𝐵(𝐸1, 𝐸2), 𝑛⟩2 ; (28)

the curvature with respect to 𝑀 and 𝑁 differ by a correction term. Using ⟨𝐵(𝐸1, 𝐸2), 𝑛⟩ =
−⟨∇𝐸1𝑛,𝐸2⟩, we can write the Gauss equations in terms of the Weingarten map:

𝐾 = 𝐾 − ⟨∇𝐸1𝑛,𝐸1⟩ ⟨∇𝐸2𝑛,𝐸2⟩+ ⟨∇𝐸1𝑛,𝐸2⟩2 .

We can write this in terms of the eigenvalues of the Weingarten map, the principal curvatures.
Consider the case 𝑀2 ⊂ 𝑁3. Let 𝑝 ∈𝑀 . We compute the sectional curvature of 𝑇𝑝𝑀 . Take
an orthonomal basis of eigenvectors (principal directions) 𝐸1, 𝐸2; suppose ∇𝐸1𝑛 = 𝜅1𝐸1 and
∇𝐸2𝑛 = 𝜅2𝐸2. Then we get

𝐾 = 𝐾 − ⟨𝜅1𝐸1, 𝐸1⟩ ⟨𝜅2𝐸2, 𝐸2⟩+ ⟨𝜅1𝐸1, 𝐸2⟩2

𝐾 = 𝐾 − 𝜅1𝜅2.
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Example 12.3: We calculate the curvature of the unit sphere 𝑆2 ⊂ R3. We know 𝐾R3 ≡ 0.
The curvature of 𝑆2 is 𝐾R3 minus the product of the two principal cuvatures:

0 = 𝐾R3 = 𝐾𝑆2 + 𝜅1𝜅2.

The unit normal is simply 𝑥. We have

∇𝑣𝑥 = 𝑣;

all directions are principal directions (the Weingarten map is the identity) and the principal
cuvatures are 1. Hence 𝜅1 = 𝜅2 = 1 and we get

𝐾𝑆2 = −1.

Use the Gauss equation 𝐾 = 𝐾 − 𝜅1𝜅2 to calculate the curvature of a submanifold.

Example 12.4: We calculate the curvature of a round cylinder 𝑆1 ×R in R3. Let 𝑛 be the
normal. Note that along the height of the cylinder, 𝑛 is constant. Hence

∇𝑣𝑛 = 0.

The height direction is a principal direction with principal value 0. It doesn’t matter what
the other principal value is; the product is 0. We get

𝐾𝑆1×R = 0.

In fact his works for any cylinder 𝛾 × R where 𝛾 is a closed curve in the plane.

Lecture 13

Tue. 10/23/12

Suppose we have an isometric immersion 𝑀𝑚 →˓ 𝑁𝑛. Recall that letting ∇ and ∇ be the
connections on 𝑀 and 𝑁 , we have ∇ = (∇)𝑇 . The operator (∇)⊥ is called the second
fundamental form:

𝐵(𝑋, 𝑌 ) = (∇𝑋𝑌 )⊥, 𝑋, 𝑌 ∈ 𝑇𝑝𝑀
This is bilinear and symmetric.

Now given a hypersurface 𝑀𝑛−1 ⊆ 𝑁𝑛, if 𝑛 is a unit normal vector field, define the
Weingarten map 𝑊 : 𝑇𝑝𝑀 → 𝑇𝑝𝑀 by

𝑊 (𝑋) = ∇𝑋𝑛.
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This is a symmetric linear map, and we have

−⟨∇𝑋𝑛, 𝑌 ⟩ = ⟨𝐵(𝑋, 𝑌 ), 𝑛⟩ .

The Gauss equation for 𝑀2 ⊆ 𝑁3 is

𝐾𝑁 = 𝐾𝑀 − 𝜅1𝜅2

where 𝜅1, 𝜅2 are the principal curvatures.

S1 Mean curvature

Definition 13.1: Define the mean curvature as the trace of the Weingarten map:9

𝐻 = Tr(∇∙𝑛).

Definition 13.2: Let 𝑀 ⊆ 𝑁 , and let 𝑋 be a vector field on 𝑀 . Define the divergence by

div𝑀(𝑋) = ⟨∇𝑒𝑖𝑋, 𝑒𝑖⟩ .

Letting 𝑒1, . . . , 𝑒𝑛 be an orthonormal basis for 𝑇𝑝𝑀 , we have

𝐻 = Tr(∇∙𝑛) =
𝑛∑︁

𝑖=1

¬
∇𝑒𝑖𝑛, 𝑒𝑖

)︂
= div𝑀(𝑛).

Example 13.3: Last time we saw that if 𝑆2 ⊆ R3 is the unit sphere, then 𝑛 = 𝑥 and the
curvature is 1. Now

div𝑆2(𝑥) = 𝐻𝑆2 = 2.

Example 13.4: Consider 𝑆𝑛 ⊆ R𝑛+1. By the same argument, the mean curvature is

𝐻𝑆𝑛 = 𝑛.

Consider the second fundamental form of 𝑆2 ⊆ R3. We have

⟨𝐵(𝑋, 𝑌 ), 𝑛⟩ = −⟨∇𝑋𝑛, 𝑌 ⟩ = −⟨𝑋, 𝑌 ⟩ .

Definition 13.5: Consider a closed hypersurface 𝑀 , i.e., 𝑀 = 𝜕Ω where Ω is compact.
We say 𝑀 is convex if letting 𝑛 be the inward normal, we have ⟨𝐵(𝑋, 𝑌 ), 𝑛⟩ is positive
semidefinite, i.e.,

⟨𝐵(𝑋,𝑋), 𝑢⟩ ≥ 0

for all 𝑥 ∈ 𝑇𝑝𝑀 .

This is the usual notion of convexity.

9Note that in Do Carmo, 𝐻 is defined a bit differently, as 𝐻 = 1
𝑛Tr(∇∙𝑛) where 𝑛 is the dimension.
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S2 Gauss map

Let 𝑀𝑛 ⊆ R𝑛+1 is a closed orientable hypersurface. Define the Gauss map

𝑛 :𝑀𝑛 → 𝑆𝑛

by taking the unit normal on 𝑀𝑛.
If is easy to show that if 𝑀𝑛 ⊆ R𝑛+1 is closed orientable and strictly convex, then the

Gauss map 𝑛 :𝑀 → 𝑆𝑛 is a diffeomorphism. Indeed, for 𝑋 ̸= 0,

0 < ⟨𝐵(𝑋,𝑋), 𝑛⟩ = −
¬
∇𝑋𝑛,𝑋

)︂
= −⟨𝑑𝑛(𝑋), 𝑋⟩ .

(Note that the connection on R𝑛+1 is given by ∇𝑋𝑛 = 𝑑𝑛(𝑋).) This is locally a diffeomor-
phism; it’s actually one-to-one.

We claim that our notion of convexity is the same as the typical notion: a set is convex
if the segment between any two points in the set is entirely contained in the set. This is left
as an exercise. The idea is that 𝑀 were like in that in the figure, then 𝑀 will not be convex
at the marked point. It looks like the outward normal on the unit sphere, so is not convex
there.

Convexity gives ⟨𝐵(𝑋,𝑋), 𝑛⟩ ≥ 0 for 𝑋 ̸= 0, 𝑛 the inward normal. This is −⟨∇𝑋𝑛,𝑋⟩.
The mean convexity is defined as

− div𝑀 𝑛 = −𝐻 ≥ 0

where 𝑛 is the inward normal. Convex implies that the mean convexity is nonnegative.
The Weingarten map ∇∙ : 𝑇𝑝𝑀 → 𝑇𝑝𝑀 is a symmetric linear map, so has an orthogonal

basis consisting of eigenvectors 𝑒1, . . . , 𝑒𝑛−1, called the principal directions, with eigenvalues
𝜅1, . . . , 𝜅𝑛−1. We have

𝐻 = div𝑀(𝑛) =
¬
∇𝑒𝑖𝑛, 𝑒𝑖

)︂
= ⟨𝜅𝑖𝑒𝑖, 𝑒𝑖⟩ =

𝑛−1∑︁
𝑖=1

𝜅𝑖

Definition 13.6: If𝑀𝑛−1 →˓ 𝑁𝑛 is a hypersurface, we say that𝑀 is minimal hypersurface
if 𝐻 = 0.

Suppose 𝑀𝑛 ⊂ 𝑁𝑛+1. If 𝑀 is minimal, and 𝑋 is a vector field on 𝑀 , we have

𝑒𝑞 : 965− 13− 1 div𝑀(𝑋) = div𝑀(𝑋𝑇 ). (29)
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To see this, write
𝑋 = 𝑋𝑇 + ⟨𝑋,𝑛⟩𝑛.

We have

div𝑀(𝑋) = dim𝑀(𝑋𝑇 ) + div𝑀(⟨𝑋,𝑛⟩𝑛) = div𝑀(𝑋𝑇 ) +
���

���
���

�:0
⟨∇𝑒𝑖(⟨𝑋, 𝑢⟩𝑛), 𝑒𝑖⟩.

Indeed, (using summation notation)

∇𝑒𝑖 ⟨𝑋,𝑛⟩𝑢 = 𝑒𝑖(⟨𝑥, 𝑛⟩)𝑛+ ⟨𝑋,𝑛⟩∇𝑒𝑖𝑛, ⟨∇𝑒𝑖(⟨𝑥, 𝑛⟩𝑛), 𝑒𝑖⟩ = ⟨𝑋,𝑛⟩𝐻 = 0.

Let 𝑀 be a minimal hypersurface, 𝐻 = 0, let 𝑥𝑖 be the coordinates in R𝑛 of a point on
𝑀 .

Δ𝑀𝑥𝑖 = div𝑀(∇𝑀𝑥𝑖)
29
= div𝑀(∇R𝑛+1

𝑥𝑖) = div𝑀(𝑒𝑖) = 0.

We claim there is no closed minimal hypersurface in R𝑛+1. To prove this, note if Δ𝑀𝑋𝑖 then
𝑋 is constant. We can argue using the maximum principle.

Lecture 14

Thu. 10/25/12

Absent.
We covered the Hopf-Rinow Theorem. See [3, p. 144-149].

Definition 14.1: A Riemannian manifold 𝑀 is extendible if there exists a Riemannian
manifold 𝑀 ′ such that 𝑀 is isometric to a proper open subset of 𝑀 ′.

A Riemannian manifold 𝑀 is (geodesically) complete if for all 𝑝 ∈ 𝑀 , exp𝑝 is defined
for all 𝑣 ∈ 𝑇𝑝𝑀 , i.e., any geodesic 𝛾(𝑡) starting at 𝑝 is defined for all 𝑡 ∈ R.

Proposition 14.2: If 𝑀 is complete, then 𝑀 is non-extendible.

We give 𝑀 a metric space structure by letting 𝑑𝑀(𝑝, 𝑞) be the infimum of lengths of all
curves joining 𝑝 and 𝑞. (This is the same as the original metric space structure.)

Theorem 14.3 (Hopf-Rinow Theorem): thm:hopf-rinow Let 𝑀 be a Riemannian manifold
and let 𝑝 ∈𝑀 . Then the following are equivalent.

1. exp𝑝 is defined on all 𝑇𝑝𝑀 .

2. The closed and bounded sets of 𝑀 are compact.

3. 𝑀 is complete as a metric space.

4. 𝑀 is geodesically complete.
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5. There exists a sequence of compact subsets 𝐾𝑛 ⊆𝑀 , 𝐾𝑛 ⊂ 𝐾𝑛+1 such that if 𝑞𝑛 ̸∈ 𝐾𝑛

then 𝑑(𝑝, 𝑞𝑛)→∞.

Any of these statements implies

6. For any 𝑞 ∈𝑀 there exists a geodesic 𝛾 joining 𝑝 and 𝑞 with ℓ(𝛾) = 𝑑(𝑝, 𝑞).

Lecture 15

Tue. 10/30/12

Last time we discussed the Hopf-Rinow Theorem, which says that different notions of com-
pleteness are all equivalent. Today we’ll talk about the Hadamard Theorem.

S1 Hadamard Theorem

We’d like to see what the exponential map does to length. Recall that this question was
related to the curvature of the space (see Section 11.1).

First we make an observation. Suppose (𝑀, 𝑔) is a Riemannian manifold and 𝐽 is a
Jacobi field along a geodesic 𝛾. Then the Jacobi equation

𝐽 ′′ +𝑅(𝛾′, 𝐽)𝛾′ = 0

holds. Consider 𝑓 = ⟨𝐽, 𝐽⟩. We have

𝑓 = ⟨𝐽, 𝐽⟩
𝑓 ′ = 2 ⟨𝐽 ′, 𝐽⟩
𝑓 ′′ = 2 ⟨𝐽 ′′, 𝐽⟩+ 2 ⟨𝐽 ′, 𝐽 ′⟩ .

Substituting in the Jacobi equation, we get

𝑓 ′′ = −2 ⟨𝑅(𝛾′, 𝐽)𝛾′, 𝐽⟩+ 2 ⟨𝐽 ′, 𝐽 ′⟩

Assume that 𝐽 ⊥ 𝛾′ (the component in the tangential component is always linear anyway),
𝐽(0) = 0, and the geodesic has unit speed: |𝛾′| = 1. Then

𝑒𝑞 : 965− 15− 1𝑓 ′′ = −2𝐾(𝛾′, 𝐽)|𝐽 |2 + 2|𝐽 ′|2. (30)

Consider the exponential map exp𝑝 at some point 𝑣. Consider the parameterized surface
𝐹 (𝑠, 𝑡) = 𝑠𝑣(𝑡) on 𝑇𝑝𝑀 where 𝑣 is a curve with 𝑣(0) = 𝑣. Now the derivative in the 𝑡-direction
forms a Jacobi field:

𝐽(𝑠0) =
𝜕

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡=0

(︀
exp𝑝 𝐹 (𝑠0, 𝑡)

�
.
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Suppose 𝑣(0) = 𝑣0 and 𝑣′(0) = 𝑤. Then the above becomes

𝑒𝑞 : 965− 15− 2𝐽(𝑠0) =
𝜕

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡=0

(︀
exp𝑝 𝐹 (𝑠0, 𝑡)

�
= 𝑑 exp𝑝

�
𝑠0
𝑑𝑣

𝑑𝑡

�
= 𝑑 exp𝑝(𝑠0𝑤). (31)

We’ve reduced the problem of finding |𝑑 exp𝑝(𝑤)| to finding the length of the vectors in
the Jacobi field. Since the Jacobi field is related to curvature, this will tell us how much the
exponential map distorts depending on the curvature. Letting ℎ = |𝐽 |, 𝑓 = |𝐽 |2, we have

ℎ(0) = 0

ℎ′(0) =
𝑓 ′

2
√
𝑓
=

2 ⟨𝐽 ′, 𝐽⟩ (0)
2|𝐽 |(0) .

(Implicitly, we mean ℎ′(0) = lim𝑣→0
2⟨𝐽 ′,𝐽⟩(𝑣)
2|𝐽 |(𝑣) .) From (30), if 𝐾 ≤ 0 we get

𝑓 ′′ ≥ 2|𝐽 ′|2.

Lemma 15.1: If 𝑀 is a Riemannian manifold with curvature 𝑘 ≤ 0, for 𝑤 ∈ 𝑇𝑣(𝑇𝑝𝑀), we
have

|𝑑 exp𝑝(𝑤)| ≥ |𝑤|.

This means the geodesics are expanding.
We write the proof for 2 dimensions. The proof in general is similar.

Proof. Fixing 𝑡 in 𝐹 (𝑠, 𝑡) = 𝑠𝑣(𝑡), we have

𝜕

𝜕𝑡
𝐹 = 𝐽R𝑛 .

We have 𝐽R𝑛(0) = 0.Assume 𝑤 is orthogonal. Define 𝐽 as in (31) with 𝑣(0) = 𝑣, 𝑣′(0) = 𝑤.
Because 𝑤 is orthogonal, the Jacobi field is orthogonal.

In 2 dimensions, we can write 𝐽 = 𝑗𝐸. We already know that 𝐽 ′ = 𝑗′𝐸 and 𝐽 ′′ = 𝑗′′𝐸 =
−𝑘𝑗𝐸. If 𝑗(0) = 0 and 𝑗′(0) = |𝑤|

|𝑣| , 𝐽
′′ ≥ 0 and 𝑗′ is growing. This implies that 𝑗′ ≥ |𝑤|

|𝑣| .
Thus 𝑗 is growing at least linearly, and we have

|𝑑 exp𝑝(𝑤)| = 𝑗(|𝑣|) ≥ |𝑤||𝑣| |𝑣| = |𝑤|.

This was for 𝑤 orthogonal. In the radial direction the exponential map preserves the norm.
Thus we get that exp𝑝 is locally expanding.

In the general case, consider ℎ = |𝐽 | = √𝑓 and get a differential inequality.
If (𝑀, 𝑔) is a complete manifold, i.e. exp𝑝 : 𝑇𝑝𝑀 → 𝑀 is defined on all of 𝑇𝑝𝑀 , then

Hadamard’s Theorem says the following.

Theorem 15.2 (Hadamard): thm:hadamard If (𝑀, 𝑔) is complete and 𝐾 ≤ 0, then exp𝑝 :
𝑇𝑝𝑀 →𝑀 is a covering map.
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Corollary 15.3: cor:hadamard 𝑀 is complete and simply connected with 𝐾 ≤ 0, then 𝑀
is diffeomorphic to R𝑛 and exp𝑝 : 𝑇𝑝𝑀 →𝑀 is a diffeomorphism.

In fact, exp𝑝 : 𝑇𝑝𝑀 is distance non-decreasing.

Proof of Corollary 15.3. Given Hadamard’s Theorem, if𝑀 is simply connected, the covering
space must be the same as the space itself, so 𝑇𝑝𝑀 →𝑀 is a diffeomorphism.

Let ̃︀𝑞, ̃︀𝑟 ∈ 𝑇𝑝𝑀 , and 𝑞, 𝑟 ∈𝑀 be their images in 𝑀 . We show that

𝑑𝑀(𝑞, 𝑟) ≥ |̃︀𝑞 − ̃︀𝑟|.
Let 𝑐 be a curve from 𝑞 to 𝑟. We can pull it back by the exponential map to get a curve ̃︀𝑐
from ̃︀𝑞 to ̃︀𝑟.

Suppose 𝑐 is defined on [𝑎, 𝑏]. We have

|̃︀𝑞 − ̃︀𝑟| ≤ length(̃︀𝑐) = ∫︁ 𝑏

𝑎
|̃︀𝑐′| 𝑑𝑠 ≤ ∫︁ 𝑏

𝑎
|𝑐′| 𝑑𝑠.

Taking the infimum over all 𝑐, we get the desired inequality.

We will be pretty informal in the following. For details see [3, p. 149–151].

Proof of Theorem 15.2. We show that exp𝑝 is a covering map. One way to show a map is a
covering map is to show that it has the path-lifting property. The fact that |𝑑 exp𝑝(𝑤)| ≥
𝑤 gives that the derivative at any point in the tangent space is 1-to-1, so exp𝑝 locally a
diffeomorphism.

exp𝑝 is onto by the Hopf-Rinow Theorem: In a complete manifold any pair of points can
be joined by a geodesic, i.e. any other point is in the image of exponential map at 𝑝.

Given 𝑞, 𝑟 ∈𝑀 , we can find a neighborhood around ̃︀𝑞 such that a curve in that neighbor-
hood is at mapped to a little piece of the curve 𝑐 in 𝑀 starting at 𝑞. Using |𝑑 exp𝑝(𝑤)| ≥ |𝑤|
we get that the length of the little curve at ̃︀𝑞 is less than or equal to the length of the curve
at 𝑞: ∫︁ 𝑏

𝑎
|̃︀𝑐′| ≤ ∫︁ 𝑏

𝑎
|𝑐′|

Now go to the endpoint of the little curve and continue the process.
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Completeness of𝑀 implies that the exponential map is onto. We’veused |𝑑 exp𝑝(𝑤)| ≥ |𝑤|
weakly to say it’s a locally a diffeomorphism. We use it strongly to say it doesn’t wander
off to infinity: The lifted curve lies inside something compact by the inequality, so we can
continue all the way to the end. (This part of the argument goes through if we just assume
|𝑑 exp𝑝(𝑤)| ≥ 𝑐|𝑤|.)

The only choice involved is the preimage ̃︀𝑞 of 𝑞; then the curve is uniquely given.
The ODE for the geodesic extending 𝑐 has a solution for all R if it doesn’t go off to

infinity. The inequality ensures that the lifted curve doesn’t wander off to infinity. This
shows the path-lifting property; hence exp𝑝 is a covering map.

S2 Constant curvature

Now we’ll talk a little bit about constant curvature.
Let 𝑀𝑛

1 ,𝑀
𝑛
2 be complete, simply connected manifolds with the same constant curvature.

We’ll prove next time that there is an isometry from 𝑀1 to 𝑀2. (Recall that an isometry is
a metric-preserving isomorphism.)

We construct the isometry 𝐼 : 𝑀1 → 𝑀2 as follows. Take 𝑝1 ∈ 𝑀1 and 𝑝2 ∈ 𝑀2. In a
neigborhood of 𝑝1, we have a map

exp−1
𝑝1

:𝑀1 → 𝑇𝑝1𝑀1.

We let 𝑖 : 𝑇𝑝1𝑀 → 𝑇𝑝2𝑀 be any isometry taking 0 to 0. Now define

𝐼 = exp𝑝2 ∘𝑖 ∘ exp−1
𝑝1
.

Lecture 16

Tue. 11/6/12

Colding is in Sweden today, so Bill Minicozzi is lecturing.
Yesterday when I was at the airport, I picked up a copy of Boston magazine. Harvard is

now the second best university in Cambridge. In case you’re wondering, MIT is the best.
This week we’re going to do two things. We will

1. introduce hyperbolic space and

2. understand the classification of spaces of constant curvature.
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There are many different notions of curvature: we could talk about sectional curvature,
Ricci curvature, and scalar curvature (and others). Constant scalar curvature is the loosest
condition, and constant sectional curvature is the strictest condition.

∙ Scalar curvature: A theorem of Rick-Shane says that given any closed manifold (com-
pact without boundary), by just making conformal changes, we can make it a manifold
of constant scalar curvature. In dimensions other than in dimension 2, we can get
negative constant scalar curvature.

∙ Ricci curvature: A manifold with constant Ricci curvature is called an Einstein mani-
fold. The Ricci cuvature is constant if the Ricci curvature is a constant multiple of the
metric; this gives the Einstein equation. Constant Ricci curvature says quite a bit;
in low dimensions it says a lot.

∙ Sectional curvature: Manifolds with constant sectional curvature are called space
forms. We’ll discuss these today.

The sectional curvature can be negative, 0, or positive. By scaling we can assume 𝜅 =
−1, 0, 1. (For instance, if the curvature is 10, we can scale by 1√

10
to make the curvature 1. A

sphere of radius 1 has curvature 1; if we make sphere larger, then the curvature decreases.)
In these 3 cases we have the following spaces.

1. 𝜅 = −1: Hyperbolic space 𝐻𝑛.

2. 𝜅 = 0: Euclidean space R𝑛.

3. 𝜅 = −1: Sphere S𝑛.

Hyperbolic space is the new manifold, which we haven’t talked about. On Thursday we’ll
show that every complete simply connected manifold of constant curvature must be one of
these: 𝐻𝑛,R𝑛, or S𝑛.

Of course, the manifold doesn’t haven’t to be simply connected. We could quotient out
𝐻𝑛,R𝑛, or S𝑛 by the action of a group of isometries. Then we get a manifold locally isometric
to one of these spaces, but not globally diffeomorphic.

For instance, if we quotient the plane R2 by a translation we get a cylinder. If we quotient
again by another translation, we get a torus, also of 0 sectional curvature. We can quotient
different spaces by different lattices, and the classification of spaces becomes a question about
group theory. Quotienting by hyperbolic groups is much more complicated. For the sphere,
we have to quotient by a finite group because there is no fixed point free infinite group
action. The resulting space has finite fundamental group. The study of quotient spaces here
becomes the study of subgroups of the orthogonal group.

That’s the background. Let’s do math now.
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S1 Conformal metrics

Definition 16.1: Let (𝑀, 𝑔) be a Riemannian manifold. We say that a (𝑀, 𝑔𝑓) is a con-
formal change of metric if 𝑓 is a constant depending only on the point, 𝑓 = 𝑓(𝑝).

We say that 𝑓 and 𝑔𝑓 are conformally related.

Think of 𝑔 as a symmetric 2-tensor at each point. A conformal change allows us to
multiply 𝑔 by a constant at each point. This is one way of changing the metric.

Suppose we want to change the metric from 𝑔 to 𝑔. We need to make sure that 𝑔 is still
positive definite. One way is to add another positive definite form to 𝑔. We see that there
are lots of ways to change the metric.

The space of 𝑛×𝑛 matrices has dimension 𝑛2. The space of symmetric 𝑛×𝑛 matrices still
has dimension on the order of 𝑛2. A conformal change of metric gives us a comparatively
small allowable space of changes, just a 1-dimensional space at each point. We wouldn’t
expect it to generate too many different metrics.

Suppose we fix a metric and look at all metrics conformal to it. In dimension 2, this one
metric generates everything; every metric is conformal to every other metric locally.

Definition 16.2: df:conf-flat A metric is conformally flat if 𝑔𝑖𝑗 = 𝐹−2𝛿𝑖𝑗 for some 𝐹 .

All constant metrics are conformally flat. This is not an accident. Not every metric is
conformally flat. In high dimensions, we can build a tensor built out of the curvature, called
the Weyl tensor. It measures the obstruction to being locally conformally flat. This isn’t
quite true in dimension 3, though; we have to use the Bott tensor. If the tensor vanishes
then the manifold is locally conformally flat.

Note that different authors may let the constant in Definition 16.2 depend differently
𝐹 . I use 𝐹−2 to match Do Carmo’s notation. I would prefer not to use 𝐹−2. It is more
natural to use 𝑒𝐹 ; this is also automatically positive. Set 𝑓 = ln𝐹 ; this will come up in our
calculations.

Our first task is to compute Cristoffel symbols and curvature tensors for a conformal
change of metric.

1.1 Compute Γ𝑘
𝑖𝑗’s

Recall the formula

𝑒𝑞 : 787− 16− 1Γ𝑘
𝑖𝑗 =

1

2

∑︁
𝑚

(𝑔𝑗𝑚,𝑖 + 𝑔𝑚𝑖,𝑗 − 𝑔𝑖𝑗,𝑚) 𝑔𝑚𝑘 (32)

where 𝑔𝑗𝑚,𝑖 denotes
𝜕𝑔𝑗𝑚
𝜕𝑥𝑖

and 𝑔𝑚𝑘 denotes the (𝑚, 𝑘) entry in the inverse matrix of the (𝑔𝑖𝑗).

When 𝑔𝑖𝑗 = 𝐹−2𝛿𝑖𝑗, we compute

𝑔𝑖𝑗,𝑘 = −2𝐹−3 𝜕𝐹

𝜕𝑥𝑘
𝛿𝑖𝑗 = −2

�
𝐹−1 𝜕𝐹

𝜕𝑥𝑘

�
𝐹−2𝛿𝑖𝑗 = −2𝑓𝑘𝑔𝑖𝑗

where 𝑓𝑘 =
𝜕 ln𝐹
𝜕𝑥𝑘

= 𝐹−1 𝜕𝐹
𝜕𝑥𝑘

.
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We plug in this formula everywhere in (32):

Γ𝑘
𝑖𝑗 =

1

2

∑︁
𝑚

(𝑔𝑗𝑚,𝑖 + 𝑔𝑚𝑖,𝑗 − 𝑔𝑖𝑗,𝑚) 𝑔𝑚𝑘

= −
∑︁
𝑚

(𝑓𝑖𝑔𝑗𝑚 + 𝑓𝑗𝑔𝑚𝑖 − 𝑓𝑚𝑔𝑖𝑗) 𝑔𝑚𝑘

= −𝑓𝑖𝛿𝑗𝑘 − 𝑓𝑗𝛿𝑖𝑘 + 𝑓𝑘𝛿𝑖𝑗
∑︁
𝑚

𝑔𝑗𝑚𝑔
𝑚𝑘 = 𝛿𝑗𝑘.

(A matrix times its inverse equals the identity.) Let’s check that the last equality is above,
on the third terms:

∑︀
𝑚 𝑓𝑚𝑔𝑖𝑗𝑔

𝑚𝑘 = 𝑓𝑘𝛿𝑖𝑗. We have 𝑔𝑚𝑘 = 𝐹 2𝛿𝑚𝑘 so∑︁
𝑚

𝑓𝑚𝑔𝑖𝑗𝑔
𝑚𝑘 =

∑︁
𝑚

𝑓𝑚(𝐹
−2𝛿𝑖𝑗)(𝐹

2𝛿𝑚𝑘)

= 𝑓𝑘𝛿𝑖𝑗,

as expected. We consider several cases.

∙ 𝑖, 𝑗, 𝑘 distinct: Γ𝑘
𝑖𝑗 = 0. We only have to worry about if exactly 2 are the same, or all

3 are the same.

For what I write next there is no summation convention. (Usually if same index appears
twice, we sum over over it. Here we’re going to write formulas containing repeated indices
over it, but I don’t want to sum over it.)

∙ 𝑖 = 𝑗 = 𝑘: Γ𝑖
𝑖𝑖 = −𝑓𝑖.

∙ 𝑖 = 𝑗 ̸= 𝑘: Γ𝑘
𝑖𝑖 = 0− 0 + 𝑓𝑘 = 𝑓𝑘.

∙ 𝑖 = 𝑘 ̸= 𝑗: Γ𝑖
𝑖𝑗 = −𝑓𝑗.

∙ By symmetry, Γ𝑖
𝑗𝑖 = Γ𝑖

𝑖𝑗 = −𝑓𝑗.

It’s good to go through all the calculations once. This not something you do again as
practicing geometer. Once you’ve seen how the calculations go, you never need to compute
the Γ𝑘

𝑖𝑗 again. When I have to make a conformal change of coordinates to get a metric with
certain quantities, I go to my trusty Lectures in Differential Geometry and thumb through
it until I find the formula. But you have to do this once for yourself before you’re allowed
to look it up.

Note that a conformal change in metric preserves orthogonality. It stretches the lengths
of all vectors in a tangent space by same amount. A conformal change preserves angles, and
just stretches distances. The most obvious conformal change is to dilate the whole manifold
by a constant. Any conformal map is like this at a point.

A map is conformal if its effect on the metric (i.e., the pullback) is a conformal change.
The map stretches lengths and preserve angles.
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1.2 Curvature tensor

Our next task is to use the Christoffel symbols to compute the curvature tensor. Then we
will use the curvature tensor to get the sectional curvature.

Again, we don’t use summation notation in what follows. We have

𝑅𝑖𝑗𝑖𝑗 =
∑︁
ℓ

𝑅ℓ
𝑖𝑗𝑖𝑔ℓ𝑗

= 𝑅𝑗
𝑖𝑗𝑖𝑔𝑗𝑗 𝑔ℓ𝑗 = 0 for ℓ ̸= 𝑗

= 𝐹−2𝑅𝑗
𝑖𝑗𝑖

= 𝐹−2

[︃(︃∑︁
ℓ

Γℓ
𝑖𝑖Γ

𝑗
𝑗ℓ − Γℓ

𝑗𝑖Γ
𝑗
𝑖ℓ

)︃
+ 𝜕𝑗Γ

𝑗
𝑖𝑖 − 𝜕𝑖Γ𝑗

𝑗𝑖

]︃
We don’t care to compute 𝑅𝑖𝑗𝑘ℓ in general; we just compute 𝑅𝑖𝑗𝑖𝑗 so we can get the sectional
curvature.

We also need derivatives of the Γ’s, so let’s record what they are. We have

𝜕𝑗Γ
𝑗
𝑖𝑖 = 𝑓𝑗𝑗 :=

𝜕2𝑓

𝜕𝑥𝑗2

𝜕𝑖Γ
𝑗
𝑗𝑖 = −𝑓𝑖𝑖.

We have

𝜕𝑗Γ
𝑗
𝑖𝑖 − 𝜕𝑖Γ𝑗

𝑗𝑖 = 𝐹−2(𝑓𝑗𝑗 + 𝑓𝑖𝑖).

We now split the sum into 3 cases. We only need to consider 𝑖 ̸= 𝑗, because it is 0 otherwise.
We obtain

𝑅𝑖𝑗𝑖𝑗 = 𝐹−2(𝑓𝑗𝑗 + 𝑓𝑖𝑖) + 𝐹−2(Γ𝑖
𝑖𝑖Γ

𝑗
𝑗𝑖 − Γ𝑖

𝑗𝑖Γ
𝑗
𝑖𝑖)⏟  ⏞  

ℓ=𝑖

+𝐹−2(Γ𝑗
𝑖𝑖Γ

𝑗
𝑗𝑗 − (Γ𝑗

𝑗𝑖)
2)⏟  ⏞  

ℓ=𝑗

+𝐹−2
∑︁
ℓ̸=𝑖, 𝑗

(Γℓ
𝑖𝑖Γ

𝑗
𝑗ℓ − Γℓ

𝑗𝑖Γ
𝑗
𝑖ℓ)⏟  ⏞  

ℓ̸=𝑖, 𝑗

.

= 𝐹−2

⎡⎣(𝑓𝑖𝑖 + 𝑓𝑗𝑗) + [SS𝑓
2
𝑖 −����

�
(−𝑓𝑗)(𝑓𝑗)] + [���

��𝑓𝑗(−𝑓𝑗)− SS𝑓 2
𝑖 ] +

∑︁
ℓ̸=𝑖,𝑗

[𝑓ℓ(−𝑓ℓ)− 0]

⎤⎦
= 𝐹−1

⎡⎣(𝑓𝑖𝑖 + 𝑓𝑗𝑗)−
∑︁
ℓ̸=𝑖,𝑗

(𝑓ℓ)
2

⎤⎦ .
The good news is that this agrees with what’s in my notes! We now have

𝑒𝑞 : 787− 16− 2𝜅𝑖𝑗 =
𝑅𝑖𝑗𝑖𝑗

det(𝑔𝑖𝑗)
=
𝑅𝑖𝑗𝑖𝑗

𝑔𝑖𝑖𝑔𝑗𝑗
=
𝐹−2

(︀
𝑓𝑖𝑖 + 𝑓𝑗𝑗 −

∑︀
ℓ̸=𝑖,𝑗 𝑓

2
ℓ

�
𝐹−4

= 𝐹 2

�
𝑓𝑖𝑖 + 𝑓𝑗𝑗 −

∑︁
ℓ̸=𝑖,𝑗

𝑓 2
ℓ

�
.

(33)
This formula is valid for any conformal metric. We’ve now computed the sectional curvature
for any conformal metric in terms of the original metric.

The highest-order term 𝑓𝑖𝑖 + 𝑓𝑗𝑗 looks like a Laplacian. The lower-order term looks like
the gradient squared of the log of the function.
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Example 16.3: Consider the case of R2. At a point there is only 1 possible sectional
curvature. There are no ℓ ̸= 𝑖, 𝑗 terms. The curvature is the Gauss curvature, 𝐹 2(𝑓𝑖𝑖 + 𝑓𝑗𝑗),
which is really a Laplacian, i.e., the trace of the hessian, the sum of the second derivatives
“down the diagonal.”

Let’s now specialize to hyperbolic space.

S2 Hyperbolic metric

There are two conformal models of hyperbolic space: upper half space and the unit disc.
The easiest to compute for us is the upper half space: 𝐹 is a function of 𝑥𝑛. In the unit disc
model we would have to use polar coordinates.

Define upper half-space by

R𝑛
+ = {(𝑥1, . . . , 𝑥𝑛) : 𝑥𝑛 > 0}

and give it the hyperbolic metric given by

𝑔𝑖𝑗 =
𝛿𝑖𝑗
𝑥2𝑛

= 𝐹−2𝛿𝑖𝑗 where 𝐹 = 𝑥𝑛, 𝑓 = ln𝑥𝑛.

We will check that this metric is complete. To do this, we take a straight line going
out. the length is constant multiple 1

𝑥𝑛
of the Euclidean length. A positive number times an

infinite length is infinite.
What if we reach 𝑥𝑛 = 0 and the length of curve is finite? If so, then the space would

not be complete. If we take a line straight down, then is complete: to find the length we
compute the integral of 1

𝑥𝑛
. The length is − ln𝑥𝑛 → ∞ as 𝑥𝑛 → 0. However, this is just

one path down. Need to check that every path down takes infinitely long. The same check
works for paths that go up infinitely.

We make these computations rigorous, but first we check that 𝐻𝑛 does indeed have
constant curvature.

2.1 𝐻𝑛 has constant curvature

We calculate the sectional curvature of 𝐻𝑛 using (33). For 𝑖 ̸= 𝑛 we have 𝑓𝑖 = 0. We have
𝑓𝑛 = 1

𝑥𝑛
. For 𝑖 ̸= 𝑛 we have 𝑓𝑖𝑖 = 0. We have 𝑓𝑛𝑛 = − 1

𝑥2
𝑛
. Consider several cases.

∙ 𝑖, 𝑗 ̸= 𝑛: 𝜅𝑖𝑗 = 𝑥2𝑛
[︁
0 + 0−

(︀
1
𝑥𝑛

�2]︁
= −1. This is a very happy result because we

introduced 𝐻𝑛 as having curvature −1.
∙ 𝑗 = 𝑛: 𝜅𝑖𝑛 = 𝑥2𝑛

[︁
0− 1

𝑥2
𝑛
− 0

]︁
= −1.

∙ 𝑖 = 𝑛: 𝜅𝑛𝑗 = 𝑥2𝑛
[︁
− 1

𝑥2
𝑛
+ 0− 0

]︁
= −1.

All possible planes have sectional curvature −1. In the case of the hyperbolic plane 𝐻2, we
don’t even have to worry about the 𝜅𝑖𝑗 case, and this is quicker to see.

Next we check the completeness of hyperbolic space.
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2.2 Hyperbolic space is complete

Translation perpendicular to 𝑥𝑛 leaves lengths unchanged; this is essentially just a choice
of coordinates. Thus, we only need to show that any curve from a point on the 𝑥𝑛-axis to
infinity has infinite length.

Consider the region bounded vertically by 𝜀 < 𝑥𝑛 <
1
𝜀
and horizontally by

È
𝑥21 + · · ·+ 𝑥2𝑛−1 ≤(︀

1
𝜀

�2
. (Think of this as a “soup can;” it is round at the edges. In two dimensions it is just a

rectangle.) Any divergent curve must hit one of these boundaries.

1. First suppose the curve hits one of the sides. We look how long any curve to the side
is. The Euclidean length is at least the distance from the axis to the side which is at
least 1

𝜀2
. But the metric is always at least 𝜀 times the Euclidean one, so the hyperbolic

length is at least 𝜀
(︀

1
𝜀2

�
= 1

𝜀
:

𝐿 =
∫︁ È

𝑔(𝛾′, 𝛾′) =
∫︁
𝐹−1|𝛾′|Euclidean length ≥ 𝜀

(︂
1

𝜀2

)︂
=

1

𝜀
.

The length is at least 1
𝜀
. If 𝜀→ 0 this goes to infinity so we’re good.

2. We just have to worry about the curve hitting the top or bottom of the soup can. The
two cases are basically symmetric; I’ll do one and you’ll see the other. Suppose a curve
goes south.

Write
𝛾(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑛(𝑡)).

We have

𝐿 =
∫︁ 1

𝑥𝑛(𝑡)

È
(𝑥′1)

2 + · · ·+ (𝑥′𝑛)
2 𝑑𝑡

≥
∫︁ È

(𝑥′𝑛)
2

𝑥𝑛
𝑑𝑡 =

∫︁ |𝑥′𝑛|
𝑥𝑛

𝑑𝑡

≥ |change in ln(𝑥𝑛)| → ∞ as 𝜀→ 0.

Note that “wiggling” back and forth horizontally only make length bigger, and we only
have to show curves go straight up and down have infinite length. We just use the
fundamental theorem of calculus! (Note we have inequality because the curve might
go up and down; i.e., 𝑥𝑛 may not be monotonic.)

This completes the proof.
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S3 Hyperbolic geodesics and isometries

We’ll come back to isometries. Let’s find the geodesics in hyperbolic space.
First, vertical lines give geodesics. The geodesic equation is

𝑥′′𝑘 +
∑︁
𝑖,𝑗

Γ𝑘
𝑖𝑗𝑥

′
𝑖𝑥

′
𝑗 = 0.

First consider the special case where 𝑥1, . . . , 𝑥𝑛−1 are constant. Letting 𝑥𝑛 = ℎ(𝑡), the
equation becomes

0 = ℎ′′ + Γ𝑛
𝑛𝑛(ℎ

′)2 = ℎ′′ + (ℎ′)2
(︂
−1

ℎ

)︂
.

(note in the hyperbolic case Γ𝑛
𝑛𝑛 = −𝜕𝑛 ln𝑥𝑛 = − 1

𝑥𝑛
) or

ℎ′′ℎ− (ℎ′)2 = 0.

One obvious solution is ℎ(𝑡) = 𝑒𝑡. Note ℎ(𝑡) = 𝑎𝑒𝑡 also works for any 𝑎 > 0, and ℎ(𝑡) = 𝑒−𝑡

also works. This suggests that the general solution is hyperbolic functions. Let’s stop there.
I’ll see you Thursday.

Lecture 17

Thu. 11/8/12

Today we’ll finish talking about space forms. We’ll show that the 3 spaces of constant
curvature we already know are the only simply connected spaces of constant curvature. Here
is the main theorem.

Theorem 17.1: thm:space-forms Let 𝑀𝑛 be a complete simply connected manifold of con-
stant curvature 𝜅.

1. If 𝜅 = −1, 𝑀 ∼= 𝐻𝑛 (𝑀 is isometric to hyperbolic space).

2. If 𝜅 = 0, 𝑀 ∼= R𝑛.

3. If 𝜅 = −1, 𝑀 ∼= 𝑆𝑛.

As we’ve said, we can take care of different 𝜅 by scaling.
If 𝑀 is not simply connected, then the universal cover is simply connected, and is one of

𝐻𝑛, R𝑛, and 𝑆𝑛. Let’s consider some examples.

1. 𝜅 = 1: The cylinder 𝑆1 × R𝑛−1. This is not R𝑛. However, if you take the universal
cover, i.e., unroll the cylinder, you do get R𝑛.
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2. 𝜅 = −1: We can have hyperbolic surfaces of genus 𝑔 > 1.

For a compact manifold (closed without boundary), there is just one number that
matters topologically, and that is the genus. The sphere has genus 0, the torus has
genus 1, and all compact complete manifolds of genus 2 with constant curvature are
hyperbolic.

There are tons of things with constant negative curvature.

3. 𝜅 = 0: RP𝑛, or any quotient of 𝑆𝑛 by a linear group action without fixed points. RP𝑛 is
the space of rays through origin (i.e., a pair of antipodal points of 𝑆𝑛). We identify east
and west, etc. In the first week of class, we showed this is a manifold; it is 𝑆𝑛 modulo
the antipodal transformation. The group action is Z/2 because if you flip twice, you
get back where you started. Note Z/2 is part of the orthogonal group.

More generally, we can take any finite subset of the orthogonal group with no fixed
points. The fundamental group is the group you quotiented by. This describes all of the
manifolds with constant positive curvature. Milnor listed all subgroups of orthogonal
group that can act, and put them in categories.

As another example, quotienting by Z/𝑝 we get lens spaces. The fundamental group
is Z/𝑝.

Note that simply connected implies oriented, but quotients may not be orientable. For
instance RP𝑛 in certain dimensions is unorientable, even though it has flat metric. The
fundamental group is Z/2 in those dimensions.

This is not the end of the story. Lots interesting things are still going on in 3-manifold
theory. There is not too much going on in the study of flat or positively curved surfaces.
Almost the whole field concerned with the study of hyperbolic manifolds. After geometri-
cization, there are 8 possible manifold geometries. The hyperbolic is the most interesting.
It is basically a group question (what groups can act on hyperbolic space?), and the groups
can be extremely complicated.

S1 Curvature 𝜅 = 0, −1
We will prove Theorem 17.1 for 𝜅 = 0,−1 at same time. The case for 𝜅 = 1 is different.
For 𝜅 = 0,−1, if the space is simply connected, then exp𝑝 is a global diffeomorphism by
Hadamard’s Theorem, and we have a natural map to start working with. In the case 𝜅 = −1
we can also consider a map from the tangent space to the model space 𝐻𝑛. By taking the
inverse of one and composing, we have a map from the manifold to 𝐻𝑛.

In the case of 𝑆𝑛, exp𝑝 will not be globally defined.
To show the isometry, we actually construct a isometry. In the cases 𝜅 = 0,−1, nat cand

right in front of us, and we just have to show it works. In the case 𝜅 = 1, we have to go
through more work to find it.

We’ll use a technical result and defer its proof.
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We write the proof for R𝑛; the same proof holds for 𝐻𝑛. Let 𝑝 ∈𝑀 and 𝑝 ∈ R𝑛 (or 𝐻𝑛).
We identify 𝑇𝑝R𝑛 = R𝑛 = 𝑇𝑝𝑀 . We have the exponential maps are globally well-defined
invertible diffeomorphisms by Hadamard’s Theorem 15.2:

exp𝑀 : 𝑇𝑝𝑀 →𝑀, exp𝑀 : 𝑇𝑝R𝑛 → R𝑛.

1. Set 𝑓 = exp𝑀 ∘ exp−1
𝑀

: 𝑀 → 𝑀 . We have 𝑓(𝑝) = 𝑝. Both exponential maps (and
their inverses) are diffeomorphisms, so 𝑓 is a local diffeomorphism.

2. By a theorem of Cartan, 𝑓 is a local isometry. We’ll come back to proving this (it is
somewhat of a pain).

Theorem 17.2 (Cartan): thm:cartan Suppose 𝑓 :𝑀 →𝑀 is a local diffeomorphism,
𝑓(𝑝) = 𝑝, and 𝑑𝑓𝑝 = id (i.e., we identify 𝑇𝑝𝑀 = 𝑇𝑝𝑀 . Let 𝛾 : [0, ℓ]→𝑀 be a geodesic
from 𝑝 to 𝑞, let 𝛾 = 𝑓 ∘ 𝛾, let 𝑃𝑡 be parallel transport from 𝑝 along 𝛾, and let 𝑃 𝑡 be
the parallel transport from 𝑝 to 𝛾(𝑡). Define the map 𝜑ℓ : 𝑇𝑞𝑀 → 𝑇𝑓(𝑞)𝑀 on tangent
spaces by the following.

𝜑ℓ = 𝑃 ℓ ∘ 𝑃−1
ℓ .

If
⟨𝑅(𝑥, 𝑦)𝑢, 𝑣⟩ =

¬
𝑅(𝜑ℓ(𝑥), 𝜑ℓ(𝑦))𝜑ℓ(𝑢), 𝜑ℓ(𝑣)

)︂
for all 𝑥, 𝑦, 𝑢, 𝑣, and all 𝑞 in a neighborhood of 𝑝, then 𝑓 is a local isometry at 𝑝.

(When we parallel transport back from 𝑞 to 𝑝, the vector now automatically lives in
𝑇𝑝𝑀 because 𝑑𝑓𝑝 is the identity.)

We can use Cartan’s Theorem because the curvature of 𝑀 and 𝑀 are the same. Now
𝜑ℓ is an isometry because it is built out of isomotries: parallel transport is an isometry.

78



Lecture 17 Notes on Geometry of Manifolds

Thus the inner product between 𝑥, 𝑦 is the same as between 𝜑𝑡(𝑥), 𝜑𝑡(𝑦). Thus Cartan’s
Theorem is satisfied, and 𝑓 is a local isometry. Now we just need to show it’s a global
isometry.

Note that from step 1, 𝑓 is a local diffeomorphism follows from step 1.

3. By Lemma 3.3 in Chapter 7 (any local diffeomorphism from a complete Riemannian
manifold with the property |𝑑𝑓𝑝(𝑣)| ≥ |𝑣| is a covering map), 𝑓 is a covering map. Now
the fact that 𝑀 is simply connected implies 𝑓 is a global isometry.

The only thing we haven’t proven is the theorem of Cartan. See Section 3.

S2 Curvature 𝜅 = 1

In the case 𝜅 = 1, the exponential map isn’t a global diffeomorphism, we have to cook
something up. Let 𝑝 ∈ 𝑆𝑛 and let 𝑞 be the antipodal point to 𝑝.

Identify 𝑇𝑝𝑆
𝑛 = R𝑛 = 𝑇𝑝𝑀𝑀 . We have exponential maps

exp𝑝 : 𝑇𝑝𝑆
𝑛 99K 𝑆𝑛∖{𝑞}

where the map is only defined on a ball 𝐵𝜋 of radius 𝜋. We have

exp𝑀 : 𝑇𝑝𝑀𝑀 →𝑀.

Set
𝑓 = exp𝑀 ∘ exp−1

𝑝 : 𝑆𝑛∖𝑞 →𝑀.

As before, Cartan’s theorem only says that 𝑓 is a local isometry.
However, we don’t get a map on all of 𝑆𝑛!
We can pick another pair of antipodal points 𝑝, 𝑞 ∈ 𝑆𝑛 and define 𝑓 : (𝑆𝑛∖𝑞)→𝑀 .
Each map is defined on the sphere minus 2 antipodal points. We need to show that they

agree on the intersection, the sphere minus 4 points.
Let’s show that 𝑓 and 𝑓 agree where both are defined. Assuming this, we get a global

map (from gluing 𝑓 and 𝑓) 𝑓 ∨ 𝑓 : 𝑆𝑛 →𝑀 that is a local isometry on a compact manifold.
Again by Lemma 3.3 in Chapter 7, it is a covering map. Since 𝑓 ∨ 𝑓 is a covering map, it is
simply connected, so it is a global isometry.

It remains to show that 𝑓, 𝑓 agree on overlap.
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Lemma 17.3 (Monodromy lemma): Suppose that 𝑓, 𝑓 : 𝑀 → 𝑁 are local isometries, and
𝑀 is connected. Suppose that

𝑓(𝑝) = 𝑓(𝑝)

𝑑𝑓𝑝 = 𝑑𝑓𝑝

for at least one point 𝑝. Then 𝑓 ≡ 𝑓 .

In other words, if we have a point where 𝑓 and 𝑓 agree to first order, then they agree
completely.

This is going to be one of those “open and closed” arguments: The set where 𝑓, 𝑓 agree
is open and closed, is nonempty, so whole space.

Note the lemma fails if we don’t assume 𝑑𝑓𝑝 = 𝑑𝑓𝑝. In R𝑛, the identity map and rotation
by 90∘ are local isometries fixing the origin that don’t agree. However, 2 rotations that fix
the origin and are the identity on the (tangent space of the) origin must agree.

Proof. Let
𝑆 :=

⌋︀
𝑞 : 𝑓(𝑞) = 𝑓(𝑞) and 𝑑𝑓(𝑞) = 𝑑𝑓(𝑞)

{︀
.

First, 𝑆 is closed because of continuity (𝑓 and 𝑑𝑓 continuous). The intersection of 2 closed
subsets is closed. Note 𝑝 ∈ 𝑆 by assumption.

The tricky part is showing 𝑆 is open. We’ll do this by a picture. 𝑆 is open since 𝑓 = 𝑓
in a neighborhood about 𝑝. Consider the exponential map exp𝑝 around 𝑝.

Take normal neighborhoods of both 𝑝 and 𝑓(𝑝). In each of these neighborhoods exp𝑝 is
a diffeomorphism. Geodesics are unique.

Take 𝑞 in the neighborhood and let 𝛾 be the unique geodesic between 𝑝 and 𝑞; it is
minimizing. There is some minimizing geodesic 𝑓(𝑝) to 𝑓(𝑞).

1. 𝑓 and 𝑓 are local isometries, so they send geodesics to geodesics. They must send the
geodesic 𝛾 to some geodesic in the image. (Warning: we don’t know the endpoints are
the same yet, because a priori maybe 𝑓(𝑞) ̸= 𝑓(𝑞).)

2. But these geodesics satisfy the same initial conditions: Because 𝑝 ∈ 𝑆, 𝑑𝑓𝑝(𝛾
′(0)) =

𝑑𝑓𝑝(𝛾
′(0)). Hence 𝑓 ∘ 𝛾, 𝑓 ∘ 𝛾 are geodesics starting at the same point, with same

derivative at 0. So they are the same.

Thus in this neighborhood 𝑓 and 𝑓 agree identically. Cetainly they agree to first order. This
proves this monodromy lemma.

We’re done with the proof of the main theorem modulo the proof of Cartan’s theorem.
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S3 Cartan’s theorem

sec:cartan We prove Cartan’s Theorem 17.2.

Proof. To show 𝑓 is a local isometry, we have to show that given any 𝑣 ∈ 𝑇𝑞𝑀 , then

𝑒𝑞 : 787− 17− 3|𝑑𝑓𝑞(𝑣)| = |𝑣| (34)

where the first is the norm on 𝑇𝑓(𝑞)𝑀 and the RHS is the norm on 𝑇𝑞𝑀 . This says that
the length after you apply 𝑑𝑓𝑞 is the same as before. Because 𝑓 preserves the length of all
tangent vectors, it will be an isometry.

How do we compute 𝑑𝑓𝑞(𝑣)?
Assume that 𝑓 = exp𝑝 ∘ exp−1

𝑝 as before. 𝑓 is built out of 2 exponential maps. By the
chain rule, the differential is the composition of 2 differentials of exponential maps (with one
inverted). We have to figure the differential of an exponential map.

The differential of a exponential map is given by Jacobi fields. Why? A vector on a
geodesic produces a 1-parameter family of geodesics, and the Jacobi field tells you how that
1-parameter family of geodesics changes. More precisely, Proposition 17.4 tells us how the
Jacobi field relates to the differential of the exponential.

Given 𝑣 ∈ 𝑇𝑞𝑀 , choose a Jacobi field 𝐽 along 𝛾 so that

𝐽(0) = 0 𝐽(ℓ) = 𝑣,

where ℓ is the length of 𝛾. Given 2 tangent vectors at two ends of a geodesic in a normal
neighborhood, there always exists a Jacobi field linking them. Choose an orthonormal frame
𝑒𝑖(0) at 𝑇𝑝𝑀 and parallel transport it to get 𝑒𝑖(𝑡). We assume 𝑒𝑛(𝑡) = 𝛾′.

Now 𝐽 will tell us the differential of the exponential map on 𝛾. We’ll get another 𝐽 along
𝛾 that tell us what the Jacobi field is doing over there. We need to show 𝐽 = 𝐽 , so that the
differentials are the same.

Why sould these 2 Jacobi fields be the same? Because they satisfy the same initial
conditions, and the same ODE. Why should they sat the same ODE? By hypothesis. The
ODE for 𝐽 has 𝐽 ′′ and a curvature term. The hypothesis tells us the curvatures are the same,
so the Jacobi fields satisfy the same ODE. By uniqueness of ODE’s, the Jacobi fields are the
same. This will tell us that the 𝑑 exp’s are the same, so if we compose the inverse of one
with the other we get id, and (34) holds.

We formalize this argument.
Using the orthonormal frame, write

𝐽(𝑡) =
𝑛∑︁

𝑖=1

𝑦𝑖(𝑡)𝑒𝑖(𝑡).

The Jacobi equation tells us

𝑦′′𝑗 +
𝑛∑︁

𝑖=1

⟨𝑅(𝑒𝑛, 𝑒𝑖)𝑒𝑛, 𝑒𝑗⟩ 𝑦𝑗 = 0.
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We get a 2nd order system of ODE’s for 𝑦𝑗. Let 𝜑𝑡(𝑒𝑖(𝑡)) = 𝑒𝑖(𝑡) along 𝛾; 𝜑𝑡 moves tangent
vectors on 𝛾 to tangent vectors on 𝛾. Consider 𝐽 := 𝜑𝑡(𝐽). Note that 𝜑𝑡 takes 𝛾

′ to 𝛾′. Both
𝛾, 𝛾 are geodesics, and parallel transport preserves 𝛾′, 𝛾′.

We have

𝐽 =
𝑛∑︁

𝑖=1

𝑦𝑖(𝑡)𝑒𝑖(𝑡)

is also a Jacobi field. This is because it satisfies the same ODE (since the curvatures are the
same by hypothesis), just with bars on top.

What else does this mean? We now relate Jacobi fields and 𝑑 exp𝑝. Corollary 2.5 in
Chapter 5 says the following.

Proposition 17.4: pr:jacobi-dexp If 𝐽(0) = 0 then

𝐽(𝑡) = (𝑑 exp𝑝)𝑡𝛾′(0)(𝑡𝐽
′(0)).

If we differentiate a 1-parameter family of geodesics we get 𝐽(𝑡). How do we know which
family we should use to get 𝑑 exp𝑝 𝑣? 𝑑 exp𝑝 𝑣 corresponds to how 𝐽 changes at 0; it tells us
how we’re varying the family (“wedge”) of geodesics.

The same proposition tells us

𝐽(𝑡) = (𝑑 exp𝑝)𝑡𝛾′(0)(𝑡𝐽
′
(0)).

Now 𝑑𝑓𝑞 = (𝑑 exp𝑝)exp−1
𝑝 (𝑞)∘(𝑑 exp𝑝)

−1
𝑞 . Note that exp−1

𝑝 (𝑞) = ℓ𝛾′(0). Hence the two equations

for 𝐽 and 𝐽 imply
𝑑𝑓𝑞(𝐽(ℓ)) = 𝐽(ℓ).

Now 𝐽(ℓ) and 𝐽(ℓ) have the same norm. This is because we built 𝐽 out of 𝐽 by parallel
transport (𝜑𝑡), and parallel transport preserves length. Now 𝐽(ℓ) = 𝑣, so (34) holds.

This is what we wanted to show.

Now that we’ve finished, let’s think about why this work.
What really make tge theorem work is that we can compute the differential in terms of

Jacobi fields. We needed the Jacobi fields to be the same. Why are they the same? Because
the Jacobi equations are the same. The Jacobi equation is written using the curvature; if we
know the curvature is the same, the Jacobi fields are the same.

Lecture 18

Tue. 11/13/12

Let (𝑀, 𝑔) be a Riemannian manifold and 𝑐 be a curve on 𝑀 . If 𝐹 : [𝑎, 𝑏]× (−𝜀, 𝜀)→𝑀 is

a parametrized surface with 𝑐 = 𝐹 (∙, 0), then 𝜕𝐹
𝜕𝑡

⃒⃒⃒
𝑡=0

= 𝑉 is a variational vector field along

𝑐 corresponding to 𝐹 .
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Conversely every vector field along 𝑐 is a variational vector field for some 𝐹 : if 𝑉 is a
vector field along 𝑐, we can let

𝐹 (𝑠, 𝑡) = exp𝑐(𝑠)(𝑡𝑉 (𝑠)) (35)

𝐹 (𝑠, 0) = exp𝑐(𝑠)(0) = 𝑐(𝑠).

For some 𝜀, this is defined for all 𝑡 ∈ (−𝜀, 𝜀) and all 𝑠 ∈ [𝑎, 𝑏], and we have that 𝑉 = 𝜕𝐹
𝜕𝑡

⃒⃒⃒
𝑡=0

,

as needed. (The proof is straightforward; see do Carmo [3, Prop. 9.2.2].)

S1 Energy

As before, let 𝑐 : [𝑎, 𝑏]→𝑀 be a curve.

Definition 18.1: The length of 𝑐 is

𝐿(𝑐) =
∫︁ 𝑏

𝑎
|𝑐′| 𝑑𝑠

and the energy of 𝑐 is

𝐸(𝑐) =
∫︁ 𝑏

𝑎
|𝑐′|2 𝑑𝑠.

Proposition 18.2: We have
𝐿(𝑐)2 ≤ (𝑏− 𝑎)𝐸(𝑐)

with equality iff |𝑐′| is constant (“𝑐′ has constant speed”).

Proof. By the Cauchy-Schwarz inequality,

𝐿(𝑐) =
∫︁ 𝑏

𝑎
|𝑐′| 𝑑𝑠 ≤

(︂∫︁ 𝑏

𝑎
|𝑐′|2

)︂ 1
2
(︂∫︁ 𝑏

𝑎
12 𝑑𝑠

)︂ 1
2

=
È
𝐸(𝑐)
√
𝑏− 𝑎

with equality iff |𝑐′| is proportional to 1 everywhere, i.e. |𝑐′| is constant.
In particular, a geodesic 𝛾 has constant speed so

𝐿(𝛾)2 = (𝑏− 𝑎)𝐸(𝛾).

If 𝑐 is any curve and 𝛾 : [𝑎, 𝑏]→𝑀 is a minimizing geodesic between 𝑝 := 𝑐(𝑎) and 𝑞 := 𝑐(𝑏),
then

𝐸(𝑐) ≥ (𝑏− 𝑎)𝐿(𝑐)2 ≥ (𝑏− 𝑎)𝑑2(𝑝, 𝑞) = 𝐸(𝛾).

Thus we see that the minimizing geodesic has the minimal energy of all curves from 𝑝 to 𝑞.
Furthermore, if 𝑐 has the minimal energy among all curves between 𝑎 and 𝑏, then equality
holds everywhere above and 𝑐 must be a minimizing geodesic.

The length seems like a perfectly good quantity. What’s the advantage of looking at the
energy? We want a quantity that is minimized exactly when the curve is a geodesic, so we
can apply calculus of variations to study geodesics.
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We want to minimize the length. A (minimizing) geodesic has minimal length. However,
if we reparametrize the geodesic, it still has minimal length, but it is no longer a geodesic if
the speed is not constant.

The advantage of energy over length is that if we minimize the energy, we not only fix
the length of the curve, we also fix the speed through the curve. If the curve speed up or
slows down, then it would have greater energy.

The energy of a curve 𝑐 : [𝑎, 𝑏] → 𝑀 from 𝑝 to 𝑞 is minimized exactly when 𝑐 is a
minimizing geodesic from 𝑝 to 𝑞.

Now we compute the first and second variations of energy.

S2 Variations of energy

Let (𝑀, 𝑔) be any manifold with nondegenerate symmetric bilinear form. Let 𝐹 : [𝑎, 𝑏] ×
(−𝜀, 𝜀)→𝑀 be a parametrized surface that is a variation of the central curve 𝐹 (𝑠, 0) = 𝑐(𝑠).
We can think of the energy as a function of 𝑠:

𝐸(𝐹 (∙, 𝑡)) =
∫︁ 𝑏

𝑎

⃒⃒⃒⃒
⃒𝜕2𝐹𝜕𝑠2

⃒⃒⃒⃒
⃒ 𝑑𝑠.

Taking the derivative gives

𝑑

𝑑𝑡
𝐸(𝐹 (∙, 𝑡)) = 2

∫︁ 𝑏

𝑎

⟩︀
𝐷

𝜕𝑡

𝜕𝐹

𝜕𝑠
,
𝜕𝐹

𝜕𝑠

]︂
𝑑𝑠.

We rewrite this purely in terms of the central curve 𝑐 and the variational vector field corre-
sponding to 𝐹 along 𝑐. To do this, we need to change 𝐷

𝜕𝑡
to 𝐷

𝜕𝑠
:

2
∫︁ 𝑏

𝑎

⟩︀
𝐷

𝜕𝑡

𝜕𝐹

𝜕𝑠
,
𝜕𝐹

𝜕𝑠

]︂
𝑑𝑠 = 2

∫︁ 𝑏

𝑎

⟩︀
𝐷

𝜕𝑠

𝜕𝐹

𝜕𝑡
,
𝜕𝐹

𝜕𝑠

]︂
𝑑𝑠 Prop. 6.7

= 2
∫︁ 𝑏

𝑎

𝑑

𝑑𝑠

⟩︀
𝜕𝐹

𝜕𝑡
,
𝜕𝐹

𝜕𝑠

]︂
𝑑𝑠− 2

∫︁ 𝑏

𝑎

⟩︀
𝜕𝐹

𝜕𝑡
,
𝐷

𝜕𝑠

𝜕𝐹

𝜕𝑠

]︂
𝑑𝑠

= 2

⟩︀
𝜕𝐹

𝜕𝑡
,
𝜕𝐹

𝜕𝑠

]︂⃒⃒⃒⃒
⃒𝑠=𝑏

𝑠=𝑎

− 2
∫︁ 𝑏

𝑎

⟩︀
𝜕𝐹

𝜕𝑡
,
𝐷

𝜕𝑠

𝜕𝐹

𝜕𝑠

]︂
𝑑𝑠.

How does the energy change for curves near 𝑐; i.e. what is the derivative of energy? We have
shown the following.

Proposition 18.3 (First variational formula): pr:1st-var-E Let (𝑀, 𝑔) be any manifold
with nondegenerate symmetric bilinear form. Let 𝐹 : [𝑎, 𝑏]× (−𝜀, 𝜀)→𝑀 be a parametrized
surface that is a variation of the central curve 𝐹 (𝑠, 0) = 𝑐(𝑠). Then

𝑑

𝑑𝑡
𝐸(𝐹 (∙, 𝑡)) = 2 ⟨𝑉, 𝑐′⟩|𝑠=𝑏

𝑠=𝑎 − 2
∫︁ 𝑏

𝑎
⟨𝑉, 𝑐′′⟩ 𝑑𝑠.
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Consider the following two statements.

1. The variational vector field 𝑉 satisfies 𝑉 (𝑎) = 𝑉 (𝑏) = 0.

2. On the parametrized surface, all of the curves start at the same point and end at the
same point: 𝐹 (𝑎, 𝑡) = 𝑐(𝑎) and 𝐹 (𝑏, 𝑡) = 𝑐(𝑏).

If statement 2 holds, then the 𝑡 derivative at 𝑎 and 𝑏 are 0, so statement 1 holds. Conversely,
if statement 1 holds, then there exists a parametrized surface with variational vector field 𝑉
satisfying statement 2: exponentiating as in (35) gives us curves that begin and end at the
same point.

We’re interested in comparing the energy of a curve and of “competing” curves. If the
competing curves don’t start and end at the same point, then they’re not good competitors.
Just by move moving the starting point in, we can trivially decrease the energy. Thus we
restrict to competitors with the same starting point and endpoint. Then the first term in
Proposition 18.3 is 0:

𝑒𝑞 : 965− 18.2
𝑑

𝑑𝑡
𝐸(𝐹 (∙, 𝑡)) = −2

∫︁ 𝑏

𝑎
⟨𝑉, 𝑐′′⟩ 𝑑𝑠 (36)

We have the following.

Proposition 18.4: 𝑐 is a geodesic iff, for any proper variation 𝐹 of 𝑐 (i.e., variation fixing
the start and endpoints), 𝑑

𝑑𝑡
𝐸(𝐹 (∙, 𝑡)) = 0.

Proof. If 𝑐 is geodesic then by (36) the variation is 0 because 𝑐′′ = 0.
Conversely, suppose that we know that for proper variations 𝐹 , 𝑑

𝑑𝑡
𝐸(𝐹 (∙, 𝑡)) = 0. We

show 𝑐 is a geodesic. Consider a cutoff function 𝜑 with support in (𝑎, 𝑏) that is 1 on (𝑎+𝛿, 𝑏−𝛿)
and 0 at 𝑎 and 𝑏. Let 𝑉 = 𝜑𝑐′′, and 𝐹 be the associated proper variation. Then

𝜕

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡=0

𝐹 = 𝜑𝑐′′ =⇒ −2
∫︁ 𝑏

𝑎
𝜑|𝑐′′|2 𝑑𝑠 = 0.

Since 𝜑 ≥ 0 on [𝑎 + 𝛿, 𝑏 − 𝛿], we get |𝑐′′| = 0 on [𝑎 + 𝛿, 𝑏 − 𝛿]; this works for all 𝛿 > 0 so
𝑐′′ = 0.

To summarize, we look at a variation fixing the endpoints. If the central curve is a
geodesic, then is derivative of energy at the central curve is always 0. We also have the
converse: If we have a curve so that the derivative of energy is 0 for all variations fixing the
endpoints then that curve must be a geodesic.

Another way of saying this is the following.

The geodesics are exactly the critical points of the energy function.
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We see that energy is much better to work with than length. The parametrization of a
curve doesn’t matter for length, but it does matter for energy.

Another perspective is the following. For each curve 𝑐 : [𝑎, 𝑏] → 𝑀 in the manifold we
assign an energy. Consider a new space made of curves. This is an extremely large space; it
is an infinite-dimensional manifold We have a function on this space, the energy of the curve.
What are the critical points of this function, if we just look at curves with the same starting
and endpoint? The critical points in this infinite-dimensional space are exactly the geodesics.
A curve of curves is exactly a parameterized surface. Saying that 𝑐 is a critical point is saying
that if we take a curve (parameterized surface) containing 𝑐, then the derivative has to be 0.

S3 Second variation of energy

We are interested in computing the second derivative of a function when its first derivative
is 0.

We are hence interested in computing the second derivative of the energy at geodesics.
Given a manifold and a geodesic 𝑐 : [𝑎, 𝑏] → 𝑀 , we look at a 1-parameter family of curves
where this is the central curve and the other curves start and end at the same point as 𝑐.

Thus we have a parametrized surface with central curve

𝐹 (∙, 0) = 𝑐.

First suppose that for each 𝑡, 𝜕𝐹
𝜕𝑡

= 0 at 𝑠 = 𝑎, 𝑏. We compute 𝑑
𝑑
𝑡
⃒⃒⃒
𝑡=0

𝐸 by differentiating (36).

Again we want to rewrite the expression using things that are defined on 𝑐 (without anything
in the 𝑡-direction)

𝑑2

𝑑𝑡2

⃒⃒⃒⃒
⃒
𝑡=0

𝐸(𝐹 (∙, 𝑡)) = 𝑑

𝑑𝑡

⃒⃒⃒⃒
⃒
𝑡=0

�
𝑑

𝑑𝑡
𝐸

�
=

𝑑

𝑑𝑡

⃒⃒⃒⃒
⃒
𝑡=0

�
−2

∫︁ 𝑏

𝑎

⟩︀
𝜕𝐹

𝜕𝑡
,
𝐷

𝜕𝑠

𝜕𝐹

𝜕𝑠

]︂
𝑑𝑠

�
= −2

∫︁ 𝑏

𝑎

⟩︀
𝐷

𝜕𝑡

𝜕𝐹

𝜕𝑡
,
�
�
��𝐷

𝜕𝑠

𝜕𝐹

𝜕𝑠

]︂
𝑑𝑠− 2

∫︁ 𝑏

𝑎

⟩︀
𝜕𝐹

𝜕𝑡
,
𝐷

𝜕𝑡

𝐷

𝜕𝑠

𝜕𝐹

𝜕𝑠

]︂
𝑑𝑠 initial curve geodesic

= −2
∫︁ 𝑏

𝑎

⟩︀
𝜕𝐹

𝜕𝑡
,
𝐷

𝜕𝑡

𝐷

𝜕𝑠

𝜕

𝜕𝑠
𝐹

]︂
𝑑𝑠

Recall that if we had a parametrized surface 𝑊 , we can change the order of differentiation
if we bring in the curvature (Proposition 8.5),

𝑒𝑞 : 965− 18.3
𝐷

𝜕𝑡

𝐷

𝜕𝑠
𝑊 =

𝐷

𝜕𝑠

𝐷

𝜕𝑡
𝑊 +𝑅

�
𝜕𝐹

𝜕𝑡
,
𝜕𝐹

𝜕𝑠

�
𝑤. (37)

(We want to rewrite the expression with quantities defined at just this curve 𝑐, namely 𝑐, 𝑐′

and 𝑉 . It’s find to have derivatives of 𝑉 in the 𝑠-direction along the curve 𝑐. We don’t
want derivatives 𝑡-direction in our final expression because they have nothing to do with the
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central curve. The curvature is fine as long as curvature along 𝑐. A double derivative in 𝑡
direction is troublesome, so it’s good that the first integral vanished. We want to switch 𝐷

𝜕𝑠

and 𝐷
𝜕𝑡

so we can turn 𝐷
𝜕𝑡

𝐷
𝜕𝑠

𝜕𝐹
𝜕𝑠

into 2 covariant derivatives along 𝑐, as below.) Putting in (37)
and using the fact that derivatives commute for a parameterized surface (37), we get

𝑑2

𝑑𝑡2

⃒⃒⃒⃒
⃒
𝑡=0

𝐸(𝐹 (∙, 𝑡)) = −2
∫︁ 𝑏

𝑎

⟩︀
𝜕𝐹

𝜕𝑡
,
𝐷

𝜕𝑠

𝐷

𝜕𝑡

𝜕𝐹

𝜕𝑠

]︂
𝑑𝑠− 2

∫︁ 𝑏

𝑎

⟩︀
𝜕𝐹

𝜕𝑡
, 𝑅

�
𝜕𝐹

𝜕𝑡
,
𝜕𝐹

𝜕𝑠

�
𝜕𝐹

𝜕𝑠

]︂
.

= −2
∫︁ 𝑏

𝑎

⟩︀
𝑉,
𝐷2

𝜕𝑠2
𝑉

]︂
𝑑𝑠− 2

∫︁ 𝑏

𝑎
⟨𝑉,𝑅(𝑉, 𝑐′), 𝑐′⟩ 𝑑𝑠

= −2
∫︁ 𝑏

𝑎
⟨𝑉, 𝑉 ′′⟩ 𝑑𝑠− 2

∫︁ 𝑏

𝑎
⟨𝑉,𝑅(𝑐′, 𝑉 )𝑐′⟩ 𝑑𝑠

We obtain the following.

Proposition 18.5 (Second variational formula): eq:2nd-var-form Let (𝑀, 𝑔) be any man-
ifold with nondegenerate symmetric bilinear form. Let 𝐹 : [𝑎, 𝑏] × (−𝜀, 𝜀) → 𝑀 be a
parameterized surface that is a variation of the central curve 𝐹 (𝑠, 0) = 𝑐(𝑠). Then

𝑑2

𝑑𝑡2

⃒⃒⃒⃒
⃒
𝑡=0

𝐸 = −2
∫︁ 𝑏

𝑎
⟨𝑉, 𝑉 ′′ +𝑅(𝑐′, 𝑉 )𝑐′⟩ 𝑑𝑠.

Note the second term is the expression in the Jacobi equation! This is the second varia-
tional formula.

It is convenient to introduce the following notation for the second quantity above.

Definition 18.6: Define the Jacobi operator or the second variational operator by

𝐿𝑉 := 𝑉 ′′ +𝑅(𝑐′, 𝑉 )𝑐′.

(This has nothing to do with the length defined earlier.) Using the Jacobi operator, we
can rewrite the second variational formula (Proposition 18.5) as

𝑑2

𝑑𝑡2

⃒⃒⃒⃒
⃒
𝑡=0

𝐸 = −2
∫︁ 𝑏

𝑎
⟨𝑉, 𝐿𝑉 ⟩ 𝑑𝑠.

Remember, all this was for a variation of curves starting and ending at the same point.

Definition 18.7: A geodesic is said to be stable if

𝑑2

𝑑𝑡2
𝐸 ≥ 0

for all variations that fix the endpoints.

We’ve seen that a minimizing geodesic minimizes the energy. This means that for any
variation of a minimizing geodesic with the same endpoints, all other competing curves will
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have larger energy. The second variation will be nonnegative (second derivative test); hence
the geodesic is stable.

However, there can be non-minimizing geodesics for which the second derivative is neg-
ative.

Let’s look at one particular example.

Example 18.8: ex:stable-geo-sphere Let 𝑆2 ⊂ R3 be the unit sphere; it has constant cur-
vature 1. In fact, we know that if 𝑉 ⊥ 𝑐′ and |𝑐′| = 1, then

𝑅(𝑐′, 𝑉 )𝑐′ = 𝑉.

Take a piece of the equator and look at the second variation.

𝑑2

𝑑𝑡2

⃒⃒⃒⃒
⃒
𝑡=0

𝐸 = −2
∫︁ 𝑏

𝑎
⟨𝑉, 𝑉 ′′ + 𝑉 ⟩ 𝑑𝑠

= −2
∫︁ 𝑏

𝑎
⟨𝑉, 𝑉 ′′⟩ 𝑑𝑠− 2

∫︁ 𝑏

𝑎
|𝑉 |2 𝑑𝑠

= 2
∫︁ 𝑏

𝑎
|𝑉 ′|2 𝑑𝑠− 2

∫︁ 𝑏

𝑎
|𝑉 |2 𝑑𝑠

In the last line we integrated by parts,
∫︀ ⟨𝑉, 𝑉 ′⟩′ = ∫︀ ⟨𝑉 ′, 𝑉 ′⟩ + ∫︀ ⟨𝑉, 𝑉 ′′⟩, and used that

⟨𝑉, 𝑉 ′⟩ is 0 at 𝑎 and 𝑏 because 𝑉 ′ is 0.
Since we’re on a surface, we can write 𝑉 = 𝜑𝑛⃗. (The normal is also a parallel vector

field.) Thus 𝑉 ′ = 𝜑′𝑛⃗. Requiring 𝑉 = 0 at the beginning and end is the same as saying
𝜑(𝑎) = 𝜑(𝑏) = 0. Then

𝑑2

𝑑𝑡2

⃒⃒⃒⃒
⃒
𝑡=0

𝐸 = 2
∫︁ 𝑏

𝑎
(𝜑′)2 𝑑𝑠− 2

∫︁ 𝑏

𝑎
𝜑2 𝑑𝑠.

When is this nonnegative for all 𝜑 with this property?
We’ve reduced a geometric problem to a functional inequality in calculus, calledWirtinger’s

inequality.

Theorem 18.9 (Wirtinger’s inequality/Poincaré inequality): ineq:wirtinger Let 𝑎 < 𝑏. We
have that ∫︁ 𝑏

𝑎
(𝜑′)2 ≥

∫︁ 𝑏

𝑎
𝜑2

for all 𝜑 with 𝜑(𝑎) = 𝜑(𝑏) = 0 exactly when 𝑏− 𝑎 ≤ 𝜋.
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This means that if you take a geodesic, it is stable iff its length is at most 𝜋 (so it is
minimizing, a minor arc).

Proof of Theorem 18.9. If 𝑏− 𝑎 ≤ 𝜋 then this is a consequence of Fourier expansion. (Basi-

cally, we may assume 𝑎 = 0; write 𝜑 =
∑︀

𝑛∈Z 𝑎𝑛𝑒
𝜋𝑖𝑛𝑥

𝑏 , 𝜑′ =
∑︀

𝑛∈Z
2𝜋𝑖𝑛
𝑏
𝑎𝑛𝑒

𝜋𝑖𝑛𝑥
𝑏 . The inequality

then becomes
∑︀

𝑛>0
𝜋2𝑛2

𝑏2
𝑎2𝑛 ≥

∑︀
𝑛>0 𝑎

2
𝑛 for all 𝑎𝑛 that make the sum converge. Thus 𝜋2𝑛2

𝑏2
≥ 1

for all 𝑛 ≥ 1. This also motivates our choice of function below when 𝑏− 𝑎 > 𝜋.)
We check the inequality fails if 𝑏− 𝑎 > 𝜋. Consider

𝜑(𝑠) = sin
(︂
𝑠− 𝑎
𝑏− 𝑎𝜋

)︂
;

then 𝜑(𝑎) = 𝜑(𝑏) = 0 and 𝜑′ = 𝜋
𝑏−𝑎

cos
(︀(︀

𝑠−𝑎
𝑏−𝑎

�
𝜋
�
. Then

(𝜑′)2 =
𝜋2

(𝑏− 𝑎)2 cos
2
(︂(︂

𝑠− 𝑎
𝑏− 𝑎

)︂
𝜋
)︂
.

If 𝑏− 𝑎 > 𝜋, then the LHS is less than the RHS. We’ve explicitly constructed a vector field
where the second derivative of energy is negative.

Lecture 19

Thu. 11/15/12

Let (𝑀, 𝑔) be a Riemannian manifold and let 𝑐 : [𝑎, 𝑏] → 𝑀 be a curve. Recall that we
defined the length 𝐿(𝑐) =

∫︀ 𝑏
𝑎 |𝑐′| 𝑑𝑠 and the energy 𝐸(𝑐) =

∫︀ 𝑏
𝑎 |𝑐′|2 𝑑𝑠/

If we have a one parameter family of curves 𝐹 : [𝑎, 𝑏]× (−𝜀, 𝜀)→𝑀 with

𝐹 (𝑠, 0) = 𝑐(𝑠), 𝐹 (𝑎, 𝑡) = 𝑐(𝑎), 𝐹 (𝑏, 𝑡) = 𝑐(𝑏)

then we saw that

𝑑

𝑑𝑡
𝐸(𝐹 (∙, 𝑡)) = −

∫︁ 𝑏

𝑎

⟩︀
𝜕𝐹

𝜕𝑡
,
𝐷

𝜕𝑠

𝜕𝐹

𝜕𝑠

]︂
𝑑𝑠

𝑑2

𝑑𝑡2

⃒⃒⃒⃒
⃒
𝑡=0

𝐸(𝐹 (∙, 𝑡)) = −
∫︁ 𝑏

𝑎
⟨𝑉, 𝐿𝑉 ⟩ 𝑑𝑠 if 𝑐 is a geodesic

where 𝑉 = 𝜕𝐹
𝜕𝑡

and 𝐿𝑉 is defined as

𝐿𝑉 =
𝐷

𝜕𝑠

𝐷

𝜕𝑠
𝑉 +𝑅(𝑐′, 𝑉 )𝑐′

for 𝑣 a vector field along 𝑐. This is called the stability operator, second variational operator,
or Jacobi operator. Note 𝐿𝑉 = 0 iff 𝑉 is a Jacobi field.

We say a geodesic is stable if 𝑑2

𝑑𝑡2

⃒⃒⃒
𝑡=0

𝐸 ≥ 0 for all variations that fix the endpoints.

For example, we looked at 𝑆2 ⊆ R3 the unit sphere: the geodesic is stable iff it has length
at most 𝜋 (Example 18.8).

We have that if 𝑐 is a geodesic that minimizes length, then it also minimizes energy, and
hence is stable.
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S1 Bonnet-Myers Theorem

We copy the argument for 𝑆2 to get a general theorem.
Given a 𝑛-dimensional Riemannian manifold (𝑀𝑛, 𝑔), the Ricci curvature is the trace of

the quadratic form given by the curvature:

Ric𝑀(𝑉, 𝑉 ) = Tr(⟨𝑇 (𝑉, ·)𝑉, ·⟩)

where 𝑉 is a unit vector. For instance, if 𝑀 = 𝑆𝑛, then Ric𝑀(𝑉, 𝑉 ) = 𝑛− 1.

Theorem 19.1 (Bonnet-Myers): Let (𝑀𝑛, 𝑔) be a 𝑛-dimensional Riemannian manifold sat-
isfying

Ric𝑀 ≥ (𝑛− 1)𝑘2

for some constant 𝑘 > 0. Then 𝑀 is compact, and

diam(𝑀) ≤ 𝜋

𝑘
.

(Here, diam(𝑀) = sup𝑝,𝑞∈𝑀 𝑑(𝑝, 𝑞).)
Bonnet proved the theorem for sectional curvature in the late 1800’s; Myers generalized

it to the Ricci curvature.

Proof. We can modify the metric by a constant: let

̃︀𝑔 = 𝑘2𝑔, Ý𝑀 =
(︀
𝑀,𝑘2𝑔

�
.

Then 𝐾Ü𝑀 = 1
𝑘2
𝐾𝑀 and it suffices to show RicÜ𝑀 ≥ 𝑛−1, i.e., it suffices to prove the statment

for 𝑘 = 1.
We use the same idea that geodesics longer than 𝜋 are not stable (Example 18.8). Take

two points 𝑝, 𝑞. It suffices to prove that for each pair and each minimizing geodesic 𝛾 between
them, we have

𝐿(𝛾) = 𝑑(𝑝, 𝑞) ≤ 𝜋.

Assume by way of contradiction that 𝐿(𝛾) > 𝜋. Suppose 𝛾 : [0, ℓ]→𝑀 and ℓ > 𝜋.
Take a parallel orthogonal frame 𝐸1, . . . , 𝐸𝑛−1 ∈ 𝛾′(𝑡)⊥ on 𝛾. For each 𝑖 we consider a

variation that fixes the endpoints: let 𝑉𝑖 = 𝜑𝐸𝑖. where 𝜑 is a function such that 𝜑(0) =
𝜑(ℓ) = 0. We look at the energy of a variation. For each 𝑖,

𝑑2

𝑑𝑡2

⃒⃒⃒⃒
⃒
𝑡=0

𝐸(𝑉𝑖) ≥ 0.

We have 𝐿𝑉 = 𝑉 ′′ +𝑅(𝑐′, 𝑉 )𝑐′ so summing these equations gives

0 ≤ 1

2

𝑛−1∑︁
𝑖=1

𝑑2

𝑑𝑡2

⃒⃒⃒⃒
⃒
𝑡=0

𝐸(𝑉𝑖) = −
∫︁ ℓ

0
⟨𝑉𝑖, 𝐿𝑉𝑖⟩ 𝑑𝑠.
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We have 𝑉𝑖 = 𝜑𝐸𝑖 so

𝑉 ′
𝑖 = 𝜑′𝐸𝑖

𝑉 ′′
𝑖 = 𝜑′′𝐸𝑖.

Thus we get

0 ≤ −(𝑛− 1)
∫︁ ℓ

0
𝜑′′𝜑−

𝑛−1∑︁
𝑖=1

∫︁ ℓ

0
𝜑2 ⟨𝐸𝑖, 𝑅(𝛾

′, 𝐸𝑖)𝛾
′⟩

= −(𝑛− 1)
∫︁ ℓ

0
𝜑′′𝜑−

∫︁ ℓ

0
𝜑2Ric(𝛾′, 𝛾′)

≤ −(𝑛− 1)
∫︁ ℓ

0
𝜑′′𝜑− (𝑛− 1)

∫︁ ℓ

0
𝜑2 Ric(𝑀) ≥ 𝑛− 1

𝑒𝑞 : 965− 19.1 =⇒ 0 ≥
∫︁ ℓ

0
𝜑′′𝜑+

∫︁ ℓ

0
𝜑2 for all 𝜑 with 𝜑(0) = 0 = 𝜑(ℓ).

(38)

Taking a page from Example 18.8, we let 𝜑 = sin
(︀
𝑠
ℓ
𝜋
�
. Then

𝜑′ =
𝜋

ℓ
cos

�𝑠
ℓ
𝜋
�

𝜑′′ = −
�𝜋
ℓ

�2
cos

�𝑠
ℓ
𝜋
�

Plugging into (38) we get ℓ ≤ 𝜋, as needed.
Since 𝑀 is bounded and complete, it must be compact.

Note the maximum possible diameter is attained by a unit sphere of radius 𝑟, so Bonnet-
Myers tells us that a manifold with Ricci curvature at least 𝑐 has diameter at most that of
the unit sphere with curvature 𝑐.

Corollary 19.2: Suppose (𝑀, 𝑔) = 0 for a Riemannian manifold (𝑀, 𝑔) and Ric(𝑀) ≥ 𝑐 >
0. Then the fundamental group 𝜋1(𝑀) is finite.

Proof. If Ý𝑀 →𝑀 is a cover, we can pull back the metric to 𝑀 . Since the curvature is given
by the metric, the curvature is the same on Ý𝑀 and on the corresponding point on 𝑀 .

Apply this to the case where Ý𝑀 is the universal cover. We obtain that Ý𝑀 is compact.
Hence it has a finite number of sheets over 𝑀 . The number of sheets equals the number of
elements of 𝜋1(𝑀), so 𝜋1(𝑀) is finite.

Theorem 19.3 (Synge Theorem): Let 𝑀 be closed (i.e., complete, compact, and without
boundary) with positive sectional curvature everywhere (𝐾𝑀 > 0). Suppose the dimension
of 𝑀 is even, and that 𝐼 :𝑀 →𝑀 is an orientation preserving isometry. Then 𝐼 has a fixed
point.
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(If 𝑀 is odd and 𝐼 is an orientation reversing isometry, then the same conclusion holds.
The idea is the same. See [3, Theorem 9.3.7].)

Proof. Suppose by way of contradiction that 𝐼 has no fixed point. Consider the displacement
function 𝑑(𝑝) = 𝑑𝑀(𝑝, 𝐼(𝑝)). This is a continuous (in fact Lipschitz) map defined on a
compact manifold, so it attains a minimum for some 𝑝0:

min
𝑝∈𝑀

𝑑(𝑝) = 𝑑(𝑝0) > 0.

By completeness, we can let 𝛾 be a minimizing geodesic between 𝑝0 and 𝐼(𝑝0). We claim
that the angle between 𝛾 and 𝐼(𝛾) must be 𝜋.

Indeed, letting 𝑞 be midpoint of 𝛾, the distance from 𝑞 to 𝐼(𝑞) is at least the distance
along the second half of 𝛾 and then the first half of 𝐼(𝛾):

𝑑(𝑞, 𝐼(𝑞)) ≥ 𝑑(𝑝0) = 𝑑(𝑞, 𝐼(𝑝0)) + 𝑑(𝐼(𝑝0), 𝐼(𝑞)).

Equality holds so the second half of 𝛾 together with the first half of 𝐼(𝛾) must give a geodesic
from 𝑞 to 𝐼(𝑞). This means in particular that the derivative of 𝛾 and 𝐼(𝛾) at 𝐼(𝑝0) must be
the same, (𝐼 ∘ 𝛾)′(0) = 𝛾′(ℓ). Thus the angle between 𝛾 and 𝐼(𝛾) is 𝜋.

Thus we have the following picture.

Let 𝑃 be parallel translation along 𝛾. Then we have that

𝑊 := 𝑑𝐼−1 ∘ 𝑃 : 𝑇𝑝0𝑀 → 𝑇𝑝0𝑀

is an orientation-preserving isometry. We saw that 𝑑𝐼(𝛾′(0)) = 𝛾′(ℓ) above, so

(𝑑𝐼−1 ∘ 𝑃 )(𝛾′(0)) = 𝛾′(0).
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Because𝑊 is an isometry it maps the orthogonal complement to the orthogonal complement:

𝑊 ((𝛾′(0))⊥) = (𝛾′(0))⊥.

But an isometry in Euclidean space is just made up of rotations on 2-dimensional spaces (in
some basis), so there is one direction where 𝑊 (𝑣) = 𝑣 ⊥ 𝛾′.

Let 𝑉 be the vector field along 𝛾 that is the parallel translation of 𝑣. The fact that
𝑊 (𝑣) = 𝑣 exactly says that the geodesic starting at 𝐼(𝑝0) with direction 𝑉 (ℓ) is 𝐼(𝛾).

We use the second variation and 𝐾𝑀 > 0 to obtain a contradiction.
Consider

𝑑2

𝑑𝑡2
𝐸 = −

∫︁ ℓ

0
⟨𝑉, 𝐿𝑉 ⟩ 𝑑𝑠, 𝐿𝑉 = 𝑉 ′′ +𝑅(𝛾′, 𝑉 )𝛾′ = 𝑅(𝛾′, 𝑉 )𝛾′.

We have
𝑑2

𝑑𝑡2
𝐸 = −

∫︁ ℓ

0
⟨𝑉, 𝐿𝑉 ⟩ 𝑑𝑠 = −

∫︁ ℓ

0
𝐾(𝛾′, 𝑉 ) < 0.

This means that the displacement wasn’t minimized at 𝑝0 because other geodesics that are
close by have shorter length, specifically, the geodesics in the variation given by 𝑉 .

Lecture 20

Tue. 11/20/12

Recall that we talked about the first and second variations of energy. Given a curve 𝑐 :
[𝑎, 𝑏]→𝑀 , we looked at

𝑑

𝑑𝑡

⃒⃒⃒⃒
⃒
𝑡=0

𝐸(𝑐).

We looked at a parameterized surfaces 𝐹 : [𝑎, 𝑏]× (−𝜀, 𝜀)→𝑀 where the central curve is a
geodesic: 𝐹 (∙, 0) = 𝑐. We calculated that in this case

𝑑

𝑑𝑡

⃒⃒⃒⃒
⃒
𝑡=0

𝐸(𝑐) =

⟩︀
𝜕𝐹

𝜕𝑡
, 𝑐′(𝑏)

]︂
−
⟩︀
𝜕𝐹

𝜕𝑡
, 𝑐′(𝑎)

]︂
.

In the case of fixed endpoints, this is 0. When the endpoints may vary, the formula above
gives the derivative of energy.

If 𝐹 (∙, 𝑡) is a geodesic for each 𝑡, then 𝜕𝐹
𝜕𝑡

is a Jacobi field, i.e., it satisfies the following
second-order differential equation:

𝐷

𝜕𝑡

𝜕𝐹

𝜕𝑡
+𝑅

�
𝑐′,
𝜕𝐹

𝜕𝑡

�
𝑐′ = 0.

Recall that solutions 𝐽 to 𝐽 ′′ + 𝑅(𝑐′, 𝐽)𝑐′ = 0 are uniquely given by initial data 𝐽(𝑎) and
𝐽 ′(𝑎).

Conversely, given a geodesic 𝑐 and a Jacobi field 𝐽 on 𝑐, we can construct a variation
such that the time derivative is 𝐽 on 𝑐. Putting things together, given 𝑣, 𝑤 ∈ 𝑇𝑐(𝑎)𝑀 , we can
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∙ construct a Jacobi field 𝐽 such that 𝐽(𝑎) = 𝑣 and 𝐽 ′(𝑎) = 𝑤, and

∙ construct a geodesic variation so that 𝜕𝐹
𝜕𝑡

= 𝐽 .

Every Jacobi field is infinitesimally coming from a variation of geodesics.
We had the notion of conjugate point: If 𝑐 is a geodesic, 𝑐(𝑏) is a conjugate point for

𝑐(𝑎) along 𝑐 if there exists a nontrivial Jacobi field with 𝐽(𝑎) = 0 and 𝐽(𝑏) = 0. There is a
conjugate point for 𝑐(𝑎) if there is a variation of geodesics with the same length, starting at
𝑎 and infinitesimally ending at 𝑏 (i.e. are close to 𝑏 with higher order).

This means that if you continue the geodesic, it can’t minimize past the conjugate point:
Up to higher order there is another geodesic of the same length from 𝑐(𝑎) to 𝑐(𝑏). You can
move along this other geodesic to get to the further point, but it would have a corner; a
minimizing path cannot have a corner. (The first variation says that you can move in and
the curve will be shorter. You can easily make this rigorous.)

We can generalize from curves to surfaces or manifolds, often with weaker statements.

S1 Index form

Consider the second variation when the endpoints are fixed. We have

𝑑2

𝑑𝑡2

⃒⃒⃒⃒
⃒
𝑡=0

𝐸(𝐹 (∙, 𝑡)) = −
∫︁ 𝑏

𝑎
⟨𝑉, 𝐿𝑉 ⟩

where 𝑉 is a vector field along 𝑐 and 𝐿𝑉 = 𝐷2

𝜕𝑠2
𝑉 +𝑅(𝑐′, 𝑉 )𝑐′. Using 𝑑

𝑑𝑠
⟨𝑉, 𝑉 ′⟩ = ⟨𝑉 ′, 𝑉 ′⟩+

⟨𝑉, 𝑉 ′′⟩ we get the above to equal

𝑑2

𝑑𝑡2

⃒⃒⃒⃒
⃒
𝑡=0

𝐸(𝐹 (∙, 𝑡)) = −
∫︁ 𝑏

𝑎
⟨𝑉, 𝐿𝑉 ⟩ =

∫︁ 𝑏

𝑎
⟨𝑉 ′, 𝑉 ′⟩ − ⟨𝑅(𝑐′, 𝑉 )𝑐′, 𝑉 ⟩ .

(Note ⟨𝑉, 𝑉 ′⟩ is 0 at 𝑎 and 𝑏.) This motivates the following definition.

Definition 20.1: Define the index form on 𝑐 to be

𝐼(𝑉,𝑊 ) :=
∫︁ 𝑏

𝑎
⟨𝑉 ′,𝑊 ′⟩ − ⟨𝑅(𝑐′, 𝑉 )𝑐′,𝑊 ⟩ .

Note 𝐼 is a symmetric bilinear form, and as a quadratic form, the index form is the second
derivative of energy:

𝐼(𝑉, 𝑉 ) =
𝑑2

𝑑𝑡2

⃒⃒⃒⃒
⃒
𝑡=0

𝐸(𝑡).
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Let 𝐽1, 𝐽2 be Jacobi fields along a geodesic. Define

𝑓 = ⟨𝐽1, 𝐽 ′
2⟩ − ⟨𝐽 ′

1, 𝐽2⟩ ;

note this is constant. Indeed,

𝑓 ′ = ⟨𝐽1, 𝐽 ′′
2 ⟩ − ⟨𝐽 ′′

1 , 𝐽2⟩ = −⟨𝐽1, 𝑅(𝑐′, 𝐽2)𝑐′⟩+ ⟨𝑅(𝑐′, 𝐽1)𝑐′, 𝐽2⟩ = 0.

Let 𝐽1, 𝐽2 be Jacobi fields with 𝐽1(𝑎) = 𝐽2(𝑎) = 0. We then have

𝑒𝑞 : 965− 20.1 ⟨𝐽1, 𝐽 ′
2⟩ = ⟨𝐽 ′

1, 𝐽2⟩ for all 𝑠. (39)

This is a very useful trick: when we take the inner product of one Jacobi field with the
derivative of another, we can interchange derivatives.

S2 Index lemma

Lemma 20.2 (Index lemma: Jacobi fields minimize the index form): lem:index-lemma Let
𝑐 : [𝑎, 𝑏] → 𝑀 be a geodesic such that there are no conjugate points to 𝑐(𝑎) along 𝑐. If 𝐽
and 𝑉 are vector fields along 𝑐 such that 𝐽 is a Jacobi field, and such that

𝐽(𝑎) = 𝑉 (𝑎) = 0

𝐽(𝑏) = 𝑉 (𝑏),

then
𝐼(𝐽, 𝐽) ≤ 𝐼(𝑉, 𝑉 )

with equality iff 𝐽 = 𝑉 .

Proof. Let 𝐽1, . . . , 𝐽𝑛−1 be Jacobi fields along 𝑐. We have 𝐽1(𝑎) = · · · = 𝐽𝑛−1(𝑎) = 0 and
𝐽 ′
1(𝑎), . . . , 𝐽

′
𝑛−1(𝑎) is an orthonormal basis for (𝑐′(𝑎))⊥. Thus 𝐽1(𝑠), . . . , 𝐽𝑛−1(𝑠) is a basis for

(𝑐′(𝑎))⊥.
For 𝑠 > 0, we can write 𝑉 (𝑠) = 𝑓𝑖(𝑠)𝐽𝑖(𝑠). This is clear when 𝑠 > 0. Since the vector

field also vanishes at 0, the 𝑓𝑖 can be extended to a smooth function including 0. This is a
trivial statement about the Taylor expansion.

We claim the integrand in the index form equals

𝑒𝑞 : 965− 20.2 ⟨𝑉 ′, 𝑉 ′⟩ − ⟨𝑅(𝑐′, 𝑉 ′)𝑐′, 𝑉 ⟩ =
⃦

𝑛∑︁
𝑖=1

𝑓 ′
𝑖𝐽𝑖,

𝑛∑︁
𝑗=1

𝑓 ′
𝑗𝐽𝑗

⌋︂
+

𝑑

𝑑𝑠

⃦
𝑛∑︁

𝑖=1

𝑓𝑖𝐽𝑖,
𝑛∑︁

𝑗=1

𝑓𝑗𝐽
′
𝑗

⌋︂
.

(40)
Writing 𝑉 = 𝑓𝑖𝐽𝑖, we find 𝑉 ′ = 𝑓 ′

𝑖𝐽𝑖 + 𝑓𝑖𝐽
′
𝑖 . We have (omitting the summation sign)

𝑒𝑞 : 965− 20.3 ⟨𝑉 ′, 𝑉 ′⟩ = 𝑓 ′
𝑖𝑓

′
𝑗 ⟨𝐽𝑖, 𝐽𝑗⟩+ 𝑓 ′

𝑖𝑓𝑗
¬
𝐽𝑖, 𝐽

′
𝑗

)︂
+ 𝑓𝑖𝑓

′
𝑗 ⟨𝐽 ′

𝑖 , 𝐽𝑗⟩+ 𝑓𝑖𝑓𝑗
¬
𝐽 ′
𝑖 , 𝐽

′
𝑗

)︂
. (41)
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We have

𝑑

𝑑𝑠

¬
𝑓𝑖𝐽𝑖, 𝑓𝑗𝐽

′
𝑗

)︂
=

𝑑

𝑑𝑠

(︀
𝑓𝑖𝑓𝑗

¬
𝐽𝑖, 𝐽

′
𝑗

)︂�
= 𝑓 ′

𝑖𝑓𝑗
¬
𝐽𝑖, 𝐽

′
𝑗

)︂
+ 𝑓𝑖𝑓

′
𝑗

¬
𝐽𝑖, 𝐽

′
𝑗

)︂
+ 𝑓𝑖𝑓𝑗

¬
𝐽 ′
𝑖 , 𝐽

′
𝑗

)︂
+ 𝑓𝑖𝑓𝑗

¬
𝐽𝑖, 𝐽

′′
𝑗

)︂
= 𝑓 ′

𝑖𝑓𝑗
¬
𝐽𝑖, 𝐽

′
𝑗

)︂
+ 𝑓𝑖𝑓

′
𝑗 ⟨𝐽 ′

𝑖 , 𝐽𝑗⟩+ 𝑓𝑖𝑓𝑗
¬
𝐽 ′
𝑖 , 𝐽

′
𝑗

)︂
− 𝑓𝑖𝑓𝑗 ⟨𝐽𝑖, 𝑅(𝑐′, 𝐽𝑗)𝑐′⟩ by (39)

𝑒𝑞 : 965− 20.4 = 𝑓 ′
𝑖𝑓𝑗

¬
𝐽𝑖, 𝐽

′
𝑗

)︂
+ 𝑓𝑖𝑓

′
𝑗 ⟨𝐽 ′

𝑖 , 𝐽𝑗⟩+ 𝑓𝑖𝑓𝑗
¬
𝐽 ′
𝑖 , 𝐽

′
𝑗

)︂
− ⟨𝑉,𝑅(𝑐′, 𝑉 )𝑐′⟩ . (42)

From (41) and (42) we get

⟨𝑉 ′, 𝑉 ′⟩ − ⟨𝑅(𝑐′, 𝑉 )𝑐′, 𝑉 ⟩ = 𝑓 ′
𝑖𝑓

′
𝑗 ⟨𝐽𝑖, 𝐽𝑗⟩+ 𝑓 ′

𝑖𝑓𝑗
¬
𝐽𝑖, 𝐽

′
𝑗

)︂
+ 𝑓𝑖𝑓

′
𝑗 ⟨𝐽 ′

𝑖 , 𝐽𝑗⟩+ 𝑓𝑖𝑓𝑗
¬
𝐽 ′
𝑖 , 𝐽

′
𝑗

)︂
− ⟨𝑅(𝑐′, 𝑉 )𝑐′, 𝑉 ⟩ . =

𝑑

𝑑𝑠

¬
𝑓𝑖𝐽𝑖, 𝑓𝑗𝐽

′
𝑗

)︂
which is (40). Now

𝐼(𝑉, 𝑉 ) =
∫︁ 𝑏

𝑎
(⟨𝑉 ′, 𝑉 ′⟩ − ⟨𝑅(𝑐′, 𝑉 )𝑐′, 𝑉 ⟩)

=
∫︁ 𝑏

𝑎
|𝑓 ′

𝑖𝐽𝑖|2 +
¬
𝑓𝑖(𝑏)𝐽𝑖(𝑏), 𝑓𝑗(𝑏)𝐽

′
𝑗(𝑏)

)︂
=
∫︁ 𝑏

𝑎
|𝑓 ′

𝑖𝐽𝑖|2 + 𝑓𝑖(𝑏)𝑓𝑗(𝑏)
¬
𝐽𝑖(𝑏), 𝐽

′
𝑗(𝑏)

)︂
≥ 𝐼(𝐽, 𝐽).

(Remember 𝐽(𝑎) = 𝑉 (𝑎) = 0 and 𝐽(𝑏) = 𝑉 (𝑏) = 𝑓𝑖(𝑏)𝐽𝑖(𝑏). Writing 𝐽 = ℎ𝑖𝐽𝑖, ℎ𝑖(𝑏) = 𝑓𝑖(𝑏).
Note that the 𝑓𝑖 are constants, so the first term vanishes for 𝐼(𝐽, 𝐽).) If equality holds,
because 𝑐(𝑎) has no conjugate point, 𝑓 ′

𝑖(𝑠)𝐽𝑖(𝑠) = 0 for all 𝑠. This means 𝑉 = 𝑓𝑖(𝑏)𝐽𝑖 where
the 𝑓𝑖 are constants, and we must have 𝑉 = 𝐽 .

Next time we will prove the Rauch Comparison Theorem. We have

𝐼(𝑉, 𝑉 ) =
∫︁ 𝑏

𝑎
⟨𝑉 ′, 𝑉 ′⟩ − ⟨𝑅(𝑐′, 𝑉 )𝑐′, 𝑉 ⟩ .

Let 𝑐1 : [𝑎, 𝑏] → 𝑀1 and 𝑐2 : [𝑎, 𝑏] → 𝑀2. Let 𝐸1, . . . , 𝐸𝑛−1 be a parallel orthornomal
parallel frame (perpendicular to the velocity vector) for (𝑐′1)

⊥, and write 𝑉 = 𝑓𝑖𝐸𝑖. Let ̃︁𝐸𝑖

be a parallel orthonormal frame on 𝑐2 in 𝑀2; define 𝜑 so that 𝜑(𝑉 ) = 𝑓𝑖̃︁𝐸𝑖. We then have
⟨𝑉 (𝑠),𝑊 (𝑠)⟩ = ⟨𝜑(𝑉 (𝑠)), 𝜑(𝑊 (𝑠))⟩. This is a trivial but useful way of transferring vector
fields between manifolds.

The index has independent interest. The index lemma shows that assuming there is
no conjugate point along the geodesic, Jacobi fields minimize the index form among vector
fields along the geodesic that vanish at starting point and have same value at other endpoint.
Since the index form is the second derivative of energy, another way of saying this is the
following.

A geodesic without conjugate points is stable: the second variation of energy is non-
negative.
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Lecture 21

Tue. 11/27/12

Last time we defined the index form. Let 𝛾 : [𝑎, 𝑏]→𝑀 be a geodesic, and let 𝑉 be a vector
field along 𝛾. Then

𝐼(𝑉, 𝑉 ) =
∫︁ 𝑏

𝑎
(⟨𝑉 ′, 𝑉 ′⟩ − ⟨𝑅(𝛾′, 𝑉 )𝛾′, 𝑉 ⟩) 𝑑𝑠.

We showed in Lemma 20.2 that if 𝛾 has no conjugate points, and 𝑉, 𝐽 are vector fields along
𝛾 such that 𝑉 (𝑎) = 𝐽(𝑎) = 0, 𝑉 (𝑏) = 𝐽(𝑏), and 𝐽 is Jacobi then

𝐼(𝑉, 𝑉 ) ≥ 𝐼(𝐽, 𝐽)

with equality iff 𝑉 = 𝐽 .
Let 𝐹 : [𝑎, 𝑏]× (−𝜀, 𝜀)→𝑀 be a variation such that

𝐹 (∙, 0) = 𝛾, 𝐹 (𝑎, ∙) = 𝛾(𝑎), 𝐹 (𝑏, ∙) = 𝛾(𝑏).

Let 𝑉 = 𝜕
𝜕𝑡
𝐹 . Letting 𝐿𝑉 = 𝐷2

𝜕𝑠2
𝑉 +𝑅(𝛾′, 𝑉 )𝛾′ = 𝑉 ′′ +𝑅(𝛾′, 𝑉 )𝛾′, we have

𝜕

𝜕𝑡

⃒⃒⃒⃒
⃒
𝑡=0

𝐸 = 0

𝜕2

𝜕𝑡2

⃒⃒⃒⃒
⃒
𝑡=0

𝐸(𝐹 (∙, 𝑡)) = −
∫︁ 𝑏

𝑎
⟨𝑉, 𝐿𝑉 ⟩

= −
∫︁ 𝑏

𝑎
⟨𝑉, 𝑉 ′′⟩+ ⟨𝑉,𝑅(𝛾′, 𝑉 )𝛾′⟩

= 𝐼(𝑉, 𝑉 ).

We used

⟨𝑉, 𝑉 ′⟩′ = ⟨𝑉 ′, 𝑉 ′⟩+ ⟨𝑉, 𝑉 ′′⟩

and noted that ⟨𝑉, 𝑉 ′⟩ vanishes at both endpoints. (If it doesn’t vanish at both endpoints,
there are some additional terms.)

We’ll prove the Rauch comparison theorem 21.1 and then mention what can be done in
higher dimensions (see the first chapter of [2], A Course in Minimal Surfaces, AMS 2011,
GTM, Colding-Minicozzi).

S1 Rauch Comparison Theorem

Suppose that 𝑀𝑛
1 and 𝑀𝑛

2 have the same dimension. Let 𝛾1, 𝛾2 be unit speed geodesics on
𝑀1 and 𝑀2, parametrized on the same interval [𝑎, 𝑏]. Let X(𝛾𝑖) be the space of smooth
vector fields along 𝛾𝑖. Let

𝜑 : X(𝛾1)→ X(𝛾2)
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be defined as follows. Let 𝐸1, . . . , 𝐸𝑛−1 ⊥ 𝛾′1 be parallel vector fields along 𝛾1 and letÜ𝐸1, . . . , Ü𝐸𝑛1 be parallel vector fields along Ü𝐸𝑖 ⊥ 𝛾′2. If

𝑉 = 𝑓1𝐸1 + · · ·+ 𝑓𝑛−1𝐸𝑛−1 + 𝑓𝑛𝛾
′
1

then define
𝜑(𝑉 ) = 𝑓1Ü𝐸1 + · · ·+ 𝑓𝑛−1

Ü𝐸𝑛−1 + 𝑓𝑛𝛾
′
2.

At any 𝑠 ∈ [𝑎, 𝑏], we have
⟨𝑉1, 𝑉2⟩ (𝑠) = ⟨𝜑(𝑉1), 𝜑(𝑉2)⟩ (𝑠).

Define

𝐾1(𝑠) = inf {𝐾(Π) : Π is a 2-plane at 𝛾1(𝑠) containing 𝛾
′
1(𝑠)}

𝐾2(𝑠) = sup {𝐾(Π) : Π is a 2-plane at 𝛾2(𝑠) containing 𝛾
′
2(𝑠)} .

Note the asymmetry. The statement is that one manifold is more curved than the other.
This is almost always applied when one of the manifolds have constant curvature, in which
there is no inf or sup involved.

Theorem 21.1 (Rauch comparison theorem): thm:rauch Let the setup be as above. Assume
there are no conjugate points along 𝛾𝑖.

If 𝐾1(𝑠) ≥ 𝐾2(𝑠) for all 𝑠 ∈ [𝑎, 𝑏], then for any pair of Jacobi fields 𝐽1 along 𝛾1 and 𝐽2
along 𝛾2 such that

𝐽1(𝑎) = 0, 𝐽2(𝑎) = 0, |𝐽 ′
1(𝑎)| = |𝐽 ′

2(𝑎)|,

then
|𝐽1(𝑏)| ≤ |𝐽2(𝑏)|.

The picture is as follows. Let 𝑝 ∈ 𝑀 and consider exp𝑝 : 𝑇𝑝𝑀 → 𝑀 . Let Π ⊆ 𝑇𝑝𝑀 be
a subspace. Consider the length of exp(𝜕𝐵𝜀(0)). We looked at the Taylor expansion (23);
the first nontrivial term is a curvature term, the sectional curvature of the 2-plane. If the
sectional curvature is positive, the term has a negative sign. The length is smaller than what
it is in Euclidean space.

If you take something that is positively curved, the image has smaller length than the
circle that it is mapped from. Positively curved means that geodesics are spreading less
rapidly than in Euclidean space. When you calculate the length of exp(𝜕𝐵𝜀(0)), you are
calculating the derivative of the exponential map, which is given by a Jacobi field. Thus we
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see that Rauch Comparison 21.1 would give information about the length of exp(𝜕𝐵𝜀(0))
relative to 𝜕𝐵𝜀(0).

Consider the special case where 𝑀2 has constant sectional curvature, say 0. Say that 𝑀2

is 2-dimensional, so 𝑀2 is just a plane. Suppose 𝐾1(𝑠) is positive everywhere, so 𝐽1 is on a
positively curved manifold, and 𝐽2 is in Euclidean space. At the very beginning, these two
geodesics spread out at the same rate |𝐽 ′

1(𝑎)| = |𝐽 ′
2(𝑎)|. The statement is that the Jacobi

field in the positively curved manifold is spreading out less rapidly, |𝐽1(𝑏)| ≤ |𝐽2(𝑏)|.
Proof of Theorem 21.1. Let 𝑣𝑖 = |𝐽𝑖|2. Note that

𝑒𝑞 : 965− 21− 2
𝑑

𝑑𝑠

(︂
𝑣2
𝑣1

)︂
≥ 0 ⇐⇒ |𝐽2|2

|𝐽1|2
increases. (43)

If we can additionally show then

𝑒𝑞 : 965− 21− 1 lim
𝑠→0+

|𝐽2|2
|𝐽1|2

= 1, (44)

then we get
|𝐽2(𝑏)|2 ≥ |𝐽1(𝑏)|2 =⇒ |𝐽2(𝑏)| ≥ |𝐽1(𝑏)|,

which is exactly what we wanted to prove.
First we show (44). Recall the Taylor expansion (22) of ℎ𝑖 = |𝐽𝑖|2. The first nontrivial

term is the curvature term, which is negligible. The only term that matters is the nonzero
term |𝐽 ′

𝑖(𝑎)|. Thus the ratio goes to 1.
It suffices to show (43). We have

𝑒𝑞 : 965− 21− 30 ≤
(︂
𝑣2
𝑣1

)︂′
=
𝑣′2𝑣1 − 𝑣′1𝑣2

𝑣21
⇐⇒ 𝑣′2𝑣1 ≥ 𝑣′1𝑣2 ⇐⇒

𝑣′2
𝑣2
≥ 𝑣1
𝑣′1
. (45)

(We can take the quotient because we assumed there are no conjugate points.)

We want to show that
𝑣′2(𝑠0)

𝑣2(𝑠0)
≥ 𝑣′1(𝑠0)

𝑣1(𝑠0)
. Define

𝑈𝑖 =
𝐽𝑖

|𝐽𝑖(𝑠0)|
, 𝑖 = 1, 2.

Consider the index form 𝐼(𝑈𝑖, 𝑈𝑖) on 𝛾𝑖|[𝑎,𝑠0]. By definition,

𝐼(𝑈𝑖, 𝑈𝑖) =
∫︁ 𝑠0

𝑎
(⟨𝑈 ′

𝑖 , 𝑈
′
𝑖⟩ − ⟨𝑅(𝛾′𝑖, 𝑈𝑖)𝛾

′
𝑖, 𝑈𝑖⟩) 𝑑𝑠.

If 𝐽 is a Jacobi field along a geodesic 𝛾 : [𝑎, 𝑠0]→𝑀 , then by definition

𝐼(𝐽, 𝐽) =
∫︁ 𝑠0

𝑎
(⟨𝐽 ′, 𝐽 ′⟩ − ⟨𝑅(𝛾′, 𝐽)𝛾′, 𝐽⟩) 𝑑𝑠

Using ⟨𝐽 ′, 𝐽⟩′ = ⟨𝐽 ′′, 𝐽⟩+ ⟨𝐽 ′, 𝐽 ′⟩ = ⟨𝐽 ′, 𝐽 ′⟩ − ⟨𝑅(𝛾′, 𝐽)𝛾′, 𝐽⟩, get

𝐼(𝐽, 𝐽) = ⟨𝐽 ′, 𝐽⟩ |𝑠0𝑎 = ⟨𝐽 ′(𝑠0), 𝐽(𝑠0)⟩ .
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Then

𝐼(𝑈𝑖, 𝑈𝑖) = ⟨𝑈 ′
𝑖 , 𝑈𝑖⟩ (𝑠0)

=

⟩︀
𝐽 ′
𝑖(𝑠0)

|𝐽𝑖(𝑠0)|
,
𝐽𝑖(𝑠0)

|𝐽𝑖(𝑠0)|

]︂
=
⟨𝐽 ′

𝑖(𝑠0), 𝐽𝑖(𝑠0)⟩
|𝐽𝑖(𝑠0)|2

=
1

2

𝑣′𝑖(𝑠0)

𝑣𝑖(𝑠0)
.

Thus (44) is equivalent to 𝐼(𝑈2, 𝑈2) ≥ 𝐼(𝑈1, 𝑈1). We have to prove an inequality about index
forms, so it’s helpful to have a way to move vector fields between 𝛾1 and 𝛾2. This is where
𝜑 comes in!

(𝜑 was almost canonical but involved a choice of parallel frame. We identify an orthonor-
mal basis at one point.)

By choice of orthonormal basis Ü𝐸𝑖 we may assume 𝜑(𝑈2)(𝑠0) = 𝑈1(𝑠0) (the tangential
components have to be the same). Now

𝐼(𝑈2, 𝑈2) =
∫︁ 𝑠0

𝑎
(⟨𝑈 ′

2, 𝑈
′
2⟩ − ⟨𝑅𝑀1(𝛾

′
2, 𝑈2)𝛾

′
2, 𝑈2⟩) 𝑑𝑠

=
∫︁ 𝑠0

𝑎
(⟨𝑈 ′

2, 𝑈
′
2⟩ − |𝑈2|2𝐾(𝛾′2, 𝑈2)) 𝑑𝑠

Now note if 𝑉 = 𝑓1𝐸1 + · · · + 𝑓𝑛−1𝐸𝑛−1 + 𝑓𝑛𝛾
′, then 𝜑(𝑉 ) = 𝑓1Ý𝐸1 + · · · + 𝑓𝑛−1

Ü𝐸𝑛−1 + 𝑓𝑛𝛾
′.

We have 𝑉 ′ = 𝑓 ′
1𝐸1+ · · ·+ 𝑓 ′

𝑛−1𝐸𝑛−1+ 𝑓𝑛𝛾
′ and 𝜑(𝑉 ′) = 𝑓 ′

1
Ý𝐸1+ · · ·+ 𝑓 ′

𝑛−1
Ü𝐸𝑛−1+ 𝑓

′
𝑛𝛾

′. Then
(note 𝜑(𝑈2) may not be Jacobi)

𝐼(𝜑(𝑈2), 𝜑(𝑈2)) =
∫︁ 𝑠0

𝑎
(⟨𝜑(𝑈2)

′, 𝜑(𝑈2)
′⟩ − ⟨𝑅𝑀1(𝛾

′
2, 𝜑(𝑈2))𝛾

′
2, 𝜑(𝑈2)⟩) 𝑑𝑠.

=
∫︁ 𝑠0

𝑎
(⟨𝜑(𝑈2)

′, 𝜑(𝑈2)
′⟩ − |𝜑(𝑈2)|2𝐾(𝛾′2, 𝜑(𝑈2))) 𝑑𝑠

Thus using the fact that 𝑀1 is more curved than 𝑀2, we get

𝐼(𝑈2, 𝑈2) ≥ 𝐼(𝜑(𝑈2), 𝜑(𝑈2)).

But 𝜑(𝑈2) is a vector field along 𝛾1|[𝑎,𝑠0]. At 0 it is 0 and at 𝑠0, we arranged for 𝜑(𝑈2)(𝑠0) =
𝑈1(𝑠0). Since 𝑈1 is a Jacobi field with same vector value, by the minimizing property (since
there is no conjugate point), we get

𝐼(𝑈2, 𝑈2) ≥ 𝐼(𝜑(𝑈2), 𝜑(𝑈2)) ≥ 𝐼(𝑈1, 𝑈1).

This is exactly what we wanted to prove.

Note that we actually proved something a bit stronger, that the ratio |𝐽2|
|𝐽1| is nondecreasing.
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Example 21.2: Consider manifolds𝑀𝑛
1 ,𝑀

𝑛
2 . Suppose𝑀2 has constant sectional curvature,

𝐾𝑀2 = 𝑐2, 0, or −𝑐2. Consider Jacobi fields that initially vanish. Let 𝐽 = 𝐽2.

∙ If 𝐾𝑀2 = 𝑐2, 𝐽(0) = 0, |𝐽 ′(0)| = 1, and 𝐽 is orthogonal to the geodesic, then we can
write

𝐽 =
1

𝑐
sin(𝑐𝑠)𝐸

where 𝐸 is a parallel vector field. The statement is then

|𝐽1(0)| ≤
|𝐽 ′

1(0)|
𝑐

sin(𝑐𝑠) = |𝐽2|.

Thus the Jacobi field must vanish no later than 𝜋
𝑐
. Rauch comparison holds up to that

point. This is a standard way that Rauch comparison is applied. (The other is when
𝑀1 has constant sectional curvature, and the inequalities are reversed.)

∙ If 𝐾𝑀2 = 0, we can write
𝐽(𝑠) = 𝑠𝐸.

∙ If 𝐾𝑀2 = −𝑐2, then we can write

𝐽 =
1

𝑐
sinh(𝑐𝑠)𝐸.

Lecture 22

Thu. 11/29/12

S1 Comparing volumes

Last time we showed that if we have two Riemannian manifold (𝑀𝑛
1 , 𝑔) and (𝑀𝑛

2 , 𝑔), and

sup
𝛾1
𝐾𝑀1 ≤ inf

𝛾2
𝐾𝑀2

where 𝛾𝑖 : [0, ℓ]→ 𝑀𝑖 are a unit speed geodesic with no conjugate points, then we have the
Rauch Comparison Theorem 21.1: If 𝐽𝑖 are Jacobi fields along 𝛾𝑖 with 𝐽𝑖(0) = 0, |𝐽 ′

1(0)| =
|𝐽 ′

2(0)|, then
𝑑

𝑑𝑠

(︂
𝐽1
𝐽2

)︂
≥ 0.

As a consequence, we have the following.

Corollary 22.1: Assume the conditions above, and that the manifolds are complete.
If 𝑀1 has constant curvature, 𝐾𝑀1 = 𝑐, and 𝐾𝑀2 ≥ 𝑐 = 𝐾𝑀1 , then

Vol(𝐵𝑀1
𝑟 (𝑝1)) ≥ Vol(𝐵𝑀2

𝑟 (𝑝2)).
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Proof. Let 𝑀 =𝑀2. Consider the exponential map exp𝑝 : 𝑇𝑝𝑀 →𝑀 .
We claim that 𝐵𝑟(𝑝) is the image of 𝐵𝑟(0) ⊂ 𝑇𝑝𝑀 under exp𝑝:

𝐵𝑟(𝑝) = exp𝑝(𝐵𝑟(0)).

Because the manifold is complete, for any 𝑞 ∈ 𝐵𝑟(𝑝) there exists a minimizing unit speed
geodesic from 𝑝 to 𝑞. The length of 𝛾 is 𝑑(𝑝, 𝑞) ≤ 𝑟. Hence 𝐵𝑟(𝑝) ⊆ exp𝑝(𝐵𝑟(0)). The other
inclusion is clear, because the a point in the image of 𝐵𝑟(0) is connected to 𝑝 by a geodesic
of length less than 𝑟. We have to be careful, however, about overcovering.

Definition 22.2: Define the cut locus Cut𝑝 in 𝑇𝑝𝑀 as the set of points 𝑦 ∈ 𝑇𝑝𝑀 such that
the map 𝑠 ↦→ exp𝑝(𝑠𝑦) for 0 ≤ 𝑠 ≤ 1 is a minimizing geodesic.

Note these geodesics have no conjugate points. Observe that Cut𝑝 is star convex: if
𝑦 ∈ Cut𝑝 then the line segment joining 0 and 𝑦 is in Cut𝑝.

We see that
𝐵𝑟(𝑝) = exp𝑝(Cut𝑝 ∩𝐵𝑟(0)).

Note that Cut𝑝 ∩𝐵𝑟(0)→ 𝐵𝑟(𝑝) is now a diffeomorphism; there is no overcovering.
As an example, take the round unit sphere. We have

Cut𝑝 = 𝐵𝜋(0) ⊆ 𝑇𝑝𝑀.

Note that 𝜕𝐵𝜋(0) is mapped to a single point, but the boundary doesn’t contribute to the
volume. As another example, consider the cylinder of radius 1.

Then the cut locus is given by R× [−𝜋, 𝜋].
Suppose first for simplicity 𝑀 is a manifold with 𝐾𝑀 ≥ 0 and 𝑀1 = R𝑛. We need to

show that Vol(𝐵𝑟(𝑝)) ≤ Vol(𝐵𝑟(0)) where 𝐵𝑟(0) ⊆ R𝑛. We have Cut𝑝 ∩ 𝐵𝑟(0) → 𝑀 . Note
that Jacobi fields along the geodesics given by segments in Cut𝑝 ∩ 𝐵𝑟(0) have no conjugate
points, because they are inside the image of the cut locus. Geodesics have to minimize, so
there cannot be conjugate points.

By the Rauch Comparison Theorem 21.1, |𝐽R𝑛 |
|𝐽 | is increasing. We have |𝐽 | ≤ |𝐽R𝑛|. This

says that the derivative is less than or equal to the derivative Euclidean space, where it is
the identity. From this we can get the inequality for volumes.

In general, to show Vol(𝐵𝑀1
𝑟 (𝑝1)) ≥ Vol(𝐵𝑀2

𝑟 (𝑝2)), consider the map

𝐵𝑀1
𝑟 (𝑝1)

exp−1
𝑝−−−→ 𝑇𝑝1𝑀1

𝐼−→ 𝑇𝑝2𝑀2

exp𝑝−−→ 𝐵𝑀2
𝑟 (𝑝2).

Calculating the Jacobian of this map and using the Rauch Comparison Theorem as before
gives the inequality. (In the case one of the 𝑀𝑖 is Euclidean space, the exponential map is
the identity, and we reduce to the first case.)
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S2 Matrix Ricotti equation

Let 𝑀 be a Riemannian manifold and 𝛾 be a unit speed geodesic. We defined the second
variational operator 𝐿𝑉 = 𝑉 ′′ + 𝑅(𝛾′, 𝑉 )𝛾′ where 𝑉 is a vector field along 𝛾. The Jacobi
equation is 𝐿𝑉 = 0; any 𝑉 satisfying this is a Jacobi field.

Consider a Jacobi field that vanishes initially, 𝐽(0) = 0. Let 𝐸1, . . . , 𝐸𝑛−1 be an or-
thonormal parallel vector fields along 𝛾, all orthogonal to 𝛾′. For 𝐽 ⊥ 𝛾, we can write
𝐽 = 𝑗1𝐸1 + · · ·+ 𝑗𝑛−1𝐸𝑛−1.

Consider 𝑛−1 linearly independent Jacobi fields with 𝐽𝑖(0) = 0 and 𝐽 ′
𝑖(0) = 𝐸𝑖(0). Then

any Jacobi field 𝐽 ⊥ 𝛾 satisfying 𝐽(0) = 0 can be written 𝐽 = 𝑐1𝐽1 + · · ·+ 𝑐𝑛−1𝐽𝑛−1.
Define a matrix 𝐴 = (𝑎𝑖𝑗) to be a (𝑛 − 1) × (𝑛 − 1) matrix-valued function along [0, ℓ],

where the 𝑗th column are the coefficients in the linear combination

𝐽𝑗 =
𝑛−1∑︁
𝑖=1

𝑎𝑖𝑗𝐸𝑖.

By definition 𝐴′ = (𝑎′𝑖𝑗) and 𝐴′′ = (𝑎′′𝑖𝑗). Now 𝐽 ′
𝑗 =

∑︀𝑛−1
𝑖=1 𝑎

′
𝑖𝑗𝐸𝑖 and 𝐽

′′
𝑗 =

∑︀𝑛−1
𝑖=1 𝑎

′′
𝑖𝑗𝐸𝑖. The

Jacobi equation is
𝐽 ′′
𝑗 +𝑅(𝛾′, 𝐽𝑗)𝛾

′ = 0.

We would like the Jacobi equation to give a equation—some ODE—for the matrix 𝐴. (Ev-
erything we do with matrices can be found in [1].)

Now 𝑅(𝛾′(𝑠), ∙)𝛾′(𝑠) is a symmetric map 𝑇𝛾(𝑠)𝑀 → 𝑇𝛾(𝑠)𝑀 . We can think of this as a
map (𝛾′(𝑠))⊥ → (𝛾′(𝑠))⊥. Let 𝑅 = (𝑅𝑖𝑗)1≤𝑖,𝑗≤𝑛−1 be the matrix representing this operator
in the basis 𝐸𝑖. Now 𝐴′′ = (𝐽 ′′

1 , . . . , 𝐽
′′
𝑛−1). The Jacobi equation 𝐽 ′′ + 𝑅(𝛾′, 𝐽)𝛾′ = 0 now

becomes
𝐴′′ +𝑅𝐴 = 0. (46)

Indeed, this is just 𝑎′′𝑖𝑗 + 𝑅𝑖𝑘𝑎𝑘𝑗 = 0. The advantage of this equation is that you can think
of 𝐴,𝑅 as functions [0, ℓ] →ℳ(𝑛−1)×(𝑛−1)(R). Note both 𝑅,𝐴 are symmetric. Why are we
interested in writing the Jacobi equation like this? If 𝐴 is invertible, consider

𝑈 = 𝐴′𝐴−1.

(Note that 𝐴(0) = 0 but 𝑑
𝑑𝑡
𝐴(0) = 𝐼 so 𝐴 is invertible for small 𝑡; it is invertible as long

as there is no conjugate points. If 𝐴 does not have full rank, then there is a nontrivial
linear combination of Jacobi fields at that point, i.e., there is a conjugate point.) Using
(𝐴𝐵)′ = 𝐴′𝐵 + 𝐴𝐵′, we hve

0 = 𝐼 ′ = (𝐴𝐴−1)′ = 𝐴′𝐴−1 + 𝐴(𝐴−1)′ =⇒ (𝐴−1)′ = −𝐴−1𝐴′𝐴−1.

Now

𝑈 ′ = 𝐴′′𝐴−1 + 𝐴′(𝐴−1)′

= 𝐴′′𝐴−1 + 𝐴′(−𝐴−1𝐴′𝐴−1)

= 𝐴′′𝐴−1 − (𝐴′𝐴−1)2

= −(𝑅𝐴)𝐴−1 − 𝑈2 = −𝑅− 𝑈2.
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We get
𝑒𝑞 : 𝑟𝑖𝑐𝑜𝑡𝑡𝑖𝑈 ′ + 𝑈2 +𝑅 = 0. (47)

This is called the Matrix Ricotti equation. The advantage of this equation is that it is a first
order equation; the disadvantage is that it is not a linear equation.

The second reason 𝐴 is so useful is that det(𝐴) is the Jacobian of exp𝛾(𝑠).

The Ricotti equation is useful for getting bounds on areas and volumes.

At each point of the geodesic we can take the trace of (47) to get

𝑒𝑞 : 𝑟𝑖𝑐𝑜𝑡𝑡𝑖− 𝑡𝑟𝑎𝑐𝑒Tr(𝑈)′ + Tr(𝑈2) + Tr(𝑅) = 0. (48)

But

Tr(𝑅) =
𝑛−1∑︁
𝑖=1

𝑅𝑖𝑖 =
𝑛−1∑︁
𝑖=1

⟨𝑅(𝛾′, 𝐸𝑖)𝛾
′, 𝐸𝑖⟩ = Ric𝛾(𝑠)(𝛾

′(𝑠))

so we can rewrite (48) as

Tr(𝑈)′ + Tr(𝑈2) + Ric𝛾(𝑠)(𝛾
′(𝑠)) = 0.

Note if 𝐵 is a symmetric (𝑛− 1)× (𝑛− 1) matrix, then the Cauchy-Schwarz inequality gives

Tr(𝐵) ≤ (𝑛− 1)Tr(𝐵2).

Then we obtain

Tr(𝑈)′ +
Tr(𝑈)2

𝑛− 1
+ Ric𝛾(𝑠)(𝛾

′(𝑠)) ≤ 0.

Defining 𝑢 = Tr(𝑈), this can be written more simply as

𝑒𝑞 : 𝑟𝑖𝑐𝑜𝑡𝑡𝑖− 𝑖𝑛𝑒𝑞𝑢′ + 𝑢2

𝑛− 1
+ Ric𝛾(𝑠)(𝛾

′(𝑠)) ≤ 0. (49)

This is called the Ricotti inequality. We’ve eliminated the matrices by taking the trace,
but now we only have inequality. This differential inequality is useful because it is easy to
estimate. In particular, if Ric ≥ 0, then

𝑢′ +
𝑢2

𝑛− 1
≤ 0.

Let 𝑣 be 𝑢 but in Euclidean space. Then Ric = 0, and in the Cauchy-Schwarz inequality
we have equality iff only the identity and 𝐵 are constant multiples of each other. If you
write down what 𝐴 is on any space form it is a constant function times the identity. (On
Euclidean space it’s linear, on the sphere it’s sine, on the hyperbolic space it’s sinh.) Thus
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the Cauchy-Schwarz inequality is actually equality. In the two inequalities applied (Cauchy
and Ric), we have equality

𝑣′ +
𝑣2

𝑛− 1
= 0.

If we have 2 solutions that are initially the same, a simple Ricotti comparison argument with

[(𝑢− 𝑣)𝑒
∫︀
(𝑢+𝑣)]′ = [(𝑢2 − 𝑣2) + (𝑢′ − 𝑣′)]𝑒

∫︀
(𝑢+𝑣) ≥ 0

gives a sign on the derivative. Ricotti is very useful in estimating volumes.

Lecture 23

Tue. 12/4/12

We’ll start with the Gauss-Bonnet Theorem.

S1 Gauss-Bonnet Theorem

Theorem 23.1 (Gauss-Bonnet): Let 𝑀2 be a complete Riemannian manifold. Let 𝑝 ∈𝑀 ,
and 𝐵𝑟(𝑝) be a ball of radius 𝑟 around 𝑝. Suppose every geodesic starting at 𝑝 going out to
radius 𝑟 is minimizing.

Then
2𝜋 =

∫︁
𝜕𝐵𝑟(𝑝)

𝑘𝑔 𝑑𝑠+
∫︁
𝐵𝑟(𝑝)

𝑘 𝑑𝐴

Proof. Let 𝐽 = 𝑗𝑛⃗ ⊥ 𝛾′ be a Jacobi field on the variation of geodesics exp𝑝((𝑠, 𝜃)) ((𝑠, 𝜃)
polar coordinates), satisfying 𝑗′′ + 𝑘𝑗 = 0.

Integrating the Jacobi equation gives

0 =
∫︁ 𝑟

0

∫︁ 2𝜋

0
(𝑗′′ + 𝑘𝑗) 𝑑𝜃𝑑𝑠

=
∫︁ 𝑟

0

∫︁ 2𝜋

0
𝑗′′ 𝑑𝜃𝑑𝑠+

∫︁ 𝑟

0

∫︁ 2𝜋

0
𝑘𝑗 𝑑𝜃𝑑𝑠

=
∫︁ 2𝜋

0
[𝑗′(𝑟)− 𝑗′(0)] 𝑑𝜃 +

∫︁
𝐵𝑟(𝑝)

𝑘 𝑑𝐴

=
∫︁ 2𝜋

0
𝑗′(𝑟) 𝑑𝜃 − 2𝜋 +

∫︁
𝐵𝑟(𝑝)

𝑘 𝑑𝐴

=
∫︁ 2𝜋

0

𝑗′(𝑟)

𝑗(𝑟)
𝑗(𝑟) 𝑑𝜃 − 2𝜋 +

∫︁
𝐵𝑟(𝑝)

𝑘 𝑑𝐴

Here we use the fact that the geodesic is minimizing, so nothing is overcovered. We write
it as above because 𝑗(𝑟) is the length element, and 𝑗′(𝑟)

𝑗(𝑟)
is the geodesic curvature of 𝜕𝐵𝑟(𝑝).

Indeed, we have ⟨∇𝑒𝑛⃗, 𝑒⟩ = 𝑗′(𝑟)
𝑗(𝑟)

where |𝑒| is tangent to 𝜕𝐵𝑟(𝑝) (why?). (Recall that taking

𝑁𝑛−1 ⊆𝑀𝑛, the second fundamental form, for 𝑋 tangent to 𝑁 , satisfies

⟨∇𝑋𝑋,𝑛⟩ = −⟨∇𝑋𝑛,𝑋⟩ .
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The geodesic curvature of boundary is just the principal curvature—for a curve, there is only
one principal curvature because it is one-dimensional.)

We get that

2𝜋 =
∫︁
𝜕𝐵𝑟(𝑝)

𝑘𝑔 𝑑𝑠+
∫︁
𝐵𝑟(𝑝)

𝑘 𝑑𝐴

as long as all geodesics starting from 𝑝 going to radius 𝑟 are minimizing.

We need the following simple fact. If 𝛾 : [0, 𝑟]→𝑀 is a geodesic on (𝑀𝑛, 𝑔), and we take
a variation of 𝛾, 𝐹 : [0, 𝑟] × (−𝜀, 𝜀) → 𝑀 with 𝐹 (∙, 0) = 𝛾, 𝐹 (0, 𝑡) = 𝛾(0), 𝐹 (𝑟, 𝑡) = 𝛾(𝑟),
we found

𝑑2𝐸

𝑑𝑡2
= −

∫︁
⟨𝑉, 𝐿𝑉 ⟩

where 𝑉 = 𝜕𝐹
𝜕𝑡

⃒⃒⃒
𝑡=0

and 𝐿𝑉 = 𝐷2

𝜕𝑠2
𝑉 + 𝑅(𝛾′, 𝑉 )𝛾′. If 𝑀2 were a surface, and 𝑉 ⊥ 𝛾′ then we

could write 𝑉 = 𝜑𝑛⃗ and 𝐿𝜑 = 𝜑′′ + 𝑘𝜑.
Now Let 𝑢 : Ω→ R where Ω ⊆ R𝑛. We consider the Schrödinger operator

𝐿𝑢 = Δ𝑢+ 𝑘𝑢.

Recall that we call 𝛾 stable if
𝑑2

𝑑𝑡2

⃒⃒⃒⃒
⃒
𝑡=0

𝐸 ≥ 0

for all variations fixing the endpoints. We saw that by Cauchy-Schwarz that if 𝛾 minimizes
length, then it is stable. If we have a surface, to say that 𝛾 is stable is the same as saying
that − ∫︀ 𝜑𝐿𝜑 ≥ 0 for all 𝜑 with compact support. This is equivalent to

∫︀
(𝜑′)2 ≥ ∫︀ 𝑘𝜑2.

Suppose 𝑢 > 0 and 𝐿𝑢 = 0. We claim that −𝐿 ≥ 0. Consider 𝑣 = ln𝑢. We have

Δ𝑣 = ((ln𝑢)′)′ =

�
𝑢′

𝑢

�′

=
𝑢′′

𝑢
−
�
𝑢′

𝑢

�2

=
𝑢′′

𝑢
− (𝑣′)2

so
Δ𝑣 = 𝑘 − |∇𝑣|2.

For 𝜑 with compact support, we have by integration by parts (there is no boundary term),∫︁
𝜑𝐿𝜑 = −

∫︁
𝜑(Δ𝜑+ 𝑘𝜑) =

∫︁
|∇𝜑|2 −

∫︁
𝑘𝜑2,

and this is ≥ 0 iff ∫︁
|∇𝜑|2 ≥

∫︁
𝑘𝜑2.

Also by integration by parts we have∫︁
𝜑2Δ𝑣 = 2

∫︁
𝜑∇𝜑∇𝑣.
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We use the inequality 2𝑎𝑏 ≤ 𝑎2 + 𝑏2 (which comes form (𝑎 + 𝑏)2 ≥ 0). Letting 𝑎 = 𝜑|∇𝑣|
and 𝑏 = |∇𝑣| we get ⃒⃒⃒⃒∫︁

𝜑2Δ𝑣
⃒⃒⃒⃒
=
⃒⃒⃒⃒
2
∫︁
𝜑∇𝜑∇𝑣

⃒⃒⃒⃒
≤ 2

∫︁
|𝜑||∇𝜑||∇𝑣|

≤
∫︁
𝜑2|∇𝑣|2 +

∫︁
|∇𝜑|2.

On the other hand, using the calculation for Δ𝑣 and 0 = 𝐿𝑢 = Δ𝑢 + 𝑘𝑢, i.e., Δ𝑢 = −𝑘𝑢,
we get

Δ𝑣 = −𝑘 − |∇𝑣|2.
We get ∫︁

𝜑2Δ𝑣 = −
∫︁
𝜑2𝑘 −

∫︁
𝜑2|∇𝑣|2

which becomes

−
∫︁
𝜑2𝑘 −

∫︁
𝜑2|∇𝑣|2 =

∫︁
𝜑2Δ𝑣 = −

⃒⃒⃒⃒∫︁
𝜑2Δ𝑣

⃒⃒⃒⃒
≥ −

∫︁
𝜑2|∇𝑣|2 −

∫︁
|∇𝜑|2.

We get exactly −𝐿 ≥ 0.
We could make the same computation on any manifold 𝑀 and Ω ⊆𝑀 , using the Lapla-

cian on 𝑀 .
On 𝑀2 let 𝛾 be a geodesic, not necessarily minimizing, and let 𝐽 be a Jacobi field. Write

𝐽 = 𝑗𝑛⃗. For |𝐽 | > 0 we have 𝑗′′ + 𝑘𝑗 = 0, giving 𝛾 is stable.

S2 Higher dimensions

Let Σ2 ⊆ R3 be a surface. We want to generalize geodesics to higher dimensions. Instead of
looking at the energy, we look at the area.

Let 𝐹 : Σ× (−𝜀, 𝜀)→ R3, with 𝐹 (𝑥, 0) = 𝑥. Suppose that

𝐹 (∙, 𝑡)|𝜕Σ = idΣ,

so 𝐹 (𝑥, 𝑡) = 𝑥 if 𝑥 ∈ 𝜕Σ.
Let 𝑛 be the unit normal to Σ. Recall that we defined 𝐻 = divΣ(𝑛⃗). We have 𝐻 ≡ 0 iff

Σ is a minimal surface.
Now (I don’t really get this)

𝑑

𝑑𝑡
Area(𝐹 (Σ, 𝑡)) =

∫︁
Σ
⟨𝑉,𝐻𝑛⃗⟩

where 𝑉 := 𝜕𝐹
𝜕𝑡

⃒⃒⃒
𝑡=0

. The second variation of area is, assuming 𝑉 = 𝜑𝑛⃗,

𝑑2

𝑑𝑡2
Area(𝐹 (Σ, 𝑡)) = −

∫︁
𝜑𝐿𝜑
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where
𝐿 = ΔΣ𝜑+ |𝐴|2𝜑

and 𝐴 is the second fundamental form. We have

|𝐴|2 = 𝜅21 + 𝜅22,

for 𝜅1, 𝜅2 the principal curvatures.
Note 𝜅1 + 𝜅2 = 𝐻 = 0 iff 𝜅1 = −𝜅2. Since 𝐾 = 𝜅1𝜅2, we get

|𝐴|2 = 𝜅21 + 𝜅22 = 2𝜅1𝜅2 = −2𝐾.

For a minimal surface the Schrödinger (Jacobi) operator is

𝐿 = ΔΣ𝜑+ |𝐴|2𝜑 = ΔΣ𝜑− 2𝑘𝜑.

A minimal surface is said to be stable if 0 ≤ − ∫︀Σ 𝜑𝐿𝜑.
Example 23.2: R2 ⊆ R3 is a minimal surface.

Example 23.3: Rotating 𝑥 = cosh 𝑦 around the 𝑦-axis, an easy computation (by Euler,
1740) shows that this is a minimal surface. It is called a catenoid.

Take a sphere, if rescale everything by same factor. Any rescaling of a minimal surface is a
minimal surface. If you rescale the neck it’s still a minimal surface. This gives a 1-parameter
family of minimal surfaces. If you translate, it is still a minimal surface.

There are catenoids with arbitarily small necks.
Catenoids are not stable. However, they have finite instability: there are a finite number

of directions where the operator is negative.

We will see later that the catenoid is not stable. However, a region that doesn’t contain
too much of the neck is stable.

Example 23.4: (from 1776) Consider the helix (𝑟 cos 𝑡, 𝑟 sin 𝑡, 𝑡). It makes a minimal surface
called a helicoid. You can form a helicoid by rotating a line and moving upwards at constant
speed. If you rotate half of the line, you get a single spiral staircase; half of the helicoid is
stable.
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For the helicoid, every time you complete a rotation, you get instability. The helicoid
has infinite instability.

Let Σ ⊆ R3 be a minimal surface. Let 𝑝 ∈ Σ and consider ℬ𝑟(𝑝); suppose it does not
intersect 𝜕Σ. Suppose Σ is stable. We would like an area bound for ℬ𝑟(𝑝).

Considering the helicoid, note that a dilation can make the line rotating very fast as you
move up. As the line rotates faster and faster, it sweeps out a larger and larger area in
Euclidean space.

One way to go between two points on the helicoid is going into the axis, and down the
“flight of stairs.” Thus distance between any two points in an Euclidean ball is finite no
matter how many times you rotate around. A general minimal surface like the helicoid;
there is no area bound. We have an area bound if the surface is stable.

We have (remember 𝐿𝑢 = Δ𝑢+ |𝐴|2 = Δ𝑢− 2𝑘𝑢)

0 ≤ −
∫︁
Σ
𝜑𝐿𝜑 ⇐⇒

∫︁
|∇𝜑|2 ≥ −2

∫︁
𝑘𝑢.

Let

𝜑 =

⎧⎨⎩1− 𝑑Σ(𝑝,∙)
𝑟

on ℬ𝑟(𝑝),
0, otherwise.

(this may not be smooth, but assume that in 𝐵𝑟(𝑝) all geodesics minimize). Suppose |∇𝜑| =
1
𝑟
on ℬ𝑟(𝑝).
Using

∫︀ |∇𝜑|2 ≥ −2 ∫︀ 𝑘𝑢 we get

Area(ℬ𝑟(𝑝))
𝑟2

=
1

𝑟2

∫︁
ℬ𝑟(𝑝)

1 ≥ −2
∫︁
ℬ𝑟(𝑝)

𝑘

�
1− 𝑑

𝑟

�2

= −2
∫︁ 𝑟

0

∫︁
𝜕ℬ𝑠(𝑝)

𝑘

�
1− 𝑑

𝑟

�2

= −2
∫︁ 𝑟

0

(︂�
1− 𝑠

𝑟

�2 ∫︁
𝜕ℬ𝑠(𝑝)

𝑘
)︂
𝑑𝑠

We integrate by parts so we can use the Gauss-Bonnet Theorem. We have
∫︀
𝜕𝐵𝑟(𝑝) 𝑘𝑔 =∫︀ 2𝜋

0 𝑗′(𝑟) 𝑑𝜃 =
(︀∫︀ 2𝜋

0

�′
(𝑟). Let ℓ(𝑟) be the length of 𝜕ℬ𝑟(𝑝). It is just the integral ℓ(𝑟) =

∫︀ 2𝜋
0 .

Hence we see
ℓ′(𝑟) =

∫︁
𝜕𝐵𝑟(𝑝)

𝑘𝑔.
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Hence we can write the Gauss-Bonnet Theorem as

0 = ℓ′(𝑟) +
∫︁
𝐵𝑟(𝑝)

𝑘 = ℓ′(𝑟) +
∫︁ 𝑟

0

∫︁
𝜕ℬ𝑠(𝑝)

𝑘.

We have
ℓ′ = 2𝜋 −

∫︁
ℬ𝑟(𝑝)

𝑘.

By the Fundamental Theorem of Calculus, ℓ′′ = − ∫︀𝜕𝐵𝑠
𝑘. Continuing our calculation, inte-

grating by parts gives

Area(ℬ𝑟(𝑝))
𝑟2

= −2
∫︁ 𝑟

0

(︂�
1− 𝑠

𝑟

�2 ∫︁
𝜕ℬ𝑠(𝑝)

𝑘
)︂
𝑑𝑠

= 2
∫︁ 𝑟

0

�
1− 𝑠

𝑟

�2
ℓ′′ 𝑑𝑠

=
[︂�
1− 𝑠

𝑟

�2
ℓ′
]︂𝑟
0
− 2

𝑟

∫︁ 𝑟

0

�
1− 𝑠

𝑟

�
ℓ′

= 0− ℓ′(0)− 2

𝑟

∫︁ 𝑟

0

�
1− 𝑠

𝑟

�
ℓ′

= −2𝜋 − 2

𝑟

∫︁ 𝑟

0

�
1− 𝑠

𝑟

�
ℓ′

= −2𝜋 − 2

𝑟

��
1− 𝑠

𝑟

�
ℓ
�𝑟
0⏟  ⏞  

0

+
2

𝑟

(︂
−1

𝑟

)︂ ∫︁ 𝑟

0
ℓ

= −2𝜋 − 2

𝑟2

∫︁ 𝑟

0
ℓ

= −2𝜋 − 2

𝑟2
Area(ℬ𝑟(𝑝)).

We have
∫︀ |∇𝜑|2 ≥ −2 ∫︀ 𝑘𝜑2. For our choice of 𝜑,

Area(ℬ𝑟(𝑝))
𝑟2

≥ −4𝜋 +
4Area(ℬ𝑟(𝑝))

𝑟2
.

We get
4

3
𝜋 ≥ Area(ℬ𝑟(𝑝))

𝑟2
.

Thus we get a bound for the area of a ball.

Lecture 24

Thu. 12/6/12

Today is the last day of class.
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Last time we looked at a minimal surface Σ ∈ R3. We assumed that Σ was stable, which
meant that for all 𝜑 with compact support on Σ, the variation of area is nonnegative:

−
∫︁
Σ
𝜑𝐿𝜑 ≥ 0.

Here 𝐿 is the Laplacian,
𝐿𝜑 = ΔΣ𝜑+ |𝐴|2𝜑,

and |𝐴|2 = 𝜅21 + 𝜅22 = −2𝐾 where 𝜅1, 𝜅2 are the principal curvatures.
Last time we proved, using the Gauss-Bonnet Theorem, that for 𝑝 ∈ Σ,

Area(ℬ𝑟(𝑝)) ≤
4

3
𝜋𝑟2.

When we did this calculation, we assumed there are no cut points, so exp𝑝 : 𝐵𝑟(0)→ ℬ𝑟(𝑝),
𝐵𝑟(0) ⊆ 𝑇𝑝𝑀 , is a diffeomorphism.

When you have an operator
𝐿𝜑 = ΔΣ𝜑+ 𝑉 𝜑

for some “potential” 𝑉 , the eigenfunctions of 𝐿 are those such that

𝐿𝜑+ 𝜆𝜑 = 0

for some constant 𝜆. We say 𝜑 has eigenvalue 𝜆. (Note the sign convention.) If Σ is compact
then one can prove 𝐿 is a compact operator, so there is a basis of eigenfunctions. We can
order the eigenfunctions 𝜑𝑖 where the associated eigenvalues satisfy

𝜆1 ≤ · · · ≤ 𝜆𝑖 ≤ · · · , 𝜆𝑖 →∞.

All we need to know is that if we take the eigenfunction 𝜑 with lowest eigenvalue 𝜆, then 𝜑
cannot change sign:

|𝜑| > 0.

This is easy to prove; we’ll come back to it. By replacing 𝜑 by |𝜑| we may assume 𝜑 is
positive.

If Σ is stable, then

−
∫︁
Σ
𝜑𝐿𝜑 ≥ 0

where 𝐿𝜑+ 𝜆1𝜑 = 0, 𝜑 > 0. We get

0 ≤ −
∫︁
Σ
𝜑𝐿𝜑 = 𝜆

∫︁
Σ
𝜑2;

the lowest eigenvalue is nonnegative. We obtain

𝐿𝜑 = −𝜆𝜑 ≤ 0.
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If we have a Schrödinger operator Δ+ 𝑉 , and 𝜑 > 0 that is a solution to (Δ+ 𝑉 )𝜑 = 0,
then for all 𝜑 with compact support,∫︁

𝜓(Δ + 𝑉 )𝜓 ≥ 0.

(We looked at ln𝜑.) It doesn’t need to be a solution, it just needs to be a supersolution, i.e.,
satisfy 𝐿𝜑+ 𝜆𝜑 ≤ 0. At some point we used an absorbing inequality; it still holds.

Now if we have 𝑝 ∈ Σ ⊆ R3 with Σ stable, 𝜅1 = −𝜅2, and 𝐾 ≤ 0, then Hadamard’s
Theorem gives that exp𝑝 : 𝑇𝑝Σ→ Σ is a covering map. (Here we are assuming Σ is complete
noncompact.) Note that in our inequality we assumed there were no cut points. We have Σ ⊆
R3; pulling back the metric we get a covering map (locally an isometry). The composition

𝑇𝑝Σ
exp𝑝−−→ Σ ⊆ R3

is an immersion. But in 𝑇𝑝Σ the exponential map is actually a diffeomorphism; there is
no cut point. By going to the cover, we can assume there is no cut point. We don’t
have the assumption that 𝑇𝑝𝑀 is stable, but we show this is true. Consider the operator
𝐿 = ΔΣ + |𝐴Σ|2. Take the eigenfunction corresponding to the smallest eigenvalue, we may
assume 𝜑 > 0. Then 𝐿Σ𝜑 ≤ 0. Composing with the exponential map, we may consider it on
𝑇𝑝𝑀 : ̃︀𝜑 = 𝜑 ∘ exp𝑝 .

Let ÜΣ = 𝑇𝑝𝑀 be 𝑇𝑝𝑀 with the pullback metric. We have

𝐿̃︀Σ𝜑 ≤ 0.

This implies ÜΣ is stable. We have an inequality for all functions. On the cover there are
many more functions than pullback functions, so we have to prove something more.

We’ve removed the cut point assumption; we always have the inequality on area; we have
the inequality for ÜΣ, so we clearly also have it on Σ. The area of the corresponding ball on
Σ is smaller than the pullback area.

S1 Curvature estimate

We’re aim to prove a curvature estimate.

Theorem 24.1: If Σ is stable, then if ℬ𝑟(𝑝) ⊆ Σ∖𝜕Σ, then

sup
ℬ 𝑟

2

|𝐴|2 ≤ 𝐶𝑟−2

where 𝐶 is a constant independent of 𝑟 and 𝑝.

If we have a minimal surface, its image under any isometry is a minimal surface. In R3,
any scaling of a minimal surface is a minimal surface. Thus we obtain a whole family of
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minimal surfaces. For instance, we can make the neck of a catenoid as small as we want.
The first surface is stable iff the image is. (Actually the index is the same.)

A catenoid cannot be stable. Take a huge ball (let 𝑟 → ∞); the half ball has almost 0
curvature. But in the middle there’s curvature. Thus a catenoid is not stable. The same
argument works for the helicoid.

To prove our theorem, we need the following.

1.1 Logarithmic cut-off trick

Let Σ be a minimal surface, and suppose we have a quadratic area bound

Area(ℬ𝑟(𝑝)) ≤ 𝑐𝑟2.

We show that if this holds for all 𝑟, then we can find a function that is 1 on the unit ball
centered at the point, and has small energy.

Define

𝜑 =

⎧⎪⎪⎨⎪⎪⎩
1 on ℬ1(𝑝)
1− ln 𝑠

ln 𝑟
on 𝜕ℬ𝑠(𝑝), 1 ≤ 𝑠 ≤ 𝑟

0 otherwise.

The function decays from 1 to 0 from 1 to 𝑟.

We calculate that

|∇𝜑| =
⎧⎨⎩0 on ℬ1(𝑝) ∪ (Σ∖ℬ𝑟(𝑝))

1
𝑠 ln 𝑟

on 𝜕ℬ𝑟(𝑝), 1 < 𝑠 < 𝑟.

Note 𝜑 has compact support because it dies at 𝑟. We show that if 𝑟 is large, 𝜑 has small
energy: ∫︁

|∇𝜑|2 =
∫︁ ∞

0

∫︁
𝜕ℬ𝑟(𝑝)

|∇𝜑|2 𝑑ℓ𝑑𝑠

=
∫︁ 𝑟

1

(︂
1

𝑠 ln𝑛

)︂2

𝑑ℓ𝑑𝑠

=
1

(ln 𝑟)2

∫︁ 𝑟

1

ℓ(𝑠)

𝑠2
𝑑𝑠.
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(Integrate over the distance spheres.) Using

Area(ℬ𝑟(𝑝)) =
∫︁ 𝑟

0
ℓ(𝑠) 𝑑𝑠

we have
𝑑

𝑑𝑠
Area(ℬ𝑟(𝑝)) = ℓ(𝑟).

We integrate by parts because we don’t have a bound for ℓ but we have a bound for area.
We get ∫︁

|∇𝜑|2 = 1

(ln 𝑟)2

∫︁ 𝑟

1

ℓ(𝑠)

𝑠2
𝑑𝑠

=
1

(ln 𝑟)2

��
Area(ℬ𝑠)

𝑠2

�𝑟
1

− 2
∫︁ 𝑟

1

Area(ℬ𝑠(𝑝))
𝑠3

𝑑𝑠

�
=

1

(ln 𝑟)2

��
Area(ℬ𝑟(𝑝))

𝑟2
− Area(ℬ𝑟(𝑝))

�
− 2 · · ·

�
As 𝑟 → ∞, the first term goes to 0. Since energy is nonnegative and only the first term is
positive, we get that it goes to 0.

We’ve proven that if Σ ⊆ R3 is stable and complete without boundary, then Area(ℬ𝑟(𝑝)) ≤
4
3
𝜋𝑟2. We’d like to prove sup |𝐴|2 ≤ 𝑐𝑟−2. If Σ doesn’t have any boundary, then this holds

for all 𝑟. Taking 𝑟 →∞,
|𝐴|2(𝑝) ≤ sup

ℬ 𝑟
2
(𝑝)

|𝐴|2 ≤ 𝑐𝑟−2 → 0.

(This result is by Schoen in 1982.) Then the second fundamental form is 0 at every point,
so it must be a plane: The derivative of the normal is 0, so the normal is constant; hence
the surface must be in a plane orthogonal to this constant normal. We get |𝐴|2 ≡ 0, so 𝑛 is
constant, and Σ = 𝑛⊥.

Theorem 24.2 (Bernstein Theorem, 1911): If Σ ⊆ R3 is a stable minimal surface in R3

without boundary, then Σ is a plane.

Proof. Let Σ ⊆ R3 be stable. Then Area(ℬ𝑟(𝑝)) ≤ 4
3
𝜋𝑟2. Then there exist 𝜑𝑟 so that∫︀ |∇𝜑𝑟|2 → 0, 𝜑𝑟 has compact support, and 𝜑𝑟 = 1 on 𝐵1(𝑝).

Now the inequality 0 ≤ − ∫︀Σ 𝜑𝐿𝜑 (𝐿𝜑 = ΔΣ𝜑 + |𝐴|2𝜑) becomes, after integrating by
parts and using the fact that 𝜑 is compactly supported,∫︁

𝜑𝐿𝜑 =
∫︁
𝜑(Δ𝜑+ |𝐴|2𝜑)

= −
∫︁
|∇𝜑|2 +

∫︁
|𝐴|2𝜑2

Since Σ is stable, ∫︁
|∇𝜑|2 ≥

∫︁
|𝐴|2𝜑2.
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Inserting 𝜑𝑟, we get (noting 𝜑𝑟 is 1 on the unit ball)∫︁
|∇𝜑𝑟|2 ≥

∫︁
|𝐴|2𝜑2

𝑟 ≥
∫︁
ℬ1(𝑝)
|𝐴|2.

Now the LHS goes to 0, so |𝐴|2(𝑝) = 0. This proves the Bernstein Theorem.

The catenoid is the surface of revolution of hyperbolic cosine. Topologically it is a
cylinder. It is complete without boundary. The catenoid can’t be stable, because if it were
stable it would have to be a plane. The same goes for the helicoid.

How do we prove the more general statement? This is quite useful.

Theorem 24.3 (Schoen, 1982): thm:schoen Let Σ ⊆ R3 be stable. Suppose ℬ𝑟(𝑝) ⊆ Σ∖𝜕Σ.
Then

sup
ℬ 𝑟

2
(𝑝)
|𝐴|2(𝑝) ≤ 𝑐𝑟−2

for some constant 𝑐 independent of 𝑝 and 𝑟.

We use the following.

Theorem 24.4 (Choi-Schoen): thm:choi-schoen There exists an 𝜀 > 0 such that if 𝑝 ∈ Σ ⊆
R3 is a minimal surface and ℬ𝑟(𝑝) ⊆ Σ∖𝜕Σ, then ∫︀ℬ𝑟(𝑝) |𝐴|2 < 𝜀 implies supℬ 𝑟

2

|𝐴|2 ≤ 𝑟−2.

This is key.

Proof of Theorem (24.3) using Theorem (24.4). Imagine we have a ball ℬ𝑟(𝑝). We can scale
it so the ball is very large. Now

∫︀
ℬ𝑟(𝑝) |𝐴|2 is invariant under scaling. (The second fundamental

form goes down and area goes up; they cancel each other out.)
We just need to prove the bound for the second fundamental form in the center. Then

you can do it everywhere.
But if the ball is very large, we can find a function 𝜑 that is 1 on the unit ball and has

very small area. We use quadratic area bounds proved in this setting. We have
∫︀ |∇𝜑|2 < 𝜀

and by stability, ∫︁
|∇𝜑|2 ≥

∫︁
|𝐴|2𝜑2 ≥ℬ1 |𝐴|2.

The integral is small because of point mass bounds (from Choi-Shoen), so we have the
theorem. We used the quadratic area bound.

These theorems are examples of a general type of theorem common in nonlinear differen-
tial equations. The second fundamental form is like energy. If you have an energy inequality,
then you get a point mass estimate. (If the energy is above a certain threshold, then we
don’t get an estimate.)

Consider the second fundamental form on the catenoid: we have
∫︀ |𝐴|2 < ∞. This

condition is called “finite total curvature.” This is not small, so we don’t have a pointwise
estimate. On the other hand , the helicoid is not bounded.
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As |𝐴|2 = −2𝐾, the condition
∫︀ |𝐴|2 <∞ is called “finite total curvature.”

You can find all this in [2].

Proof sketch of Theorem 24.4. We first show Simon’s inequality

Δ|𝐴|2 ≥ −2|𝐴|4.

Let 𝑢 : R𝑛 → R. Consider 𝐼(𝑟) = 𝑟1−𝑛 ∫︀
𝜕𝐵𝑟(0) 𝑢. We have by Stokes’s Theorem

𝐼 ′(𝑟) = 𝑟1−𝑛
∫︁
𝜕𝐵𝑟(0)

𝑑𝑢

𝑑𝑠
= 𝑟1−𝑛

∫︁
ℬ𝑟(0)

Δ𝑢.

If 𝑢 is harmonic this is constant. Then 𝐼(𝑟) = lim𝑠→0 𝐼(𝑠) = Vol(𝜕𝐵1)𝑢(0). We have a mean
value equality

𝑢(0) =
1

Vol(𝜕𝐵𝑟(0))

∫︁
𝜕𝐵𝑟(0)

𝑢.

If 𝑢 is subharmonic, we get inequality in one direction, if supharmonic, we get inequality in
other direction. If we have an eigenfunction (or subsolution) Δ𝑢 + 𝜆𝑢 = 0 we get a mean
value equality, with some constant depending on 𝜆, 𝑟.

Simon’s inequality is a nonlinear inequality. There’s a simple way of arguing by contra-
diction so we can actually assume |𝐴|2(𝑝) = 1. We get supℬ𝑟(𝑝) |𝐴|2 ≤ 4. Then trivially we
can replace one |𝐴|2 by 4, and now have a linear inequality. The inequality says |𝐴| is a
subsolution to an eigenvalue equation. Using the mean value inequality, 𝐴 at the center is
bounded by the mean. But we assumed

∫︀ |𝐴|2 is really small. Thus we get contradiction.
The reduction is simple, and nothing to do with minimal surface; it’s just a calculus fact
about functions.

Δ|𝐴|2 ≥ −2|𝐴|4 ≥ −2|𝐴|2|𝐴|2 ≥ −8|𝐴|2.
Now locate the point where 𝐹 = (𝑟 − 𝑑)2|𝐴|2 is maximal.
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