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Introduction

D. Stroock taught a course (18.125) on Measure Theory at MIT in Spring 2011.
These are my “live-TEXed” notes from the course. The template is borrowed
from Akhil Mathew.

Please email corrections to holden1@mit.edu.



Lecture 1 Notes on Measure Theory

Lecture 1

Wed. 2/2/2011

§1 Riemann integration

To integrate a function f : J → R, where J = [a1, b1]×· · ·× [aN , bN ], take a non-
overlapping cover C of J by nonoverlapping rectangles (i.e. for distinct I, I ′ ∈ C,
I◦∩ I ′◦ = φ). Let ξ ∈ Ξ(C) be a choice function that assigns to each I an element
in I (ξ(I) ∈ I). Let

R(f ; C, ξ) =
∑
I∈C

f(ξ(I))vol(I)

where vol(I) is the product of its sides.
One says that f is Riemann integrable if there exists A ∈ R such that for all

ε > 0, there exists δ > 0 such that

|R(f, C, ξ)− A| < ε for all C with ||C|| < δ, ξ ∈ Ξ(C).

where
||C|| = max

I
diam(I).

This value of A is denoted by

A = (R)

∫
J

f(x) dx

Theorem 1.1: Any continuous function is Riemann integrable.

Proof. Uniform continuity of f (from compactness of domain) gives that approx-
imations get close; completeness of R gives existence of A.

Lemma 1.2: Suppose that C is any collection of rectangles I.

1. If C is non-overlapping and J ⊇
⋃
C, then vol(J) ≥

∑
I∈C vol(I).

2. If J ⊆
⋃
C, then vol(J) ≤

∑
I∈C vol(I).

Proof. Without loss of generality, we may assume J ⊆
⋃
C (just intersect rect-

angles with J), and I◦ 6= φ for any I ∈ C.
Induct on number of dimensions N . Consider N = 1. Let I = [aI , bI ].
For the first part, choose aJ ≤ c0 < · · · < cl ≤ bJ such that

{ck : 0 ≤ k ≤ l} = {aI : I ∈ C} ∪ {bI : I ∈ C}.

Let Ck = {I ∈ C : [ck−1, ck] ⊆ I}. Note

1. vol(I) =
∑

k,I∈Ck(ck − ck−1) = bI − aI .
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Lecture 2 Notes on Measure Theory

2. If C is non-overlapping, then I is in at most one Ck (by definition of ci as
endpoints).

Then

∑
I∈C

vol(I) =
∑
I∈C

∑
k:I∈Ck

(ck−ck−1) ≤
l∑

k=1

∑
I∈Ck

(ck−ck−1) ≤ cl−c0 ≤ bJ−aJ = vol(J).

For the second part, if J =
⋃
C then c0 = aJ , cl = bJ , and Ck 6= φ for any

1 ≤ k ≤ l. (For this second assertion, consider 2 cases: ck is the left or right
hand endpoint. Argument is the same. For the right endpoint, choose I so that
bI ≥ ck and aI ≤ aI′ for every I ′ such that bI′ ≥ ck—i.e. left-hand endpoint is as
small as possible. Then aI ≤ ck−1; else any interval starting at ck−1 ends before
ck, contradiction.) Now

∑
I∈C

vol(I) =
∑
I∈C

∑
k:I∈Ck

(ck − ck−1) ≥
l∑

k=1

(ck − ck−1) = bJ − aJ .

When N > 1, we can write I = RI× [aI , bI ] where RI is a (n−1)-dimensional
rectangle. Apply a similar argument, but with RJ =

⋃
I∈Ck RI .

To “remove” the choice function we consider the Riemann upper and lower
sums.

U(f ; C) =
∑
I∈C

(sup
I
f) vol(I) ≥ R(f ; C, ξ)

L(f ; C) =
∑
I∈C

(inf
I
f) vol(I) ≤ R(f ; C, ξ)

Proposition 1.3: Let f : J → R be bounded. f is Riemann integrable if and
only if

lim
||C||→0

L(f ; C) = lim
||C||→0

U(f ; C).

Proof. “⇐”—squeeze theorem. “⇒”—choose choice function so close to up-
per/lower sum.

The lemma applies when C2 is a refinement of C1, written C1 ≤ C2 (ev-
ery rectangle of C2 is inside a rectangle in C1). Then U(f ; C1) ≥ U(f ; C2) and
L(f ; C1) ≤ L(f ; C2). Since I1 is covered by nonoverlapping intervals of C2; vol(I1)
is sum of volumes of those intervals.
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Lecture 2 Notes on Measure Theory

Lecture 2

Fri. 2/4/2011

§1 Riemann integrability

Theorem 2.1: Let f : J → R be bounded. Then

1. lim||C||→0 U(f, C) = infC U(f, C).

2. lim||C||→0 L(f, C) = supC L(f, C).

3. f is Riemann integrable if and only if

inf
C
U(f, C) = sup

C
L(f, C).

where the infimum and supremum are taken over all finite exact nonover-
lapping coverings.

Proof. We use the following.

Lemma 2.2: Given C and ε > 0 there exists δ such that ||C ′|| ≤ δ such that
U(f, C ′) ≤ U(f, C) + ε. (Note C ′ need not be a refinement.)

Similarly, there exists δ such that ||C ′|| ≤ δ such that L(f, C ′) ≥ L(f, C)− ε.
(Note C ′ need not be a refinement.)

Proof. Consider I ′ ∈ C ′. Then either

1. I ′ ⊆ I for I ∈ C (the “good” type) or

2. I ′ hits an edge (the “bad” case).

The terms in the first case do not cause a problem—if every I ′ were of this type
then U(f, C ′) ≤ U(f, C ′).

The rectangles in the second case cannot have a large combined area for ||C ′||
small—they must be in a δ-neighborhood of the edges. In fact∣∣∣∣∣∑

I′

(sup
I′
f) vol(I ′)

∣∣∣∣∣ ≤ 2δ||f ||uC

where C depends on N , the cardinality of C, and J , and the uniform norm is

||f ||u = sup
x∈J
|f(x)|.
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Lecture 2 Notes on Measure Theory

Choose C so the upper sum is close to the infimum:

U(f, C) ≤ inf
C
U(f, C) +

ε

2
.

Then find δ as in the lemma (for ε
2
); for ||C|| < δ, we have

U(f, C) ≤ inf
C
U(f, C) + ε.

Item 2 follows similarly.
Use Proposition 1.3 to get item 3.

§2 Riemann-Stieltjes integral

In the Riemann integral we integrate with respect to “homogeneous density”, dx
means summing bI − aI . For the Riemann integral we replace dx with dψ, and
sum ψ(bI)− ψ(aI) instead of bI − aI .
Definition 2.3: The Riemann sum of φ over C with respect to ψ relative to ξ is

R(ϕ|ψ, C, ξ) =
∑
I∈C

ϕ(ξ(I))∆Iψ, ∆Iψ = ψ(bI)− ψ(aI).

φ is Riemann integrable with respect to ψ if there exists A ∈ R such that for
every ε > 0, there exists δ > 0 such that for every ||C|| ≤ δ and any ξ,

|R(ϕ|ψ, C, ξ)− A| < ε.

Then we write

(R)

∫
J

ϕ(x)dψ(x) = A.

Proposition 2.4: For ϕ ∈ C(J,R), ψ ∈ C1(J,R),

(R)

∫
J

φ(x) dψ(x) = (R)

∫
J

ϕ(x)ψ′(x) dx.

Proof. By the Mean Value Theorem,

ψ(bI)− ψ(aI) = ψ′(η(I)) vol(I).

Now use uniform continuity of ψ′.

Example 2.5: Suppose a = a0 < a1 < . . . < an = b, and ψ is constant on
(am−1, am) for m = 1, . . . , n (a “step” function with a few naughty points), and
ϕ ∈ C(J ;R). Then

(R)

∫
J

ϕdψ =
n−1∑
m=1

ϕ(am)(ψ(am+)−ψ(am−))+ϕ(a)(ψ(a+)−ψ(a))+ϕ(b)(ψ(b)−ψ(b−)).
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Lecture 3 Notes on Measure Theory

Proof. Consider an interval I ∈ C. We may assume C has a fine enough mesh so
no interval contains more than one ai. Then either

1. I ∩ {a0, . . . , an}, i.e. I ⊆ (am−1, am) for some m. (“Good case”) Then
∆Iψ = 0.

2. am ∈ I◦. Then ∆Iψ = ψ(am+)− ψ(am−).

3. am = aI or bI . Then

∆Iψ =

{
ψ(am+)− ψ(am), am = aI

ψ(am)− ψ(am−), am = bI
.

Example 2.6:

(R)

∫
J

(αϕ1 + βϕ2) dψ = α

∫
J

φ1 dψ + β

∫
J

ϕ2 dψ.

Example 2.7: Let J = J1 ∪ J2 and J◦1 ∩ J◦2 = ϕ. Then

(R)

∫
J

ϕdψ = (R)

∫
J1

ϕdψ + (R)

∫
J2

ϕdψ.

Proof. We want
|R(ϕ|ψ, C1, ξ1)−R(ϕ|ψ, C ′1, ξ′1)| < ε

Let C = C1 ∪ C2 and ξ = ξ1 ∪ ξ2, and similarly with C ′ and ξ′. The difference
above equals

|R(ϕ|ψ, C, ξ)−R(ϕ|ψ, C ′, ξ′)|

as needed.
Choose C1, C2 so the Riemann sums of the RHS integrals are close to the

integral; then glue as above.

Lecture 3

Mon. 2/7/2011

§1 Integration by parts

Theorem 3.1 (Integration by parts): Suppose ϕ and ψ are bounded functions
on J . If ϕ is Riemann integrable, then ψ is ϕ-Riemann integrable, and

(R)

∫
J

ψ(x) dξ(x) = [ϕ(x)ψ(x)]ba − (R)

∫
J

ϕ(x) dψ(x).
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Lecture 3 Notes on Measure Theory

Proof. Let C = {[αm−1, αm] : 1 ≤ leqn} where a = α0 < . . . < αn = b. Take
ϕ([αm−1, αm]) = βm ∈ [αm−1, αm]. Now

R(ϕ|ψ; C, ϕ) =
n∑

m=1

ψ(βm)(ϕ(αm)− ϕ(αm−1))

=
n∑

m=1

ψ(βm)ϕ(αm)−
n−1∑
m=0

ψ(βm+1)ϕ(αm)

= ψ(βn)ϕ(b)− ψ(β1)ϕ(a)−
n−1∑
m=1

ϕ(αm)(ψ(βm+1)− ψ(βm))

Now we think of the βm as the endpoints of intervals and αm as the choices. Let
β0 = a and βn+1 = b. Rearranging gives

ψ(b)ϕ(b)− ψ(a)ϕ(a)−
n∑

m=0

ϕ(αm)(ψ(βm+1)− ψ(βm)).

The mesh size of the β-partition is at most twice the mesh size of the α-partition.
Since ϕ is ψ-integrable, this last sum approaches (R)

∫
J
ϕ(x) dψ(x), as needed.

Corollary 3.2 (Fundamental Theorem of Calculus): Suppose ϕ is differentiable.
Then ∫

J

dξ(x)

dx
dx = [ϕ(x)]ba

Proof. Take ψ = 1 and note
∫
J
dξ(x)
dx

dx =
∫
J
dξ(x).

§2 Riemann-Stieltjes integrability

Theorem 3.3: If ψ is increasing, then every ϕ ∈ C(J ;R) is ψ-Riemann inte-
grable.

Proof. Define U(ϕ|ψ; C) and L(ϕ|ψ; C). Use uniform continuity.

Proposition 3.4: If ψ1, ψ2 are increasing, then for every ϕ ∈ C(J ;R),

(R)

∫
J

ϕ(x) d(ψ1 − ψ2) = (R)

∫
J

ϕ(x) dψ1 − (R)

∫
J

ϕ(x) dψ2.
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Lecture 3 Notes on Measure Theory

§3 Variation

Proposition 3.5: If ψ = ψ2 − ψ1,∣∣∣∣(R)

∫
J

ϕ(x) dψ(x)

∣∣∣∣ ≤ ||ϕ||u(∆Jψ1 + ∆Jψ2).

We can ask the following: for what functions ψ does there exist Kψ such that
for every ϕ ∈ C(J ;R) ψ-integrable and∣∣∣∣(R)

∫
ϕdψ

∣∣∣∣ ≤ Kψ||ϕ||u?

Theorem 3.6: Only functions that are the difference of two increasing functions.

We give a better description of this criterion.

Definition 3.7: Let
S(ψ, C) =

∑
I∈C

|∆Iψ|.

The variation of ψ on J is

Var(ψ, J) = sup
C
S(ψ; C).

This measures the amount of “up-and-down” jiggliness of the function.

Proposition 3.8 (Basic properties): 1. By the Triangle Inequality, if C ′ is a
refinement of C, then S(ψ; C ′) ≥ S(ψ; C).

2. If J = J1 ∪ J2, Var(ψ, J) = Var(ψ, J1) + Var(ψ, J2).

Definition 3.9: For a ∈ R let a+ = max(a, 0) and a− = max(−a, 0). Define

S+(ψ; C) =
∑
I∈C

(∆Iψ)+

S−(ψ; C) =
∑
I∈C

(∆Iψ)−

Var±(ψ; C) = sup
C
S±(ψ; C).

Note a+ − a− = a and a+ + a− = |a|, so

S+(ψ, C)− S−(ψ, C) = ∆Jψ

S+(ψ, C) + S−(ψ, C) = S(ψ; C)

S+(ψ, C) =
1

2
(∆Jψ − S(ψ; C))

S−(ψ, C) =
1

2
(∆Jψ + S(ψ; C))
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Lecture 4 Notes on Measure Theory

If approach extreme values for one than for all of them. Statements pass to
variations.

Var+(ψ; J)− Var−(ψ; J) = ∆Jψ

Var+(ψ, J) + Var−(ψ; J) = Var(ψ; J)

Lecture 4

Wed. 2/9/2011

§1 Functions of Bounded Variation

Theorem 4.1: A function can be written as the difference of two increasing
functions if and only if it has bounded variation.

Proof. Suppose that
Var(ψ; [a, b]) <∞.

Then

ψ(x)− ψ(a) = V+(ψ; [a, x])− V−(ψ; [a, x])

ψ(x) = [ψ(a) + V+(ψ; [a, x])]− V−(ψ; [a, x])

§2 Convergence rate

Let f : [0, 1]→ R be smooth (f ∈ C1) Let

Rn(f) =
1

n

n∑
m=1

f
(m
n

)
.

(R)

∫ 1

0

f(x) dx = lim
n→∞

Rn(f).

How fast does Rn(f) converge to the integral? In general we can’t do better than
the following argument:

(R)

∫ 1

0

f(x) dx−Rn(f) =
n∑

m=1

∫ m
n

m−1
n

(
f(x)− f

(m
n

))
=

∫
m−1
n

(
x− m

n

)
f ′(ξx) dx

≤ n · ||f ′||u
1

n2
=

1

n
||f ′||u

10



Lecture 4 Notes on Measure Theory

This is the best we can do because letting f(x) = x,

Rn(f) =
1

n

n∑
m=1

m

n
=
n(n+ 1)

2n2
=

1

2
+

1

2n
.

However, if f is periodic we can do a lot better. We integrate by parts, in
such a way so that we don’t boundary terms, by choosing constants of integration
appropriately. Then

(R)

∫ 1

0

f(x) dx−Rn(f)

= −
n∑

m=1

(R)

∫ m
n

m−1
n

(
f(x)− f

(
m− 1

n

))
dx

= −
n∑

m=1

(R)

∫ m
n

m−1
n

(
x− m− 1

n

)
f ′(x) dx

= −
n∑

m=1

(R)

∫ m
n

m−1
n

(
x− m− 1

n
− 1

2n

)
f ′(x) dx by periodicity

= −
n∑

m=1

(R)

∫ m
n

m−1
n

(
x− m− 1

n
− 1

2n

)(
f ′(x)− f

(m
n

))
dx.

We used periodicity to subtract off the average value of x − m−1
n

on
[
m−1
n
, m
n

]
.

(Note
∫ 1

0
cf ′(x) dx = 0.) In the last step we used 1

2n
is the average value of x−m−1

n

on the integral, so
∫ m

n
m−1
n

(
x− m−1

n
− 1

2n

)
= 0. The last expression is bounded by

1
2n2 ||f ′′||u, better than 1

n
.

Now assume that f and f ′ are both periodic C1. (i.e. f ′(1) = f ′(0) as well)

n∑
m=1

∫ m
n

m−1
n

(
x− m− 1

n
− 1

2n

)(
f ′(x)− f

(m
n

))
dx

= − 1

2n

n∑
m=1

∫ m
n

m−1
n

f ′(x)− f ′
(m
n

)
+

n∑
m=1

∫ m
n

m−1
n

(
x− m− 1

n

)(
f ′(x)− f ′

(m
n

))
= − 1

2n

n∑
m=1

∫ m
n

m−1
n

f ′(x)− f ′
(m
n

)
+

n∑
m=1

∫ m
n

m−1
n

(
x− m− 1

n

)2

f ′′(x)

Use periodicity to subtract off average value.

− 1

2n

n∑
m=1

∫ m
n

m−1
n

f ′(x)−f ′
(m
n

)
+

n∑
m=1

∫ m
n

m−1
n

[(
x− m− 1

n

)2

− 1

3n2

](
f ′′(x)− f ′′

(m
n

))
dx.

Repeating this process. If f and all its derivatives are periodic (of period 1) then
the error in the Riemann approximation is going to 0 faster than any 1

nk
.
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Lecture 5 Notes on Measure Theory

To define Riemann integals for complex valued-functions, just look at real and
complex parts separately. Let f(x) = e2πix. Let ξm,n = m

n

(
1− 1

n

)
. Then

n

(∫ 1

0

e2πix dx− 1

n

n∑
m=1

f(ξm,n)

)
=

1

n

n∑
m=1

e
2πi(1− 1

n )m

n = e
2πi(1− 1

n )

n
1− e− 2πi

n

1− e
2πi(1− 1

n )

n

→ −1.

Moral: Periodicity destroyed by bad choice function.

Definition 4.2: The Bernoulli numbers bl are inductively defined by

bl+1 =
l∑

k=0

(−1)k

(k + 2)!
bl−k.

§3 Lebesgue integration: Motivation

Let E be a set. Let f : E → R. Let µ be “volume” or measure of Γ; that is µ is
defined on nice subsets of E. We want to find a way to integrate f with respect
to µ. We want to find a partition of E into subsets Γ so that f is constant or
close to constant on each set Γ. We then add up µ(E)y (y this constant value).

Riemann: E has topological structure and f is nice with respect to topology
(e.g. continuous). Partition into sets small from the topological standpoint, then
give me f , it’ll be nearly constant on each subset.

But if f doesn’t respect topology this FAILS!
Lebesgue: Look at sets of the form

{x|f(x) ∈ [(m− 1)2−n,m2−n]}

f is nearly constant on each of these subsets, regardless of topological niceness.
Now integrate.

But first we need to find the “volume” or “measure” of these sets! They will
be HIDEOUS... Integration theory is easy compared to assigning measures.

Lecture 5

Fri. 2/11/2011

§1 Measure

For a set E 6= φ define the power set

P(E) = 2E = {Γ : Γ ⊆ E}.

Definition 5.1: A subset B ⊆ P(E) is a σ-algebra it satisfies the following
properties:

12



Lecture 5 Notes on Measure Theory

1. E ∈ B.

2. B is closed under complementation: Γ ∈ B implies Γc = E\Γ ∈ B.

3. {Γn : n ≥ 1} ⊆ B implies
⋃∞
n=1 Γn ∈ B.

(If item 2 is satisfied just for finite instead of countable unions then we call B an
algebra.)

Note that items 2 and 3 imply that a countable intersection of elements in B
is in B, and a difference of sets in B is in B.

Definition 5.2: We call (E,B) is a measurable space. A measure on (E,B) is a
map µ : B → [0,∞] such that

1. µ(φ) = 0.

2. (Countable additivity) If {Γn : n ≥ 1} is a family of pairwise disjoint subsets
of E, then

µ

(
∞⋃
n=1

Γn

)
=
∞∑
n=1

µ(Γn),

i.e. the volume of the whole is the sum of the volume of the parts.

Compare this to the definition of a topological space—measurable spaces have
measureable sets while topologies have open sets.

Example 5.3: Define a measure µ on the integers Z by associating some µi ≥ 0
for each integer i, and setting

µ(Γ) =
∑
i∈Γ

µi.

Our strategy is to start with some class of nice, well-defined subsets, and
generate more.

Definition 5.4: For a family of subsets C ⊆ P(E), define the σ-algebra generated
by C, denoted by σ(C), to be the smallest σ-algebra containing C. In other words
it is the intersection of all σ-algebras containing C. (This is well-defined since the
power set is a σ-algebra containing C.)

If E is a topological space and C = {Γ ⊆ E : Γ open} then σ(C) = BE is
called the Borel σ-algebra.

Lebesgue showed that there exists a unique Borel σ-algebra on BRN such
that µRN (I) = vol(I).

13
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§2 Basic results

Proposition 5.5: 1. If A ⊆ B are sets in B then µ(A) ≤ µ(B).

2. (Countable subadditivity) Let {Γn : n ≥ 1} ⊆ B. Then

µ

(
∞⋃
n=1

Γn

)
≤

∞∑
n=1

µ(Γn).

(The sets are not necessarily disjoint, so the RHS counts “overlap.”)

3. A countable union of subsets of measure zero has measure 0.

4. We write Bn ↗ B if B1 ⊆ B2 ⊆ · · · and
⋃∞
n=1 Bn = B.

If Bn ↗ B then µ(Bn)↗ µ(B) (i.e. µ(Bn)→ µ(B) from below).

5. We write Bn ↘ B if B1 ⊇ B2 ⊇ · · · and
⋂∞
n=1Bn = B.

If Bn ↘ B and µ(B1) < ∞ then µ(Bn) ↘ µ(B) (i.e. µ(Bn) → µ(B) from
above).

Proof. 1. Note B\A ∈ B. Hence

µ(B) = µ(A) + µ(B\A) ≥ µ(A).

2. Let

Bn = Γn\
n−1⋃
m=1

Γm.

Then by countable additivity,

µ

(
∞⋃
n=1

Γn

)
= µ

(
∞⋃
n=1

Bn

)
≤

∞∑
n=1

µ(Bn) ≤
∞∑
n=1

µ(Γn).

In the last step we used Bn ⊆ Γn and part 1.

3. Follows directly from part 2.

4. Like in part 2, take An = Bn\Bn−1. Then

µ(Bn) =
n∑

m=1

µ(Am)↗
∞∑
m=1

µ(Am) = µ(B).

5. By the previous part, B1\Bn ↗ B1\B giving µ(B1\Bn)↗ µ(B1\B).

Now use µ(B\A) = µ(B)− µ(A), which holds because µ(B) <∞.

14



Lecture 6 Notes on Measure Theory

Note item 5 is false without the assumption that µ(B1) < ∞. For example,
consider the measure on Z with µ(Γ) = |Γ|, and take Bn = {i : i ≥ n}.

Note from item 3, the existence of Lebesgue measure implies R, or any interval
of R, is uncountable, since all countable subsets have measure 0 and any interval
does not.

Definition 5.6: We say C is a Π-system if C is closed under intersection, i.e. if
A ∈ C and B ∈ C then A ∩B ∈ C.

Lecture 6

Mon. 2/14/2011

§1 More on σ-algebras

We give another characterization of σ(C), the smallest σ-algebra containing C.
Definition 6.1: We say that H is a Λ-system if

1. E ∈ H.

2. If A,B ∈ H and A ∩B = φ then A ∪B ∈ H.

3. If A,B ∈ H and A ⊆ B then B\A ∈ H.

4. If {An : n ≥ 1} ⊆ H and An ↗ A then A ∈ H.

Theorem 6.2: Suppose C is a Π-system with C ⊆ P(E). Let µ, ν on σ(C) be
such that µ(E) = ν(E) <∞ and µ(A) = ν(A) for all A ∈ C. Then µ(A) = ν(A)
for all A ∈ σ(C).

If two measures agree on the whole set E and a Π-system, then they agree on
the smallest σ-algebra generated by the Π-system. (cf. Two continuous functions
equal on a dense set are equal on the whole set.)

Proof. The set of subsets H′ on which µ and ν agree satisfy conditions 1 (by
assumption) and 2 (by additivity). It satisfies condition 3 because µ(B\A) =
µ(B)− µ(A) (measures are finite). It satisfies condition 4 by Proposition 5.5(4).
Hence H′ is a Λ-system. (This is the motivation for the definition of a Λ-system.)

It suffices to show that

σ(C) =
⋂
{H : H is Λ-system containing C} =: H0.

(In other words σ(C) is the smallest Γ-system containing C.)
We first show that H0 is a σ-algebra.

Lemma 6.3: B is a σ-algebra iff B is both a Π and Λ-system.

15
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Proof. The forward direction is clear. For the reverse direction, take B = E in
condition 3 to see B is closed under complementation. If A,B ∈ B then A∪B ∈ B,
since we can write A ∪ B as a union of disjoint sets in B and use condition 2 as
follows:

A ∪B = A ∪ (B\(A ∩B)).

Thus (by induction) B is closed under finite union. Now consider {An : n ≥ 1} ⊆
B. Then

⋃∞
m=1 Am ↗

⋃∞
m=1Am so by condition 4,

⋃∞
m=1Am ⊆ B, and B is closed

under countable union.

Now H0 is a Λ-system because it is the intersection of a family of Λ-systems.
Now

H1 = {Γ ⊆ E : Γ ∩ A ⊆ H0 for every A ∈ C}

is a Λ-system (check it!). Since C is a Π-system, C ⊆ H1 and hence H1 ⊇ H0 (H0

being the smallest Λ-system containing C). This gives

Γ ∩ A ∈ H0 for every Γ ∈ H0,∆ ∈ C. (1)

Let
H2 = {Γ ⊆ E : Γ ∩ A ∈ H0 for every A ∈ H0}.

Then H2 is a Λ-system; it contains C by (1). Hence H0 ⊆ H2, and H is a
Π-system.

Given (E,B, µ), can we extend the measure to an even larger σ-algebra? Yes.

Definition 6.4: Define the completion of B with respect to µ as

B̄µ = {Γ ⊆ E : there exist A,B ∈ B, A ⊆ Γ ⊆ B, µ(B\A) = 0}.

We can define a measure µ̄ on B̄µ defined by

µ̄(Γ) = µ(A).

(This is well-defined because if Ai ⊆ Γ ⊆ Bi and µ(Bi\Ai) = 0 for i = 1, 2 then
µ(A1) ≤ µ(B2) = µ(A2) ≤ µ(B1) = µ(A1) so µ(A1) = µ(A2).) Then (E, B̄µ, µ̄) is
called the completion of (E,B, µ).

This is again a σ-algebra: Indeed A ⊆ Γ ⊆ B implies Bc ⊆ Γc ⊆ Ac with
µ(Ac\Bc) = µ(B\A). Similarly it’s closed under countable union.

Definition 6.5: Let G(E) denote the open sets of the topological space E, and
let B = σ(G(E)) be the Borel algebra with measure µ. Γ ⊆ E is µ-regular if
for every ε > 0 there exists F ∈ F(E) such that G ∈ G(E), F ⊆ Γ ⊆ G and
µ(G\F ) < ε.

Restrict choice of bread: Upper slice is open and bottom slice is closed. But
we’re more lenient about the middle: it doesn’t have to be 0, just less than ε.

Proposition 6.6: A regular set is in the completion.

16
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Proof. Take Gn ⊇ Γ ⊇ F with the property that µ(Gn\Fn) ≤ 1
n
. Without

loss generality we may assume that the Gn are decreasing. (Replace Gn with⋂n
m=1Gm.) Similarly we may assume that Fn are increasing. Let

D =
∞⋂
n=1

Gn, C =
∞⋃
n=1

Fn

D is not necessarily open and C is not necessarily closed but both are Borel set.
Hence they are in B (as countable intersections/complements of elements in B
are in B, and open sets are in B.

Given a topology E, let Gδ(E) be the set of countable intersections of open
sets, and let Fσ(E) be the set of countable unions of closed sets. If E is a metric
space, the open sets are in Fσ(E). closed under ctable unions Clsoed sets are
in Gδ(E). countable intersections Fσδ(E)=take countable unions of elements in
Fσ(E). Ad infinitum. Beyond countably infinitely many times, get all Borel
sets.

Lecture 7

Wed. 2/16/2011

§1 Constructing measures

Let (E, ρ) be a metric space, and R ⊆ P(E) be a family of compact subsets. Let
V be a map V : R → [0,∞). (Keep in mind the model that E = RN , R is the set
of closed rectangles, and V the volume of the rectangles.) Suppose the following
hold.

1. R is a Π-system, i.e. if I, J ∈ R then I ∩ J ∈ R.

2. φ ∈ R and V (φ) = 0.

3. If I ⊆ J then V (I) ≤ V (J).

4. Suppose {I1, . . . , In} ∈ R and J ∈ R.

(a) If J ⊆
⋃n
m=1 Im then V (J) ≤

∑n
m=1 V (Im).

(b) If J ⊇
⋃n
m=1 Im and the Im’s are non-overlapping then V (J) ≥

∑n
m=1 V (Im).

5. For all I ∈ R and all ε > 0, there exist I, I ′ ∈ R such that I ′′ ⊆ I◦, I ∈ I ′◦
and V (I ′) ≤ V (I ′′) + ε.

6. For all open G ∈ G(E) there exists a sequence {In : n ≥ 1} ⊆ R nonover-
lapping sets such that G =

⋃∞
m=1 In.

17
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Proposition 7.1: These properties hold for E = RN , R is the set of closed
rectangles, and V the volume of the rectangles.

Proof. Item 4 holds by Lemma 1.2. Item 5 holds since we can enlarge or shrink
R by a tiny bit. For item 6, consider a checkerboard of cubes of side length 2−n:

{k2−n + [0, 2−n]N : k ∈ ZN}

Take m < n and Q ∈ Cm, Q′ ∈ Cn. Either

1. The interiors of Q,Q′ intersect, and Q′ ⊆ Q, or

2. The interiors of Q,Q′ do not intersect.

I.e. “either Q′ is a descendant of Q or they are unrelated.”
We use a greedy algorithm to stuff cubes in G. We show that in fact item 6

can be done with cubes of arbitrarily small length.
By splitting G into bounded parts we may assume G is bounded. Let δ > 0

be given.
Let G0 = G and define the Gk,Ak inductively as follows. Let nk be the

smallest n such that there exist Q ∈ Cn for Q ⊆ Gk and 2−n < δ.
Let Ak = {Q ∈ Cnk : Q ⊆ G} and

Gk = Gk−1\
⋃

Q∈Cnk

Q.

Let

A =
∞⋃
n=1

An.

It is clear that A ⊆ G. Take a point x ∈ G. Take n sufficiently large; there’s
a cube from Cn such that x ∈ Cn. Either that cube was chosen or one of its
ancestors (which contains that cube) was chosen.

Our goal is to prove the following.

Theorem 7.2: Given conditions (1)–(6), there exists a Borel measure such that
µ(I) = V (I) for all I ∈ R.

Proof. We will proceed in the following steps.

1. Define µ̃ for all sets Γ ⊆ E by

µ̃(Γ) = inf

{
∞∑
n=1

V (In) : In ∈ R and Γ ⊆
∞⋃
m=1

Im

}
.

Then µ̃ is subadditive (Lemma 7.3).

18
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2. µ̃ of a countable family of nonoverlapping sets Jl of R is just the sum of
the volumes V (Jl). (A generalization of the fact that µ̃ agrees with V .)
(Lemma 7.4)

3. Give an alternate characterization of µ̃ (Proposition 8.1):

µ̃(Γ) = inf{µ̃(G) : G ∈ G(E) and Γ ⊆ G}.

4. Let L be the collection of Γ ⊆ E such that for every ε > 0 there exists
G ⊇ Γ with µ̃(G\Γ) < ε. Then L is a σ-algebra (Theorem 8.2).

5. µ = µ̃|L is a measure on L (Thereom 8.4).

Lemma 7.3: µ̃ is sub-additive, i.e.

µ̃

(
∞⋃
n=1

Γn

)
≤

∞∑
n=1

µ̃(Γn).

Proof. This is another application of the 2−mε trick. Given ε > 0, for each m,
choose {Im,n : n ≥ 1} ⊆ R such that

Γm ⊆
∞⋃
n=1

Im,n and
∞∑
n=1

V (Im,n) ≤ µ̃(Γm) + 2−mε.

The collection {Im,n : (m,n) ∈ N2} covers
⋃∞
m=1 Γm.

Since all terms are nonnegative, we can write the sum as an iterated sum.∑
(m,n)∈N2

V (Im,n) =
∑
m∈N

∑
n∈N

V (Im,n) ≤
∞∑
m=1

(
µ̃(Γm) + ε2−m

)
≤

∞∑
m=1

µ̃(Γm) + ε.

The lemma follows upon combining this with

∑
(m,n)∈Z

V (Im,n) ≥ µ̃

(
∞⋃
m=1

Im,n

)
.

Now we look for a σ-algebra Bµ ⊆ BE such that µ̃ on Bµ is a measure. We need
to check that µ̃(I) = V (I). In fact we check the following stronger statement.

Lemma 7.4: Let {J1, . . .} ⊆ R be a set of nonoverlapping rectangles. Then

µ̃

(
∞⋃
l=1

Jl

)
=
∞∑
l=1

V (Jl).
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Proof. First we check that equality holds when there are a finite number of Jl,
1 ≤ l ≤ L. Note “≤” holds because µ̃ is the infimum over all covers and Jl form a
cover for

⋃
Jl. We need to show “≥.” Let {Im : m ≥ 1} with

⋃L
l=1 Jl ⊆

⋃∞
m=1 Im.

Choose I ′m containing Im in its interior so that V (I ′m) ≤ V (Im) + ε2−m (same
trick!). Now

⋃L
l=1 Jl is compact as it is a finite union of compact sets. Since

∞⋃
m=1

I◦m ⊇
L⋃
l=1

Jl,

we can take a finite subcover of
⋃
Jl:

n⋃
m=1

I◦m ⊇
L⋃
l=1

Jl.

Consider the cover Il,m = Jl ∩ I ′m (so we can change order of summation). Note

I1,m, . . . , IL,m are nonoverlapping and I ′m ⊇
⋃L
l=1 Il,m. Then by condition 4,(

n∑
m=1

V (Im)

)
+ ε ≥

n∑
m=1

Vm(I ′m)
4

≥
n∑

m=1

L∑
l=1

V (Il,m)
4

≥
L∑
l=1

V (Jl).

Now take the infimum to get µ̃ (
⋃
Jl) on the left-hand side.

Now we extend to the infinite case. We want

µ̃

(
∞⋃
l=1

Jl

)
=
∞∑
l=1

V (Jl)

Note “≤” holds because µ̃ is the infimum over all covers and Jl form a cover. We
need to show “≥.” Use the finite case

µ̃

(
n⋃
l=1

Jl

)
≥

n∑
l=1

V (Jl)

and take n→∞ to get the equation above.

Lecture 8

Fri. 2/18/2011

§1 Constructing measures, continued

We continue to assume all 6 conditions given in the previous lecture.
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By assumption 6, given G ∈ G(E) we can write G =
⋃∞
m=1 Im. Lemma 7.4

says

µ̃(G) =
∞∑
m=1

V (Im).

It immediately follows that if G ∩G′ = φ then

µ̃(G ∪G′) = µ̃(G) + µ̃(G′).

(Just put the two families of rectangles together.)

Proposition 8.1:

µ̃(Γ) = inf{µ̃(G) : G ∈ G(E) and Γ ⊆ G}.

Proof. Now “≤” obviously holds.
We need to show that given

⋃∞
m=1 Im ⊇ Γ and ε > 0,

µ̃(G) ≤
n∑

m=1

V (Im) + ε.

Take I ′m so that I ′◦m ⊇ Im and V (I ′m) ≤ V (Im) + 2−mε. Now take

G =
∞⋃
m=1

I ′◦m.

We want a family of sets in P(E) that is a σ-algebra, such that the restriction
of µ̃ there is countably additive and hence a measure.

Let L be the collection of Γ ⊆ E such that for every ε > 0 there exists G ⊇ Γ
with µ̃(G\Γ) < ε.

Theorem 8.2: L is a σ-algebra.

Proof. 1. Every open set is in L:

G(E) ⊆ L.

2. L is closed under countable unions, by the 2−nε argument.

3. “Sets of measure 0” are in L:

µ̃(Γ) = 0 =⇒ Γ ∈ L.

(Take an open set U ⊇ Γ so that µ̃(Γ) ≤ ε.)

4. Compact sets are in L. We use the following lemma:
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Lemma 8.3: Suppose K,K ′ ⊂⊂ E with K ∩K ′ and K ∩K ′ = φ. (The
notation ⊂⊂ means “compact subset of”.) Then

µ̃(K ∪K ′) = µ̃(K) + µ̃(K ′).

Proof. “≤” holds by subadditivity.

We can find disjoint open subsets G,G′ containing K,K ′. Let H be an
open set such that H ⊇ K ∪K ′. Then

µ̃(H) ≥ µ̃((G ∩H) ∪ (G′ ∩H))
7.4
= µ̃(G ∩H) + µ̃(G′ ∩H)

= µ̃(K) + µ̃(K ′)

Taking the infimum of the LHS gives µ̃(K ∪K ′) by Lemma 8.1.

Now we show that if K ⊂⊂ E then K ∈ L. We need to show for ε > 0
there exists G ⊇ K so µ̃(G\K) < ε. We claim µ̃(K) <∞. By assumption
6, we can write K =

⋃∞
m=1 Im. For each Im we can choose open I ′m so

that I ′◦m ⊇ Im with V (I ′m) ≤ V (Im) + 1. We can choose a finite cover:
K ⊆

⋃n
m=1 I

′◦
m. Then µ̃(K) ≤

∑n
m=1 V (I ′◦m).

We can choose G ⊇ K so that µ̃(G) ≤ µ̃(K) + ε, i.e. µ̃(G) − µ̃(K) ≤ ε.
Look at G\K; it is open. (K is compact in a metric space, so closed.) Thus
by assumption 6, we can write G\K =

⋃n
m=1 Im. Now we show

µ̃

(
K ∪

n⋃
m=1

Im

)
≤ µ̃(G)

Now K ∪
⋃n
m=1 Im is compact because it is a finite union of compact sets.

They are disjoint so by the Lemma 7.4 the volume is

µ̃(K) +
n∑

m=1

V (Im).

Hence

µ̃(G\K) =
∞∑
m=1

V (Im) ≤ ε.

So K is in L.

5. Closed sets F are in L. Indeed, write E =
⋃∞
m=1 Im (assumption 6). Given

closed F , Fn = G∩
⋃n
m=1 Im is compact (because a closed set in a compact

set is compact) and hence in L by item 3. Now F =
⋃∞
n=1 Fn, so by item 2

(L closed under countable union), F ∈ L.
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6. Countable unions of closed sets are in L, i.e. Fσ(E) ⊆ L: Use item 5 and
item 2 (L closed under countable union).

7. If Γ ∈ L then Γc ∈ L. Given Γ ∈ L, choose Gn ⊇ Γ so that µ̃(Gn\Γ) ≤ 1
n
.

Let D =
⋂∞
n=1Gn. Then D ∈ Gδ(E), D ⊇ Γ, and µ̃(D\Γ) = 0. Hence

D\Γ ∈ L by item 3.

Now Γc\Dc = D\Γ. So

Γc = Dc ∪ (Γc\Dc) ∈ L.

Note Dc ∈ Fσ(E) so Dc ∈ L by item 6. Hence D ∈ Fσ ⊆ L.
We’ve shown the three defining properties of a σ-algebra (Definition 5.1) in

items 1 (E is open), item 2 (closed under countable union), and item 7 (closed
under complements).

Theorem 8.4: µ = µ̃|L is a measure on L.

Proof. We need to show µ is countably additive. Since Γc ∈ L, given Γ ∈ L and
ε > 0 there exists F ∈ F(E), F ⊆ Γ so that µ̃(Γ\F ) < ε by the same trick.

Assume we have Γn, n ≥ 1 mutually disjoint, relatively compact (i.e. having
compact closure) sets in L. We first prove countable additivity in this case. Given
Kn ⊂⊂ E, for Kn ⊆ Γn. Thus

µ

(
∞⋃
m=1

Γm

)
≥ µ

(
n⋃

m=1

Γm

)
≥ µ

(
n⋃

m=1

Km

)
=

n∑
m=1

µ(Km).

Now take Kn such that µ(Γn) ≤ µ(Kn) + ε2−n and take n→∞.
The opposite inequality holds by subadditivity of µ̃.
For the general case, choose Im ∈ R so that E =

⋃∞
n=1 In, and let A1 = I1,

An+1 = In+1\
⋃n
m=1 Im. Then the An’s are mutually disjoint, relatively compact

sets in L, and so are Γm,n = Am∩Γn. Now use the previous part on the Γm,n.

Theorem 8.5 (Uniqueness):
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