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Problem 1 (Odd Maass forms)

We assume [ 0 −11 0 ] ∈ Γ.
Let g(z) = 1

4πi
∂f
∂x

(z). Note that if z = x+ yi,

f(z) = f0(y) +
∑
n 6=0

a(n)2y
1
2Ks− 1

2
(2π|n|y)e(nx)

then

g(z) =
1

4πi

∂f

∂x
(z) =

1

4πi

∑
n6=0

a(n)2y
1
2Ks− 1

2
(2π|n|y)2πine(nx).

Using this and the identity∫ ∞
0

Ks− 1
2
(y)yw

dy

y
= 2w−2Γ

(
w + s+ 1/2

2

)
Γ

(
w − s+ 1/2

2

)
,

we get∫ ∞
0

g(iy)yw+
1
2
dy

y
=

∫ ∞
0

1

4πi

∑
n6=0

a(n)2yw+1Ks− 1
2
(2π|n|y)2πine(nx)

dy

y

=
1

2π

∑
n6=0

a(n)

∫ ∞
0

Ks− 1
2
(2π|n|y)2πnyw+1dy

y

=
1

2π

∑
n6=0

a(n)

∫ ∞
0

Ks− 1
2
(y)2πn

yw+1

2w+1|n|w+1πw+1

dy

y

(
y ←[

y

2π|n|

)
=

1

2π

∑
n6=0

a(n)

|n|w sign(n)2wπw

∫ ∞
0

Ks− 1
2
(y)yw+1dy

y

=
1

2π

∑
n6=0

a(n)

|n|w sign(n)2wπw
2w−1Γ

(
w + s+ 3/2

2

)
Γ

(
w − s+ 3/2

2

)

=
1

2π

∞∑
n=1

2a(n)

2nwπw
Γ

(
w + s+ 3/2

2

)
Γ

(
w − s+ 3/2

2

)
(a(−n) = −a(n))
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=
1

2π
π−wΓ

(
w + s+ 3/2

2

)
Γ

(
w − s+ 3/2

2

) ∞∑
n=1

a(n)

nw

=
1

2π
L∗(w, f).

Multiplying by 2π fives

L∗(w, f) = 2π

∫ ∞
0

g(iy)yw+
1
2
dy

y
.

Note the RHS defines an absolutely convergent function for all w, sinceKs− 1
2
(y) ∼ (2π−1y)−

1
2 e−y

gives the convergence of the sum when y →∞, and the transformation f(iy) = f(i/y) gives
convergence when y → 0. This gives the analytic continuation of L∗(w, f).

Next note that f(iy) = f
(
i
y

)
gives g(iy) = y2g

(
i
y

)
(by the Chain Rule) so

L∗(1− w, f) = 2π

∫ ∞
0

g(iy)y−w−
3
2
dy

y

= 2π

∫ ∞
0

g

(
i

y

)
y2−w−

3
2
dy

y

= 2π

∫ 0

∞
g(iu)uw+

1
2u · −du

u2

(
y ←[

1

u

)
= 2π

∫ ∞
0

g(iu)uw+
1
2
du

u

= L∗(w, f).

Problem 2 (Properties of convolution)

If Y ∈ g and etY z = u(t) + iv(t), then Y acts on functions by

du(t)

dt

∣∣∣∣
t=0

∂

∂x
+ i

dv(t)

dt

∣∣∣∣
t=0

∂

∂y
.

Since we want derivatives at t = 0, it suffices to calculate the x and y derivatives of (I+tY )z;
the higher order terms in the power series expansion of etY have derivative 0 at t = 0. For
Y = F ,

(I + tF )z =

[
1 0
t 1

]
(x+ iy) =

x+ iy

t(x+ iy) + 1
=

tx2 + ty2 + x

(tx+ 1)2 + (ty)2
+

y

(tx+ 1)2 + (ty)2
i.

Taking the derivative with respect to t and setting t = 0 gives

(x2 + y2)− (tx2 + ty2 + x)(2(tx+ 1)x+ 2ty2)

((tx+ 1)2 + (ty)2)2
− y(2(tx+ 1)x+ 2ty2)

((tx+ 1)2 + (ty)2)2
i = (y2 − x2)− 2xyi.
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Hence

F = (y2 − x2) ∂
∂x
− 2xy

∂

∂y
.

Simlarly,

(I + tH)z =

[
1 + t 0

0 1− t

]
(x+ iy) =

1 + t

1− t
(x+ yi).

Taking the derivative with respect to t and setting t = 0 gives

2

(1− t)2
(x+ iy) = 2x+ 2yi.

Hence

H = 2x
∂

∂x
+ 2y

∂

∂y
.

Then

C =
1

2
H2 + EF + FE

=
1

2
· 2
(
x
∂

∂x
2

(
x
∂

∂x
+ y

∂

∂y

)
+ y

∂

∂y
2

(
x
∂

∂x
+ y

∂

∂y

))
+

∂

∂x

(
(y2 − x2)

∂

∂x
− 2xy

∂

∂y

)
+

(
2(y2 − x2)

∂2

∂x2
− 4xy

∂2

∂y∂x

)
= 2

(
x

(
∂

∂x
+ x

∂2

∂x2

)
+
��

���
2xy

∂2

∂x∂y
+ y

(
∂

∂y
+ y

∂2

∂y2

))
+

(
−2x

∂

∂x
+ (y2 − x2)

∂2

∂x2
− 2y

(
∂

∂y
+
�

�
��x
∂2

∂x∂y

))
+

(
(y2 − x2)

∂2

∂x2
−
��

���
2xy

∂2

∂y∂x

)
= 2y2

(
∂2

∂x2
+

∂2

∂y2

)
= −2∆.

Problem 3 (Properties of convolution)

(i)
Given that f is continuous and g ∈ C∞0 (G),

(f ∗ g)(x) =

∫
G

f(y)g(y−1x) dy

is in C∞(G) because the integrand f(y)g(y−1x) is a C∞ function in x that vanishes off a
compact set; to take derivatives of f ∗ g we may take them inside the integral.
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Given D ∈ U(g),

D(f ∗ g) =
d

dt
(f ∗ g)(xetD)|t=0

=
d

dt

∫
G

f(y)g(y−1xetD) dy|t=0

=

∫
G

f(y)
d

dt
g(y−1xetD)|t=0 dy

=

∫
G

f(y)Dg(y−1x) dy.

(ii)
Given f, g, h locally integrable with g, h having compact support,

(f ∗ (g ∗ h))(x) =

∫
G

f(xy)(g ∗ h)(y−1) dy

=

∫
G

f(xy)

∫
G

g(y−1z)h(z−1) dz dy

=

∫
G

∫
G

f(xy)g(y−1z)h(z−1) dy dz (Fubini)

=

∫
G

∫
G

f(xy)g(y−1z) dy h(z−1) dz

=

∫
G

∫
G

f(xzy)g(y−1) dy h(z−1) dz (y ←[ z−1y)

=

∫
G

(f ∗ g)(xz)h(z−1) dz

= ((f ∗ g) ∗ h)(x).

Note the integrand in the double integral is integrable because if g has support K1 and h has
support K2 then g(y−1z)h(z), as a function of (y, z), has support contained in K2K

−1
1 ×K2,

which is compact.

Problem 4 (Converging harmonic functions)

For a set S let Br(S) = {x|∃y ∈ S, d(x, y) < r}.
Let K be a compact subset of U . Choose R so that BR(K) ⊆ U . Let ϕ ∈ C∞(BR(0)) be

radially symmetric with integral 1. Let ϕy(x) = ϕ(x− y). Note ϕy has support contained in
U . By the Mean Value Property for harmonic functions,

fi(y) = fi(y)

∫
BR(0)

ϕ(x) dx

= fi(y)2π

∫ R

0

rϕ(r) dr

=

∫ R

0

rϕ(r)2πfi(y) dr
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=

∫ R

0

∫ 2π

0

rϕ(r(cos θ, sin θ))fi(y + r(cos θ, sin θ)) dθ dr MVP and radial symmetry of ϕ

=

∫
BR(y)

ϕ(x− y)fi(x) dx

= (fi ∗ ϕ)(y) =

∫
BR(y)

ϕy(x)fi(x) dx.

By assumption (fi ∗ ϕ)(y) converges as i→∞, so fi(y) converges pointwise on K.
LetB = {ϕy|y ∈ K}. The Tfi are linear operators on the test functions with supi∈N |Tfi(g)| <

∞ for each g ∈ B, since Tfi(g) =
∫
BR(y)

ϕy(x)fi(x) dx converges to a finite limit. Hence by

the uniform boundedness principle for Fréchet spaces, the Tfi are equicontinuous, giving
that the fi are equicontinuous. (Equicontinuity of the Tfi and the fact that ϕy′ → ϕy
when y′ → y give that, for a given ε > 0, there exists δ > 0 so that d(y, y′) < δ implies
supy |Tfiϕy′ − Tfiϕy| < ε. But this equals supy |fi(y′) − fi(y)| by our calculations above so
we get supy |fi(y′)− fi(y)| < ε for all y, y′ with d(y, y′) < δ.) Since the fi are equicontinuous
and converge pointwise, they converge uniformly.

To see f = limi→∞ fi is harmonic, take the limit of

fi(y) =
1

πR2

∫
BR(y)

fi(x) dx

as i → ∞, now legal since the fi converge uniformly, to conclude that the mean value
property holds for f , and hence that f is harmonic.
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