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Problem 1 (C has real eigenvalues)

It suffices to show that C is self-adjoint, that is,

〈f, Ch〉 = 〈Cf, h〉

for all automorphic forms f, h ∈ L2. Then it will follow that all eigenvalues of C on this
space are real.

By writing f, h as the sum of functions with specific K-type, we can reduce to the case
where f has K-type m1 and h has K-type m2. Then

〈f, h〉 =

∫
Γ\G

fh dg =

∫
Γ\G/K

∫
K

f(gk)h(gk) dµdk =

∫
Γ\G/K

∫
K

f(g)h(g)χm1(k1)χm2(k1) dµdk

If m1 6= m2, integrating over K gives 0, and the assertion is obvious. If m1 = m2, then
χm1(k1)χm2(k1) = 1 and

〈f, h〉 =

∫
Γ\G/K

f(g)h(g) dg

C ∈ Z so C commutes with right translation, and if f has K-type m then so does Cf . Using
the fact that C = −2∆ and Green’s identity, noting that f, g vanish at ∞, we get, with
appropriate normalization,

〈f, Cg〉 =

∫
Γ\G/K

f(Cg) dµ

= −2

∫
Γ\H

f(∆g) dµ

= −2

∫
Γ\H

(∆f)g dµ

=

∫
Γ\G/K

(Cf)g dµ

= 〈Cf, g〉

as needed.
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Problem 2

Lemma 2.1: For f ∈ L2(Γ\G) and ϕ ∈ C1
c (G), there exists a constant C depending on ϕ

so that
|(f ∗ ϕ)(x)| ≤ Ca(x)ρ ‖f‖2 .

(The L2 norm is with respect to Γ\G.)

Proof. Since f, f ∗ ϕ are left Γ-invariant and a fundamental domain for Γ\G can be covered
by finitely many Siegel sets, it suffices to prove this for x in some Siegel set Sω,t = ωAtK
relative to a cuspidal parabolic P .

Let U be a relatively compact, symmetric neighborhood containing Suppϕ. We have, by
Cauchy-Schwarz,

|f ∗ α(x)| =
∣∣∣∣∫
G

f(y)ϕ(y−1x) dy

∣∣∣∣
=

∣∣∣∣∫
xU

f(y)ϕ(y−1x) dy

∣∣∣∣
≤
(∫

G

|ϕ(y)|2 dy
) 1

2
(∫

xU

|f(y)|2 dy
) 1

2

. (1)

Since U is relatively compact, so is KU , and we can find compact subsets CA ⊆ A and
CN ⊆ N such that KU ⊆ CNCAK. Then

xU = n(x)a(x)k(x)U ⊆ ωa(x)CNCAK =
(
ωa(x)CNa(x)−1

)
a(x)CAK.

Note conjugation by a(x) corresponds to dilation by a(x)2ρ on N , that ωa(x)CNa(x)−1 ⊆ N ,
and a(x)CA ⊆ At′ for some fixed t′ (since CA is compact; therefore a(y)ρ has a minimum
for y ∈ CA). Hence this set is contained in at most ka(x)2ρ fundamental domains for some
constant k. Therefore,(∫

xU

|f(y)|2 dy
) 1

2

≤ k
1
2a(x)ρ

(∫
Γ\G
|f(y)|2 dy

) 1
2

,

which together with (1) gives the desired estimate.

Lemma 2.2: For f ∈ ◦L2(Γ\G) and ϕ ∈ C1
c (G), there exists a constant C depending on ϕ

so that
|(f ∗ ϕ)(x)| ≤ C ‖f‖2 .

Proof. Let P be a cuspidal parabolic subgroup for G and S a Siegel set relative to P . Then
by Borel (5.7), there exists c1 depending on ϕ so that

|(f ∗ ϕ)(x)| ≤ c1 ‖f‖2 a(x)ρ

for all f ∈ L2(Γ\G). Since D(f ∗ϕ) = f ∗ (Dϕ), by Borel (5.7) there exists c2 depending on
ϕ,D such that

|(D(f ∗ ϕ))(x)| ≤ c2 ‖f‖2 a(x)ρ
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Integrate D(f ∗ϕ)(nx) over ΓN\N , noting that a(nx) = a(x) for n ∈ N , to get the constant
term satisfies the inequality

|(D(f ∗ ϕ)P )(x)| ≤ c2 ‖f‖2 a(x)ρ

Since f is cuspidal, fP = 0 and (f ∗ ϕ)P = 0. Then by Lemma 9.1.1 in the notes,

|(f ∗ ϕ)(x) = |((f ∗ ϕ)− (f ∗ ϕ)P )(x)|

≤ c3a(x)−α

(
3∑
i=1

|Xi(f ∗ ϕ)|P (x)

)
≤ C ′ ‖f‖2 a(x)ρ−α

for some C ′. Since α = 2ρ,

|(D(f ∗ ϕ)P )(x)| � ‖f‖p max(a(x)ρ, a(x)−ρ).

Either ρ ≤ 0 or −ρ ≤ 0, giving the desired bound on a Siegel set corresponding to P . The
result follows since Γ\G is covered by finitely many Siegel sets.

From the lemma, since D(f ∗ ϕ) = f ∗ (Dϕ), we also get

|D(f ∗ ϕ)(x)| ≤ C ‖f‖2

for C depending on D,ϕ.
Consider a subset U of Γ\G that is the homeomorphic image of a neighborhood of G

with coordinates x1, x2, x3. Consider a bounded subset S of ◦L2(Γ\G). Then by the above,
the image T of S under ∗ϕ is bounded; and inside U , its derivatives with respect to x1, x2, x3

are also bounded. Hence the functions in T , restricted to U , are equicontinuous. By Arzela-
Ascoli, any sequence fn∗ϕ in ◦L2(Γ\G) has a uniformly convergent subsequence fni

∗ϕ, when
we restrict the domain to U . Covering Γ\G with countably many such subsets U and using a
diagonalization argument, there exist fni

∗ϕ that converge locally uniformly to a continuous
bounded function f . Hence T is sequentially compact, and T is relatively compact.

Problem 3

Write P = P0 and N = N0. We know that the constant term of EP,s(g) is ϕP,s(g) +
c(s)ϕP,−s(g) for some meromorphic c(s). By Bruhat decomposition (4.7.1),

Γ = SL2(Z) = ΓP t
⋃
c>0

⋃
d (mod×c)

ΓP

[
∗ ∗
c d

]
ΓP .

Calling the second part Γw, this gives

ΓP\Γw/ΓN =

{[
∗ ∗
c d

]
: 0 ≤ d < c, gcd(c, d) = 1

}
.
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The constant term of EP,s is

(EP,s)P =

∫
ΓN\N

ϕP,s(ng) +
∑

γ∈ΓP \Γw

ϕP,s(γng)

 dn (2)

The first term gives ϕP,s(g), so we focus on the second term. As in the notes (Lemma 10.2.3),
we unfold the integral over ΓN\N to one over N .∑

γ∈ΓN\Γw

∫
ΓN\N

ϕP,s(γng) dn =
∑

γ∈ΓN\Γw/ΓN

∑
δ∈ΓN

∫
ΓN\N

ϕP,s(γδng) dn

=
∑

γ∈ΓP \Γw/ΓN

∫
N

ϕP,s(γnx) dn

=
∑

0≤d<c, gcd(c,d)=1

∫
R
ϕP,s

([
∗ ∗
c d

] [
1 x
0 1

])
dx

We know this is a multiple of ϕs(g). To find the coefficient, we simply need to evaluate at
g = I:

∑
0≤d<c, gcd(c,d)=1

∫
R
ϕP,s

([
∗ ∗
c d

] [
1 x
0 1

])
dx =

∑
0≤d<c, gcd(c,d)=1

∫
R

y
s+1
2 ϕP

([
∗ ∗
c d

] [
1 x
0 1

])
|cz + d|s+1

dx

where z =

([
1 x
0 1

]
i

)
= i + x and y = =

([
1 x
0 1

]
i

)
= 1. Since cz + d = (cx + d) + ci,

assuming the K-type is 0, this equals

∑
0≤d<c, gcd(c,d)=1

∫
R

ϕP

([
∗ ∗
c d

] [
1 x
0 1

])
((cx+ d)2 + c2)

s+1
2

dx =
∑

0≤d<c, gcd(c,d)=1

c−(s+1)

∫
R

1((
x+

(
d
c

))2
+ 1
) s+1

2

dx

=
∞∑
c=1

ϕ(c)c−(s+1)

∫
R

1((
x+

(
d
c

))2
+ 1
) s+1

2

dx

=
∞∑
c=1

ϕ(c)c−(s+1)

∫
R

1

(x2 + 1)
s+1
2

dx

=
ζ(s+ 1)

ζ(s)

√
πΓ
(
s
2

)(
s+1

2

) ,

where for the last step we use
∞∑
c=1

ϕ(c)c−(s+1) =
ζ(s+ 1)

ζ(s)
(3)∫

R

1

(x2 + 1)
s+1
2

=
Γ
(

1
2

)
Γ
(
s
2

)
Γ
(
s+1

2

) . (4)
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To show (3), note that(
∞∑
c=1

ϕ(s)c−(s+1) dx

)
ζ(s+ 1) =

(
∞∑
c=1

ϕ(s)

c
c−s) dx

)(
∞∑
c=1

1

c
c−s dx

)

=
∞∑
c=1

∑
ab=c

ϕ(a)

a

1

b
c−s

=
∞∑
c=1

1

c

∑
a|c

ϕ(a)c−s

=
∞∑
c=1

c−s

= ζ(s),

where we used
∑

a|c ϕ(a) = c. For equation (4), see Theory of Integration, D. Stroock,

5.2.20(ii).
So

(EP,s)P = ϕP,s(g) +
ζ(s+ 1)

ζ(s)

√
πΓ
(
s
2

)(
s+1

2

) ϕP,−s.

Note that P0 is the sole parabolic subgroup of Γ = SL2(Z) up to conjugation. The system
of equations is, for Fµ(s, g) a linear combination of µi’s,

1. For any ϕ ∈ C∞c (G), ∫
G

Fµ(s, g)

(
C − s2 − 1

2

)
ϕ(g) dg = 0.

2. Letting ψ be the characteristic function on a Siegel set for P and Λt(f) = f − ψfP ,

Fµ(s) = Ψµ(s) + g(s)

g(s) = −(Λt ◦ (∗α)− λα(s))−1(Λt(Ψµ(s) ∗ α))

Ψµ(s) = µ+ψϕP,s + µ−ψϕP,−s

3. Λt(Fµ(s) ∗ α) = λα(s)Λt(Fµ(s)).

4. µ+ = 1

Uniqueness follows from Lemma 10.3.8 in the notes.
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