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Problem 1 (Odd Maass forms)
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_ %w—wr <w + 32+ 3/2> r (w — 52+ 3/2) i %

n=1

Multiplying by 27 fives
. X werdy
L*(w, f) = 27T/ 9(iy)y +2;-
0

Note the RHS defines an absolutely convergent function for all w, since K,_1 (y) ~ (2n ty)"2e¥

gives the convergence of the sum when y — oo, and the transformation f(iy) = f(i/y) gives
convergence when y — 0. This gives the analytic continuation of L*(w, f).

Next note that f(iy) = f (%) gives g(iy) = y*g (é) (by the Chain Rule) so
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Problem 2 (Properties of convolution)
IfY € gand ez = u(t) +iv(t), then Y acts on functions by

9
1—0 Oy ‘

du(t)
dt

0 n dv(t)
ox "t

t=0

Since we want derivatives at t = 0, it suffices to calculate the x and y derivatives of (I +tY")z;

the higher order terms in the power series expansion of e/¥ have derivative 0 at ¢t = 0. For
Y =F,

1 0 , T+ 1y tr? +ty* + o Y ,
I+ tF)z = = = .
(T+1F)z {t 1} (z + 1) tlx+iy)+1  (tx+1)2+ (ty)2  (tz+1)2+ (ty)QZ

Taking the derivative with respect to t and setting t = 0 gives

(y* — 2%) — 2wyi.

(22 + y?) — (ta® + ty* + 2)(2(tx + 1)z + 2ty?) Y@z + Dz + 2ty2)l, B
((tr +1)% + (ty)?)? ((tr+1)2+ (ty)?)?
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Hence 9 9
F=(y—2a? 21y ——.
(v = %) 5 = Wy,
Simlarly,
1+t 0 . +1 .
(I—l—tH)z—[ 0 1_t](x+zy)—1_t(x+yz).

Taking the derivative with respect to ¢ and setting ¢ = 0 gives

2 , .
T (x +1iy) = 2z + 2yi.
Hence 9 9
H=2z— +2y—.
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Problem 3 (Properties of convolution)

(i)

Given that f is continuous and g € C§°(G),

0= [ raty

is in C*°(G) because the integrand f(y)g(y~'z) is a C* function in z that vanishes off a
compact set; to take derivatives of f * g we may take them inside the integral.
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Given D € U(g),
D(f % g) = (] # 9) (we)eco
=5 | 1wt e i

= [ 1) ot e imndy
= /G f(y)Dg(y™'x) dy
(i)

Given f, g, h locally integrable with g, h having compact support,

(f*x(g*h)) /fxy (g*h)(y™)dy

z/Gf(xy)/Gg(y‘ 2h(z") dzdy

_ /G /G Fley)gly™ 2)h(="") dy dz (Fubini)

z//f(xy)g(y‘lz) dyh(z7")dz
//f:vzy Ddyh(z")dz (y < 27'y)

= [ a:

— ((F *.9) * W)@).

Note the integrand in the double integral is integrable because if g has support K and h has
support Ky then g(y~'2)h(2), as a function of (y, z), has support contained in KyK; ' x Ky,
which is compact.

Problem 4 (Converging harmonic functions)

For a set S let B,(S) = {z|3y € S,d(x,y) < r}.

Let K be a compact subset of U. Choose R so that Br(K) C U. Let p € C*(Bg(0)) be
radially symmetric with integral 1. Let ¢,(x) = ¢(x —y). Note ¢, has support contained in
U. By the Mean Value Property for harmonic functions,

fiw) = fi(w) / L

= fi(y)27r/0 ro(r)dr
:/0 ro(r)2m f;(y) dr
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R s
= / /2 ro(r(cosf,sinf)) fi(y + r(cosd,sin ) df dr MVP and radial symmetry of ¢
o Jo
= / p(x —y) fi(z) do
Br(y)
—(fr)o) = [ plalfte) de

Br(y)

By assumption (f; * ¢)(y) converges as ¢ — 00, so f;(y) converges pointwise on K.

Let B = {p,|y € K'}. The T}, are linear operators on the test functions with sup,cy |17, (9)| <
oo for each g € B, since Ty, (g) = fBR(y) y(x) fi(x) doz converges to a finite limit. Hence by
the uniform boundedness principle for Fréchet spaces, the T, are equicontinuous, giving
that the f; are equicontinuous. (Equicontinuity of the T, and the fact that ¢, — ¢,
when ¢y — y give that, for a given € > 0, there exists § > 0 so that d(y,y’) < ¢ implies
sup, | Ty, — Ty, 04| < €. But this equals sup, |fi(y') — fi(y)| by our calculations above so
we get sup, |fi(y') — fi(y)| < e for all y,y’ with d(y,y’) < d.) Since the f; are equicontinuous
and converge pointwise, they converge uniformly:.

To see f = lim;_,, f; is harmonic, take the limit of

B 1
TR? Br(y)

fi(y) filx) d

as i — 0o, now legal since the f; converge uniformly, to conclude that the mean value
property holds for f, and hence that f is harmonic.
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