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Problem 1 (Commensurability)

(A)
It follows directly from the definition that commensurability is reflexive and symmetric. We
prove it is transitive. Suppose Γ ∼ Γ′ and Γ′ ∼ Γ′′. Then

[Γ : Γ ∩ Γ′] <∞, [Γ′ : Γ′ ∩ Γ′′] <∞.

Note that there is an injection (of sets)

Γ ∩ Γ′

Γ ∩ Γ′ ∩ Γ′′
↪→ Γ′

Γ′ ∩ Γ′′
.

Hence

[Γ : Γ ∩ Γ′′] ≤ [Γ : Γ ∩ Γ′ ∩ Γ′′] = [Γ : Γ ∩ Γ′][Γ ∩ Γ′ : Γ ∩ Γ′ ∩ Γ′′]

≤ [Γ : Γ ∩ Γ′][Γ′ : Γ′ ∩ Γ′′] <∞.

By symmetry [Γ′′ : Γ ∩ Γ′′] <∞ as well. Hence Γ ∼ Γ′′.
Hence commensurability is an equivalence relation.

(B)
Suppose Γ is discrete and commensurable with Γ′; we will show Γ′ is discrete. The subgroup
Γ ∩ Γ′ is discrete, so we may replace Γ with Γ ∩ Γ′ and assume Γ ⊆ Γ′.

Since {1} is open in Γ, there exists an open set U ⊆ Γ′ such that U ∩ Γ = {1}. For
each coset of Γ that U intersects, choose an element xi. Let x1 = 1, x2, . . . , xn be the chosen
elements. (n is finite since [Γ′ : Γ] < ∞.) Since multiplication is a homeomorphism, x−1

i U
are all open in Γ′. Let V =

⋂n
i=1 x

−1
i U . If x ∈ V then xix ∈ U for all i. However the xix

are all in different cosets of Γ in Γ′, so they must represent all n cosets that intersect U , in
particular, Γ. Hence xix ∈ Γ for some i. Since xix ∈ U , from definition of Γ we get xix = 1.
Hence x = x−1

i . This shows that V ⊆ {x−1
i |1 ≤ i ≤ n}. Note 1 ∈ V .

Since G is a T1-space, for 2 ≤ i ≤ n there exists a neighborhood Wi around 1 containing
1 but not x−1

i . Then W =
⋂n
i=2Wi is a neighborhood around 1 containing 1 but none of the

other xi. Then V ∩W = {1} is open in Γ′. All translates of {1} in Γ′ are open in Γ′ so Γ′ is
discrete.
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(C)

Lemma 1.1: Let X be a locally compact topological space on which the group H acts.
Then H\X is locally compact.

Proof. Let x̄ be a point in H\X; suppose it is the image of x ∈ X under π : X → H\X. By
local compactness of X there exists a compact set Kx around x containing a neighborhood
Ux of x. Let Vx = π(Ux). Then

π−1(Vx) =
⋃
h∈H

hUx, (1)

which is open because the translates hUx are all open. Since π is a quotient map, Vx is open.
Now π(Kx) is a compact subset of H\X containing Vx. Hence H\X is locally compact.

Lemma 1.2: Let X be a topological space on which the group H acts. Suppose H\X is
compact, H ′ ⊆ H, and [H : H ′] is finite. Then H ′\X is compact.

Proof. Let x̄ be a point in H\X; suppose it is the image of x ∈ H ′\X under π : H ′\X →
H\X. Define Ux, Vx, Kx as in Lemma 1.1 but with the quotient map π : H ′\X → H\X
instead. As shown, Vx is open.

Since H\X is compact and covered by Vx, there exist x1, . . . , xn such that H\X =⋃n
m=1 Vxm . Let h1, . . . , hl be coset representatives of H ′ in H, where l = [H : H ′] <∞. Then

n⋃
m=1

l⋃
k=1

hkKxm ⊇
n⋃

m=1

l⋃
k=1

hkUxm ⊇
n⋃

m=1

π−1(Vxm) = π−1

(
n⋃

m=1

Vxm

)
= π−1(H\X) = H ′\X.

Now each Kxm (and hence each hkKxm) is compact, so H ′\X is a finite union of compact
subsets and hence compact.

Suppose that the conditions in the problem hold and Γ\G is compact. Since G is locally
compact, from Lemma 1.1, Γ′∩Γ\G is locally compact. Thus we can apply Lemma 1.2 with
X = G, H = Γ, and H ′ = Γ′ ∩Γ, to find that Γ∩Γ′\G is compact. Then the quotient space
Γ∩Γ′\G

Γ′ = Γ′\G is also compact, as needed.

Problem 2 (Geodesics)

(A)
Suppose L is the half line defined by <(z) = k. Then the fractional linear transformation
γ(z) = z − k, i.e. given by γ = ( 1 −k

0 1 ) maps L to the positive imaginary axis.
Now suppose L is a semicircle centered at (x, 0) with radius r. First translate −x units

to the origin, and then dilate by 1
r
. Thus it suffices to find a fractional linear transformation

sending the unit semicircle centered at the origin to the positive imaginary axis. We claim
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that γ(z) = 2z+2
−z+1

works. Indeed, for t = cos θ, u = sin θ, t+ ui on the semicircle,

γ(t+ ui) =
2[(t+ 1) + ui]

(−t+ 1)− ui

=
2[(t+ 1) + ui][(−t+ 1) + ui]

(t− 1)2 + u2

=
2[(1− t2 − u2)]

(t− 1)2 + u2

=
4ui

(t− 1)2 + u2

=
4 sin θ

(cos θ − 1)2 + sin2 θ
i

=
2 sin θ

1− cos θ
i

= 2

(
cot

θ

2

)
i

so γ maps the semicircle surjectively to the positive imaginary axis.

(B)
Given any two points in H, there is a half-line or semicircle L going through them and
orthogonal to the real axis. Indeed, if x, y have the same real part then the first case holds;
in the second case x, y are on the circle centered at the intersection of their perpendicular
bisector with the real axis. By (A) an element γ ∈ SL2(R) transforms L into the positive
imaginary axis. Suppose it sends x, y to ai, bi with a < b.

We show that the unique geodesic between ai and bi is the vertical line segment joining
them. Since fractional linear transformations are isometries under the measure dµ = ds

y
,

applying γ−1 we may then conclude that the geodesic between x and y is the segment or arc
of L in between them.

Let (x(t), y(t)) be such that x(0) + y(0)i = ai and x(1) + y(1)i = bi. Then∫
ds =

∫
1

y

√
dx2 + dy2

=

∫ 1

0

1

y(t)

√
x′(t)2 + y′(t)2 dt

≥
∫ 1

0

y′(t)

y(t)
dt

= ln(y(t))|bt=a
= ln b− ln a

with equality only if x′(t) = 0 for all t, i.e. x(t) ≡ 0, and y′(t) is always positive, i.e. y(t) is
increasing from a to b. This path is just the line segment from ai to bi.
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Problem 3 (Set of elliptic points has no limit point)

Suppose that x is an elliptic point of Γ. Since Γ is a discrete subgroup of G, by Proposition
3.1.2(b), there exists a neighborhood U of x such that if γ ∈ Γ and U ∩γU 6= φ then γx = x.
Suppose y is an elliptic point of Γ and y ∈ U . Then there exists γ so that γy = y. Then
y ∈ U ∩ γU so U ∩ γU 6= φ and γx = x. But γ can only fix one point in H, so y = x. Thus
U ∩ Γ = {x}, and x is not a limit point.

Problem 4 (Fundamental domains have the same volume)

Let X be the topological space and D′ and D be two fundamental domains. We assume the
boundaries of D and D′ have zero volume.

Note that dµ is invariant under γ because it is the Haar measure. Note Γ is countable
as it is a discrete subgroup of PSL2(R), which has a countable base. Hence by countable
additivity (noting that D′ ∩ γ(D) for different γ are disjoint)

µ(D′) =
∑
γ∈Γ

µ(D′ ∩ γ(D))

=
∑
γ∈Γ

µ(D ∩ γ−1(D′)) (invariance of dµ under γ−1)

= µ

(⋃
γ∈Γ

D ∩ γ−1(D′)

)
,

the last step following since D ∩ γ−1(D′) are disjoint (otherwise there would be two Γ-
equivalent points in D′). Now

⋃
γ∈ΓD ∩ γ−1(D′) is contained in D̄. Hence µ(D′) ≤ µ(D̄) =

µ(D). Similarly µ(D) ≤ µ(D′). Hence µ(D) = µ(D′).

Problem 5 (Co-compact iff no parabolic elements)

Suppose Γ has no parabolic elements. Then H∗ = H ∪ PΓ = H. Hence Γ\H = Γ\H∗. But
the latter is compact because Γ is Fuschian of the first kind. (Use Proposition 3.6.2(3), which
says every fundamental domain has finite volume, and Siegel’s Theorem.)

Now suppose Γ has a parabolic element. Let z be a cusp of Γ, considered in Γ\H∗. Since
Γ\H∗ is a Riemann surface we can take a neighborhood U around z homeomorphic to the
unit disc D in C, such that Ū ∼= D̄. Now consider Ū ∩ Γ\H. If Γ\H were compact, then
Ū ∩Γ\H would be compact (since it is a closed subset). Now Ū ∩Γ\H = Ū −PΓ. However,
there can be at most a countable number of cusps since Γ is countable. Hence Ū∩H ∼= D̄−S
where S is a countable set containing 0. Since every disc around 0 contains uncountably
many elements, 0 is a limit point of D̄ − S. Hence D̄ − S ⊆ C is not closed and hence not
compact, a contradiction. Hence H is not compact.
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Problem 6 (Fundamental domain for Γ0(N))

1. Find coset representatives: let S = [ 0 −1
1 0 ] and T = [ 1 1

0 1 ]. Consider a “tree” as follows.
Let I = [ 1 0

0 1 ] be the root, with a single branch leading to S. At the nth stage, each
leaf gives rise to several more vertices: if the leaf is labeled with the matrix M , then
let its descendants be labeled with MS, MT , or MT−1. If M was obtained from the
previous stage by multiplication by S, then we do not include the MS branch (because
S2 = −I is the identity transformation). If M was obtained from the previous stage
by multiplication by T, T−1 then we do not include the T−1, T branch, respectively,
since these are inverses.

Now choose elements of the tree as follows. Choose I, and at stage n, look at the
marked elements in the nth level of the tree. Look at all the descendants of those
elements, and mark those whose Γ0(N)-coset has not been represented by previous
marked elements. Continue until we reach a level where no elements are marked. We
will stop since Γ0(N) has finite index in SL2(Z), and we get all the coset representatives
since S = [ 0 −1

1 0 ] and T = [ 1 1
0 1 ] generate SL2(Z). (For each coset there’s an element

that can be written as a word containing a minimal number of S, T , and T−1’s; such an
element will be picked, as no subword ending at the rightmost letter will be replaceable
with a smaller subword representing the same coset.)

(Note that we do not have a branch from I to T because T ∈ Γ0(N).)

2. Let D be the standard fundamental domain. For each vertex on the graph, consider
its matrix M and associate to it the region MD̄.

Note that TD̄ is simply D̄ translated by 1, so is adjacent to D̄ (by the side defined by
<(z) = 1

2
, =(z) ≥

√
3/2). Note that SD̄ is the inversion of D̄, which is adjacent to D̄ via

the circular arc of radius 1 in D̄. Hence for any matrix M , MD̄ and MSD̄ are adjacent,
and MD̄ and MTD̄ are adjacent. Thus the fundamental regions corresponding to the
matrices that are adjacent in the tree are adjacent, and the regions corresponding to
the marked matrices form a connected domain D′.

3. Find the bounding geodesics: Each marked matrix in the tree such that its descendants
are not both marked has a side that is a side of D′. To find these sides, apply the
fractional transformation corresponding to that matrix to the vertices of D: ±1

2
+

√
3

2
i, i,∞. Then connect them with geodesics (vertical rays or semicircles orthogonal

to the real axis) and pick out the boundary.

(If an element has all its descendants marked, then it is surrounded on all sides by
other regions in D′.)

4. The interior of D′ is a fundamental domain. First we check that no two elements in
the interior of D′ are related by an element of Γ0(N). Let q1, q2 be two elements in D′◦.
Then there exist coset representatives M1,M2 such that q1 = M1p1 and q2 = M2p2

where p1, p2 ∈ D. Supposing that q1, q2 are related by an element of Γ0(N), we have
that p1, p2 are related by an element of SL2(Z). First assume p1 and p2 are in D; then
they must be equal since D is a fundamental region for SL2(Z). Then we must have
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M1 = M2 and hence q1 = q2. Now suppose p1, p2 are on the boundary of D. Then
q1, q2 must be on the boundary of some region in D′. Let B be the union of these
boundaries; note B has empty interior.

Let S be the set of points of D′◦ that are Γ0(N)-equivalent to a different point in D′◦.
We claim that S is open. Then since S ⊆ B, it will follow that S = φ.

Take p ∈ S; suppose γp = q, γ ∈ Γ0(N), p 6= q. Since γ is a homeomorphism,
there exist disjoint neighborhoods U, V around p, q contained in D′◦ so that γ is a
homeomorphism U → V . Then p ∈ U ⊆ S. Hence S is open, as needed.

Finally we show D′ “tiles” H. Indeed,⋃
γ∈Γ0(N)

γD′ =
⋃

γ∈Γ0(N)

⋃
M coset representative

γMD =
⋃

γ∈SL2(Z)

γD = H.
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