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Problem 1 (Simultaneous eigenfunctions of Hecke operators, with no Eu-
ler product expansion)

(A) Simultaneous eigenfunction

Lemma 1.1: Every double coset I'o(N)al'g(N) with o« € Go(N) is one of the double cosets

where dy,dy € (Zy)>o and g—f € N is relatively prime to N.

Proof. There exists n relatively prime to N so that na € GLy(Z). By the elementary divisors
theorem we can write
na = ;D' for some v;,72 € T'(1). (1)

where D’ = [Cgl ;ﬂ with positive dj|d}. Let d; = % and D=1D=1[% |- The determinant
of the LHS in is n?det(a) € ZY (since det(a) € Zx). The determinant of the RHS is
d\dj. Since d}, d), are integers, d} and d), must be in Zy. Since n is relatively prime to N, d;
and dy are also in Zy.

Let d = j—;. Note d = Z—i € N and d € Zy, so is a whole number relatively prime to N.
Now

a=7D,.

Let By = [dy 2] € To(d). Let
f1= (DD~

Then
a =7181DBrvs. (2)

=1 e

Note .
di 0 v x| |+ 0

-1 _ 1 d
e | A

so By € I'(1).
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Now we claim we can choose 3y € T'y(d) so that Says € To(N). If 4o =[5 ], then

ws +zxu  wt—+ xv

e = dys + zu dy +tzv|’

We will use the following.

Lemma 1.2: Let A, B, C be integers such that gecd(A, B,C) = 1. Then there exists k € Z
such that
ged(A, B+ kC) = 1.

Proof. For every prime p dividing A, p does not divide both B and C|, so there exists a
residue 7, modulo p such that B+ r,C # p (mod p). Now choose k so that k = r, (mod p)
for every p|A. O

Let y = —u and z = ds + Nk, k € Z. So dy = —du. Now ged(—du,ds, N) = 1 since
ged(u,s) = 1 (else 79 would not be invertible) and ged(N,d) = 1. Hence by the lemma
above we can find & so that ged(dy, z) = 1. Then by Bézout we can choose v,z to make [,
have determinant 1, and hence be in I'y(d). Note the bottom left entry of Sy, is Nku so
Bary2 € To(NV).

Let v = 7101 and 75 = [oye = [1\?;' f)/,] We have 74 € ['o(IN). We show that this
forces 71 € To(N). Let 7{ = [2, £,]. Then modulo N, the lower-left entry of a = ~{ D} is
s'u"dy + Nu'v"dy. Since o € Go(N), this must be divisible by N. Since N is relatively prime
to dy and to s’ (since N already divides the bottom-left entry of 44), we conclude N|u”, and
v, € To(INV). Thus (2)) follows, as needed. O

Lemma 1.3: Suppose p is a prime not dividing N. Then

To(NV) [(1) g} To(N) = To(N) [g ﬂ To(N) = To(N) [g (1)] |_|Z|):|;FD(N) [é ﬂ .

Proof. We first show that every element in the LHS is in the RHS. It suffices to show that

every element [2* 7] = [P9] [ b] is in (exactly) one of the cosets, i.e. [R¢PP]M~! €
Lo(N) for exactly one of the coset representatives M listed above. We have
{pa pb] {1 k} - {pa —ak + b] 3)
= —Nck+d
Ne d| |0 p Nc —0=
pa pbl [p 0" _[a pb (1)
Ne d) [0 1] — [5¢ d]°

The first is in Ig(N) iff Nck = d (mod p). If ¢ # 0 (mod p), since p ¥ N, there is exactly
one value of k such that this holds. If ¢ = 0 (mod p), then d Z 0 (mod p); else the matrix
would not be invertible in GLy(Zy). Hence Nck # d (mod p) for any choice of k, so (3
does not have integral entries, but does, and is in 'y (V).

To show the RHS is included in the LHS, it suffices to show that all of the cases above
are attainable. We can let ¢ = 1 and vary d modulo p to get the first p cases. (Since we can
vary d by multiples of p, we can choose d relatively prime to N.) The other entries can be
chosen by Bézout’s. That the last case is attainable is obvious, since we took [g (1)] as the
double coset representative. O
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Go(N) can be generated as follows.

Go(N) = <F0(N); []5 (1)] , p prime not dividing N> (5)

1
Indeed, first note [p 0} being in the group above implies O )
the fact that they are in the same double coset (Lemma|l.3]). By multiplying by matrices of
this form or their inverse we can get to any double coset representative in Lemma[I.1] Since
[o(N) is also in the group above, by Lemma we get everything.

Now A(z) is a modular form for I'(1) and hence for I'o(N). Letting v = [ &, 4],

O} is in the group above, by

A(Nyz) = A (NGZ_HW’> _ (M

Nez+d c¢(Nz)+d ) = AN2),

so A(Nz) is a modular form for I'o(V) as well.

To show A(z) + A(Nz) is a simultaneous eigenfunction for the Hecke operators, by [5 it
suffices to show that A(z) + A(Nz) is an eigenfunction for the T| [#{]. Using the decom-
position in Lemma [I.3]

7 {g ﬂ (A(2)+A(62)) = p5ZZ::A(z)]{(1) I;}JrA(z)][g ﬂ+§A(6z)yB I;}—I—A(Gz)\ {]0” ﬂ

Let A(z) = (2m)2 Y°>°  aze(nz). Then

p—1 r

A |y B = @ + payez) + pase(z2) + - ©)
k=0 L" A
A(z)] ](; (1) = (27)"2p%(ag + are(pz) + aze(2pz) + - --)

= (2m)"p~°(pag + paye(6z) + pagpe(12z) + - +)

(]
g
g
_,_.
_o g

= (2m)*p°(ap + are(6pz) + aze(12p2) + - - -)

A(62)] g

Note the first equation follows from the fact that

p—1 p—1

1 k _ z+ k

> 8| ]:w e

k=0 p k=0 p
p—1 oo

12y 622%6 nk/p)e(nz/p)

12y 62 _ ane(nk/p)e(nz/p)

=0
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The inner sum is 0 (sum of roots of unity) for p f n and p for p | n, giving (6). The
third equation follows similarly. Matching coefficients gives that the coefficient of e(nz) in
A(z) + A(62) is

by = P° (0 apn + paz + p~Pase + plaz) (7)

where for convenience we let a,, = 0 if m is an invalid index. But we know

A = Qs mln

aanrl = apapn — plla/pnfl.
Hence
App = QpQy, — p“a%
ApQy = Qpp —|—p11a%.
Together with (7)), we get
b = ap(an + Gyyg)
showing that T'| [2 9] (A(z) + A(62)) = a,(A(2) + A(62)), as needed.

(B) No Euler expansion
Write A(z) as before. Then

A(62) = (27)2(ag + are(62) + ag(12z) + -+ -).

Let A(z) + A(62) = (2m)2 Y7 ¢pe(6nz). Then since A(z) has coefficients of e(2z) and
e(3z) equal to 0 while the coefficient of e(6z) equal to a; = 1,

Coy = Q2
C3 — as
C6:CL6—|—]_

cg = Coc3 + 1 # cocs.

Since ¢, is not multiplicative, A(z) + A(6z) cannot have an Euler product expansion.

Problem 2 (Modular equation)

(A) F(X,Y) = F(Y, X)

Replacing z with —ﬁ in

gives
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Note that j is invariant under v = [ % §] € SLy(Z) which sends z to —%. Hence j (—x5) =
J(N2), 5 (=2) = j(2), and we get

F(j(Nz),j(z)) = 0.

Since F(X,Y) is irreducible in C[X, Y], so is F(Y, X). Then F(Y, ) is also the irreducible
polynomial of Y over C(j), so replacing j with X, this says that F(Y, X)|F(X,Y). The
only way for this to happen is if F(X,Y) = cF(Y,X). We have F(X,Y) = ¢F(Y, X) =
AF(X,Y),s0 ¢ = +1. If c = —1, then F(X,Y) = —F(Y, X), and putting X = Y gives
F(X,X) =0. This shows X — Y|F(X,Y), which is impossible since F'(X,Y) is irreducible
with degree [I'(1) : I'o(N)] > 1. Thus F(X,Y) = F(Y, X).

(B) N=p = F(X,Y)=XP 4 YPH _ XPy? — XY (mod p)

Lemma 2.1: Let ,...,7,+1 be coset representatives for [['(1) : I'g(p)]. Then

G0ma)s- i pna)} = ()} U {j (;’“) <k <p}.

Proof. There are indeed p—+1 coset representatives because y = N Hprime gIN (1 + é) =p+1

in this case. Given v = [2 Y], we have pyz = [pc“ Zb] z. For any v/ € I'(1), we have j(v'pyz) =
j(pyz) since j is invariant under I'(1). By Lemma 6.3.1 we can multiply [?**"] on the left

by some matrix in I'(1) to get some [% % ] with a’d’ = det [P*?] =pand 0 <V < d’. The
p+ 1 possible matrices are [’5 (1)] and [} ’;] for 0 < k < p. We claim that all these are in fact
attained. Let M be one of these matrices. Then by the Elementary Divisors Theorem there
exist A, B € I'(1) such that AMB = [#7]. But then M = A"'NB, s0 j(Mz) = j(A"'NBz),
and we could have picked B as a coset representative (the choice doesn’t matter anyways).

The lemma follows upon noting that [’5 (1)] z = pz and [6 ’;} z= %. O]

Let ¢, be a pth root of unity. We have that 1 — (,|p: indeed
p=aP o 1 = (1_Cp)...(1_gp*1)_

2tk

P
However, roots are unity are congruent to 1 modulo p, since C]’; —1=(¢— 1)((571 +--oF1).
Then

When we expand j ( ), its coefficients are roots of unity times the coefficients of j(z).

P = TT0 - s0e)
-] (v-i(33h)
=0 -t (-5 (2)) Gmod1-g)
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the last equation following because raising the j function to the pth power is the same,
modulo p, as raising each term to the pth power, and the coefficients (which are integers)
are not affected modulo p, while the exponents are multiplied by p. Replacing j(z) by X we
get

FX,Y)=(Y = XP)(YP - X) = XPT 4 yPH — XPYP — XY (mod 1— ().

However, (1 — (,) NZ = (p) (it contains (p), and (p) is maximal in Z), and we know F'(X,Y")
has integer coefficients, so congruence holds modulo p.

Problem 3 (Rank of Jacobian Matriz)

The problem follows from the more general theorem.

Theorem 3.1: Let C be an affine algebraic variety in A™(k) corresponding to the ideal
generated by ¢1,..., ¢, and let P be a point on C'. Then

n = dimg(mp/m%) + rank[D;¢;(P)].

Proof. Let ap denote the maximal ideal of k[zy,...,x,] corresponding to P, i.e. if P =
(ai,...,a,) then a, = (z1 —ay,...,x, —a,). Let Op denote the local ring at P, i.e.
(K[C)) (1—ar,... 50 —an)- Let mp denote the maximal ideal of Op.

Let 6 denote the map k(C) — k' defined by

00 = (2P g,

Since any element of ap has P as root with multiplicity at least 1, any element of a% has
P as root with multiplicity at least 2, so f(a%) = 0 and @ induces a map €' : ap/a% — k.
We claim this is an isomorphism of vector spaces. This is clear when we translate P to the
origin: In this case, ap is the space of all polynomials without constant term, a% is the space
of all polynomials without constant or linear term, and the basis {z, ..., x,} for ap/a% gets
sent to the standard basis {ei,...,e,} for k. Thus

dlmE Clp/Cl?p = nNn. (8)
Next, let I = (¢1,..., ¢p). Since the ith row of [D;¢;(P)] is the the image of ¢; under £,
rank{D;,(P)] = dimg 6(7) = dimg(6/(I + a%)/a3)) = dimg((I + a3)/a2).  (9)

The last statement follows since ¢’ is an isomorphism.
Now note

mp = (aP/I)P = aP/IP
wd = (a3 +1)/1)p = (0} + Ip)/Ip
mp/m% = ap/(a% + I).
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Hence
dimzmp/m3 = dimgap/(a% + ). (10)

Putting together , @, and gives
n = dimg(ap/a3) = dimg(ap/(ab + 1)) + dim((a3 + I)/a%)
= dimgz(mp/m%) + rank[D;¢;( P)].
O

Since dimzmp/m?% > dim k[C]p = dim k[C] (the last equality since we're localizing at a

maximal ideal), and for curves we have dim k(C') = 1, we get
rank[D;¢;(P)] = n — dimg(mp/m%) <n — 1

as needed.

(Alternatively, assuming by way of contradiction that rank[D;¢;(P)] = n, the theorem
gives mp/m% = 0. But by Nakayama’s Lemma, this implies mp = 0. Since this is true for
every point P, the only maximal ideal of k[C] is 0, and k(C) = k, contradiction.)
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