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Problem 1 (Simultaneous eigenfunctions of Hecke operators, with no Eu-
ler product expansion)

(A) Simultaneous eigenfunction

Lemma 1.1: Every double coset Γ0(N)αΓ0(N) with α ∈ G0(N) is one of the double cosets

Γ0(N)

[
d1 0
0 d2

]
Γ0(N)

where d1, d2 ∈ (Z×N)≥0 and d2
d1
∈ N is relatively prime to N .

Proof. There exists n relatively prime to N so that nα ∈ GL2(Z). By the elementary divisors
theorem we can write

nα = γ1D
′γ2 for some γ1, γ2 ∈ Γ(1). (1)

where D′ =
[
d′1 0

0 d′2

]
with positive d′2|d′1. Let di =

d′i
n

and D = 1
n
D =

[
d1 0
0 d2

]
. The determinant

of the LHS in (1) is n2 det(α) ∈ Z×N (since det(α) ∈ Z×N). The determinant of the RHS is
d′1d
′
2. Since d′1, d

′
2 are integers, d′1 and d′2 must be in Z×N . Since n is relatively prime to N , d1

and d2 are also in Z×N .

Let d = d1
d2

. Note d =
d′1
d′2
∈ N and d ∈ Z×N , so is a whole number relatively prime to N .

Now
α = γ1Dγ2.

Let β2 = [ v x
dy z ] ∈ Γ0(d). Let

β1 = (Dβ2D
−1)−1.

Then
α = γ1β1Dβ2γ2. (2)

Note

Dβ2D
−1 =

[
d1 0
0 d2

] [
v x
dy z

] [ 1
d1

0

0 1
d2

]
=

[
v dx
y z

]
∈ Γ(1)

so β1 ∈ Γ(1).
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Now we claim we can choose β2 ∈ Γ0(d) so that β2γ2 ∈ Γ0(N). If γ2 = [ s t
u v ], then

β2γ2 =

[
ws+ xu wt+ xv
dys+ zu dy + tzv

]
.

We will use the following.

Lemma 1.2: Let A,B,C be integers such that gcd(A,B,C) = 1. Then there exists k ∈ Z
such that

gcd(A,B + kC) = 1.

Proof. For every prime p dividing A, p does not divide both B and C, so there exists a
residue rp modulo p such that B + rpC 6≡ p (mod p). Now choose k so that k ≡ rp (mod p)
for every p|A.

Let y = −u and z = ds + Nk, k ∈ Z. So dy = −du. Now gcd(−du, ds,N) = 1 since
gcd(u, s) = 1 (else γ2 would not be invertible) and gcd(N, d) = 1. Hence by the lemma
above we can find k so that gcd(dy, z) = 1. Then by Bézout we can choose v, x to make β2
have determinant 1, and hence be in Γ0(d). Note the bottom left entry of β2γ2 is Nku so
β2γ2 ∈ Γ0(N).

Let γ′1 = γ1β1 and γ′2 = β2γ2 =
[

s′ t′

Nu′ v′

]
. We have γ′2 ∈ Γ0(N). We show that this

forces γ′1 ∈ Γ0(N). Let γ′1 =
[
s′′ t′′

u′′ v′′

]
. Then modulo N , the lower-left entry of α = γ′1Dγ

′
2 is

s′u′′d1 +Nu′v′′d2. Since α ∈ G0(N), this must be divisible by N . Since N is relatively prime
to d1 and to s′ (since N already divides the bottom-left entry of γ′2), we conclude N |u′′, and
γ′2 ∈ Γ0(N). Thus (2) follows, as needed.

Lemma 1.3: Suppose p is a prime not dividing N . Then

Γ0(N)

[
1 0
0 p

]
Γ0(N) = Γ0(N)

[
p 0
0 1

]
Γ0(N) = Γ0(N)

[
p 0
0 1

]
t

p−1⊔
k=0

Γ0(N)

[
1 k
0 p

]
.

Proof. We first show that every element in the LHS is in the RHS. It suffices to show that
every element

[
pa pb
Nc d

]
=
[
p 0
0 1

]
[ a b
Nc d ] is in (exactly) one of the cosets, i.e.

[
pa pb
Nc d

]
M−1 ∈

Γ0(N) for exactly one of the coset representatives M listed above. We have[
pa pb
Nc d

] [
1 k
0 p

]−1
=

[
pa −ak + b
Nc −Nck+d

p

]
(3)[

pa pb
Nc d

] [
p 0
0 1

]−1
=

[
a pb
Nc
p

d

]
. (4)

The first is in Γ0(N) iff Nck ≡ d (mod p). If c 6≡ 0 (mod p), since p - N , there is exactly
one value of k such that this holds. If c ≡ 0 (mod p), then d 6≡ 0 (mod p); else the matrix
would not be invertible in GL2(ZN). Hence Nck 6≡ d (mod p) for any choice of k, so (3)
does not have integral entries, but (4) does, and is in Γ0(N).

To show the RHS is included in the LHS, it suffices to show that all of the cases above
are attainable. We can let c = 1 and vary d modulo p to get the first p cases. (Since we can
vary d by multiples of p, we can choose d relatively prime to N .) The other entries can be
chosen by Bézout’s. That the last case is attainable is obvious, since we took

[
p 0
0 1

]
as the

double coset representative.
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G0(N) can be generated as follows.

G0(N) =

〈
Γ0(N);

[
p 0
0 1

]
, p prime not dividing N

〉
(5)

Indeed, first note
[
p 0
0 1

]
being in the group above implies

[
1 0
0 p

]
is in the group above, by

the fact that they are in the same double coset (Lemma 1.3). By multiplying by matrices of
this form or their inverse we can get to any double coset representative in Lemma 1.1. Since
Γ0(N) is also in the group above, by Lemma 1.1 we get everything.

Now ∆(z) is a modular form for Γ(1) and hence for Γ0(N). Letting γ = [ a b
Nc d ],

∆(Nγz) = ∆

(
Naz +Nb

Ncz + d

)
= ∆

(
a(Nz) +Nb

c(Nz) + d

)
= ∆(Nz),

so ∆(Nz) is a modular form for Γ0(N) as well.
To show ∆(z) + ∆(Nz) is a simultaneous eigenfunction for the Hecke operators, by 5 it

suffices to show that ∆(z) + ∆(Nz) is an eigenfunction for the T |
[
p 0
0 1

]
. Using the decom-

position in Lemma 1.3,

T |
[
p 0
0 1

]
(∆(z)+∆(6z)) = p5

p−1∑
k=0

∆(z)|
[
1 k
0 p

]
+∆(z)|

[
p 0
0 1

]
+

p−1∑
k=0

∆(6z)|
[
1 k
0 p

]
+∆(6z)|

[
p 0
0 1

]
.

Let ∆(z) = (2π)12
∑∞

n=0 ane(nz). Then

p−1∑
k=0

∆(z)|
[
1 k
0 p

]
= (2π)12p−6(pa0 + pape(z) + pa2pe(2z) + · · · ) (6)

∆(z)|
[
p 0
0 1

]
= (2π)12p6(a0 + a1e(pz) + a2e(2pz) + · · · )

p−1∑
k=0

∆(6z)|
[
1 k
0 p

]
= (2π)12p−6(pa0 + pape(6z) + pa2pe(12z) + · · · )

∆(6z)|
[
p 0
0 1

]
= (2π)12p6(a0 + a1e(6pz) + a2e(12pz) + · · · )

Note the first equation follows from the fact that

p−1∑
k=0

∆(z)|
[
1 k
0 p

]
= p−6

p−1∑
k=0

∆

(
z + k

p

)

= (2π)12p−6
p−1∑
k=0

∞∑
n=0

ane(nk/p)e(nz/p)

= (2π)12p−6
∞∑
n=0

p−1∑
k=0

ane(nk/p)e(nz/p)
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The inner sum is 0 (sum of roots of unity) for p - n and p for p | n, giving (6). The
third equation follows similarly. Matching coefficients gives that the coefficient of e(nz) in
∆(z) + ∆(6z) is

bn = p5(p−5apn + p6an
p

+ p−5a pn
6

+ p6a n
6p

) (7)

where for convenience we let am = 0 if m is an invalid index. But we know

amn = aman, m ⊥ n

apn+1 = apapn − p11apn−1 .

Hence

anp = apan − p11an
p

apan = anp + p11an
p
.

Together with (7), we get
bn = ap(an + an/6)

showing that T |
[
p 0
0 1

]
(∆(z) + ∆(6z)) = ap(∆(z) + ∆(6z)), as needed.

(B) No Euler expansion
Write ∆(z) as before. Then

∆(6z) = (2π)12(a0 + a1e(6z) + a2(12z) + · · · ).

Let ∆(z) + ∆(6z) = (2π)12
∑∞

n=0 cne(6nz). Then since ∆(z) has coefficients of e(2z) and
e(3z) equal to 0 while the coefficient of e(6z) equal to a1 = 1,

c2 = a2

c3 = a3

c6 = a6 + 1

c6 = c2c3 + 1 6= c2c3.

Since cn is not multiplicative, ∆(z) + ∆(6z) cannot have an Euler product expansion.

Problem 2 (Modular equation)

(A) F (X, Y ) = F (Y,X)
Replacing z with − 1

Nz
in

F (j(z), j(Nz)) = 0

gives

F

(
j

(
− 1

Nz

)
, j

(
−1

z

))
= 0.
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Note that j is invariant under γ = [ 0 1
−1 0 ] ∈ SL2(Z) which sends z to −1

z
. Hence j

(
− 1

Nz

)
=

j(Nz), j
(
−1

z

)
= j(z), and we get

F (j(Nz), j(z)) = 0.

Since F (X, Y ) is irreducible in C[X, Y ], so is F (Y,X). Then F (Y, j) is also the irreducible
polynomial of Y over C(j), so replacing j with X, this says that F (Y,X)|F (X, Y ). The
only way for this to happen is if F (X, Y ) = cF (Y,X). We have F (X, Y ) = cF (Y,X) =
c2F (X, Y ), so c = ±1. If c = −1, then F (X, Y ) = −F (Y,X), and putting X = Y gives
F (X,X) = 0. This shows X − Y |F (X, Y ), which is impossible since F (X, Y ) is irreducible
with degree [Γ(1) : Γ0(N)] > 1. Thus F (X, Y ) = F (Y,X).

(B) N = p =⇒ F (X, Y ) ≡ Xp+1 + Y p+1 −XpY p −XY (mod p)

Lemma 2.1: Let γ1, . . . , γp+1 be coset representatives for [Γ(1) : Γ0(p)]. Then

{j(pγ1z), . . . , j(pγp+1z)} = {j(pz)} ∪
{
j

(
z + k

p

)
: 0 ≤ k < p

}
.

Proof. There are indeed p+1 coset representatives because µ = N
∏

prime q|N

(
1 + 1

q

)
= p+1

in this case. Given γ = [ a b
c d ], we have pγz =

[
pa pb
c d

]
z. For any γ′ ∈ Γ(1), we have j(γ′pγz) =

j(pγz) since j is invariant under Γ(1). By Lemma 6.3.1 we can multiply
[
pa pb
c d

]
on the left

by some matrix in Γ(1) to get some
[
a′ b′

0 d′

]
with a′d′ = det

[
pa pb
c d

]
= p and 0 ≤ b′ < d′. The

p+ 1 possible matrices are
[
p 0
0 1

]
and

[
1 k
0 p

]
for 0 ≤ k < p. We claim that all these are in fact

attained. Let M be one of these matrices. Then by the Elementary Divisors Theorem there
exist A,B ∈ Γ(1) such that AMB =

[
p 0
0 1

]
. But then M = A−1NB, so j(Mz) = j(A−1NBz),

and we could have picked B as a coset representative (the choice doesn’t matter anyways).
The lemma follows upon noting that

[
p 0
0 1

]
z = pz and

[
1 k
0 p

]
z = z+k

p
.

Let ζp be a pth root of unity. We have that 1− ζp|p: indeed

p = xp−1 + · · ·+ 1|x=1 = (1− ζp) · · · (1− ζp−1).

When we expand j
(

z+k
p

)
, its coefficients are roots of unity times the coefficients of j(z).

However, roots are unity are congruent to 1 modulo p, since ζkp −1 = (ζp−1)(ζk−1p + · · ·+ 1).
Then

F (j(z), Y ) =

p+1∏
i=1

(Y − j(γipz))

= (Y − j(pz))

p∏
k=1

(
Y − j

(
z + k

p

))
≡ (Y − j(pz))

(
Y − j

(
z

p

))p

(mod 1− ζp)

≡ (Y − j(z)p) (Y p − j(z)) (mod 1− ζp),
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the last equation following because raising the j function to the pth power is the same,
modulo p, as raising each term to the pth power, and the coefficients (which are integers)
are not affected modulo p, while the exponents are multiplied by p. Replacing j(z) by X we
get

F (X, Y ) ≡ (Y −Xp)(Y p −X) ≡ Xp+1 + Y p+1 −XpY p −XY (mod 1− ζp).

However, 〈1− ζp〉∩Z = 〈p〉 (it contains 〈p〉, and 〈p〉 is maximal in Z), and we know F (X, Y )
has integer coefficients, so congruence holds modulo p.

Problem 3 (Rank of Jacobian Matrix)

The problem follows from the more general theorem.

Theorem 3.1: Let C be an affine algebraic variety in An(k) corresponding to the ideal
generated by φ1, . . . , φm, and let P be a point on C. Then

n = dimk(mP/m
2
P ) + rank[Djφi(P )].

Proof. Let aP denote the maximal ideal of k[x1, . . . , xn] corresponding to P , i.e. if P =
(a1, . . . , an) then ap = 〈x1 − a1, . . . , xn − an〉. Let OP denote the local ring at P , i.e.
(k[C])〈x1−a1,...,xn−an〉. Let mP denote the maximal ideal of OP .

Let θ denote the map k(C)→ k
n

defined by

θ(f) =

(
∂f

∂x1
(P ), . . . ,

∂f

∂xn
(P )

)
.

Since any element of aP has P as root with multiplicity at least 1, any element of a2P has
P as root with multiplicity at least 2, so θ(a2P ) = 0 and θ induces a map θ′ : aP/a

2
P → k

n
.

We claim this is an isomorphism of vector spaces. This is clear when we translate P to the
origin: In this case, aP is the space of all polynomials without constant term, a2P is the space
of all polynomials without constant or linear term, and the basis {x1, . . . , xn} for aP/a

2
P gets

sent to the standard basis {e1, . . . , en} for k
n
. Thus

dimk aP/a
2
P = n. (8)

Next, let I = 〈φ1, . . . , φm〉. Since the ith row of [Djφi(P )] is the the image of φi under k,

rank[Djφi(P )] = dimk θ(I) = dimk(θ′((I + a2P )/a2P )) = dimk((I + a2P )/a2P ). (9)

The last statement follows since θ′ is an isomorphism.
Now note

mP = (aP/I)P = aP/IP

m2
P = ((a2P + I)/I)P = (a2P + IP )/IP

mP/m
2
P = aP/(a

2
P + I).
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Hence
dimk mP/m

2
P = dimk aP/(a

2
P + I). (10)

Putting together (8), (9), and (10) gives

n = dimk(aP/a
2
P ) = dimk(aP/(a

2
P + I)) + dim((a2P + I)/a2P )

= dimk(mP/m
2
P ) + rank[Djφi(P )].

Since dimk mP/m
2
P ≥ dim k[C]P = dim k[C] (the last equality since we’re localizing at a

maximal ideal), and for curves we have dim k(C) = 1, we get

rank[Djφi(P )] = n− dimk(mP/m
2
P ) ≤ n− 1

as needed.
(Alternatively, assuming by way of contradiction that rank[Djφi(P )] = n, the theorem

gives mP/m
2
P = 0. But by Nakayama’s Lemma, this implies mP = 0. Since this is true for

every point P , the only maximal ideal of k[C] is 0, and k(C) = k, contradiction.)
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