18.785 Analytic Number Theory Problem Set #7

Holden Lee
3/22/11

Problem 1 (Describing Yy(N))
(A)

Theorem 1.1: [I, VI.5.1.1, VI.5.3] The following categories are equivalent:
1. Elliptic curves over C and isogenies.

2. C/A where A is a lattice, and analytic maps (which are in the form multiplication by
a complex number, taking A to A’)

Moreover, if A is the lattice corresponding to F, then F = C/A as complex Lie groups.
Let S be the set of pairs (£, C') modulo equivalence. Define 6 : H — S by

02) = (C/A(z,1), Az, 17)/A(z 1),

(By the theorem C/A(z,1) corresponds to a unique elliptic curve.) We show that z ~ 2/
in Yo(N) iff 6(z) ~ 6(2') in S. This will show that 6 is in fact a map Yo(N) — S and is
injective.

Suppose 6(z) = 6(z'). Then we must have aA(z,1) = A(2’,1) for some a. Let 2/ = vz
where v € SLy(Z). Then

A1) = A (a”b 1) _

o d A(az +bcz+4d).

cz+d
Thus o = ——. Then 0(z) = 0(¢) iff 2-5A(z,+)/A(z,1) = A(Z, +)/A(2',1). Since the

cz+d’ cz+d
image of A(z, 3)/A(z,1) under 1= will consist of N points, this will be true iff  is in the

image, i.e. there exist integers u, j such that

1 L 1
uz + = | = —.
cz+d N N

Rearranging gives this equivalent to

(=)t




Problem 1 2

Noting z,1 are R-linearly independent, u, j exist iff N|c, in which case we can take u = £

and j =d. Thus 0(z) = 0(7) iff 2/ = vz with v € Ty(N).

Now we prove surjectivity. Any elliptic curve is associated to some C/A(z, 1) with z € H;
any cyclic subgroup of size N is generated by some %*b with ged(a,b, N) = 1. By adding
a multiple of N to a, we may assume ged(a,b) = 1. By Bézout there exists [2 5] € SLy(Z).
Now

b b
((C/A(z7 1), {kazj\j 0<k< N}) - <C/A(az +b ez +d), {k:“zj\;r 0<k< N})
1 cz+d k
= Al ——,1 — 0<k<N
az+b (C/ (ozz~|—b7 )’{N’O_ = })
cz+d cz+d 1 cz+d
~ A 1],A — | /A 1
(C/ (az—i—b’ )’ (az—i—b’N)/ (az+b’ ))
_y (cz+d) ‘
az+b
(B)
We claim that Y/(N) is in bijection with the set S of triplets (E, 1, z3), where z; and

generate F[n| and such that e, (zq, 1) = e, modded out by equivalence (isomorphism of
elliptic curves £ — E’ taking z1, xs to x, z). Define the map by

0(z) (C/A(z,l),%,%) |

First we show z ~ 2" iff 6(z) ~ 6(2'). This will show 6 is well-defined and injective.
If 0(z) ~ 0(2'), then writing 2’ = vz, v = [¢4] as before, the isomorphism C/A(z,1) —
C/A(%,1) must be multiplication by ——. Now

/N 1 _ (aztb
cz+d N a-c cz+d

B a—c?
N
z/N 1 az+b
cz+d N (_b+d(cz+d)>
B —b+d
—
We need
z/N Z
cz/+ = (mod A(2',1))
/N 1
T d= N (mod A(2',1)).

By the above this is true iff a =d =1 (mod N) and b=¢ =0 (mod N), i.e. v € I'(N), i.e.

2z~ 2.
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For surjectivity, suppose (C/I'(z,1), 2t <2td) ¢ §. Now since the Weil pairing is alter-
nating and bilinear, and e,,(+, %) = e
- cz + d’ az+b _ e%det[‘é Z].
N N

Hence ad — bc = 1 (mod N). Since {42, <} is a basis, ged(a,b, N) = 1. By adding a

constant multiple of N to a we may assume ged(a,b) = 1. Now

a b

det [c—l—rN d-+ sN

} =ad — bc+ (sa — rb)N.

By Bézout we can choose r, s so that the determinant is 1. Replacing a,b,c,d by a,b, c +
rN,d+ sN, we assume v € SLy(Z). Now

<(C/F(z,1), azj\jb, CZ; d) _ ((C/F (az +b,cz+d), “Z;b, CZ; d)

az+b az+b 1
r 1), —m, —
( / (cz+d ) N(cz—l—d)’N)
:9(a2+b)‘
cz+d

Problem 2 (Two definitions of Hecke operator)

Note z € Xo(N) corresponds to (C/A(z,1), A(z, +)/A(z, 1)) via the isomorphism in problem
1, and this corresponds to the map

1
C/A(z,1) — C/A(z, N)
Assume p does not divide N. Then

To(N) [g ﬂ To(N) = [o(N) [g ﬂ up|;|1F0(N) [(1) ’;} .

Hence as a correspondence, T'(p) takes z to {pz} U {Z%’“ : 0 < k < p}, which by our bijection
above, corresponds to the maps

1
C/A(p=1) = C/A(pz, )
z+ k z+k 1

/AR ) > oM S,

Now we calculate the Hecke operator as a correspondence on the moduli space for Xy(N).
There are p+ 1 subgroups of order p in C/A(z, 1); they are A(z, 119) and A(Z;;k, 1),0<k <p.
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These correspond to the maps

C/A(, ]%) N <A(z, ]%),A(z, %)>

— C/A(, piN).

1) —=C/ <A(Z;k, 1), Az, %)>
z+k 1
—’N)'

z+k

C/A(
= C/A(

The second map is the same as the one calculated above; the first maps match after scaling
by p.

Problem 3 (Weil conjectures for PV)

Note N .
P E) = | O _ @l g
Hence
ooy PN (Fgn)| T o0, (g™ T
_ e—ln(l—t)—ln(l—qt)—~~~—ln(1—th)
1

(1=t)(1—qt)---(1—qNt)
We check the Weil conjectures.
1. Rationality: Z(V;T) € Q(T).
2. Functional equation:

Z(PN;Q;T) B (1_L)1...(1_ )

1
qgNT T

1
T =1~ 1)
_ (—1)N+1qns/2T€Z(PN; T)

L42+-+NpN+1

=4q

where e = N + 1.

3. Riemann hypothesis: Take P(T) = -+ = P, 1(T) = 1, Py(T) = 1 — ¢*T for
0 <k < N. Then

Ny BT Pana(T)
A = R AT) - P D)
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Problem 4 (Isogenous elliptic curves have same number of points over

finite field)
(A)

For an elliptic curve E, let £(@ denote the elliptic curve whose defining equation is the same
as that for F but with all coefficients raised to the gth power. Let ¢ : E — E@ be the

qth power (Frobenius) map. Let ¢ : E; — Ej be an isogeny over F; note that it induces an
isogeny 1@ : E — E{? such that the following commute:

El L} EQ E1 L E2
l¢E1 l¢E2 Jl_(bEl Jl_(bEz
(@ (@
Ef‘l) — Eé‘l) E£‘J) RN Eé‘])

This is since ¢ is not only a morphism E — E@ but also an automorphism on F,. The
above gives

degs (¢E2 ) degs (¢) - degs (d)Ez 1/}) = degs (w(q) ngl ) - degs (¢(q) ) degs <¢E1 ) . (1)

and similarly

deg,(1 — ¢, ) deg, (1) = deg,((1 — ¢p,)0) = deg (V7 (1 = ¢p,)) = deg, (') deg(1 — d,).

2)
Since deg,(¢p,) = deg,(¢r,) = 1, from we get deg,(¢) = deg,(1)\?). Putting this in
we get deg (1 — ¢p,) = deg,(1 — ¢p,). However the separable degree of a morphism is the
size of the kernel, and ker(1 — ¢g) is simply E(F,), since ¢ fixes exactly the points of F,.
Hence we get |Ey(F,)| = |E2(F,)| as needed.

(B) Converse
The converse holds as well.

Theorem 4.1: [I], II1.7.7] If K is a finite field, then
Hompg (E1, Bp) ® Q = Hompg (Vo(Er), Vi(E2))

via the natural map.

Given that F; and E, have the same number of points over K, we want to show F;
and Fy are isogenous, i.e. Hompg(E;, E3) # 0. By this theorem it suffices to show that
Hom (Vi(Er), Vi(E»)) # 0.

Let ¢ be the Frobenius morphism on E. Note that deg(1 — ¢) is the number of points of
the elliptic curve £ in K, and that trace(¢y) = 1+ deg(¢) — deg(1 — ¢). Moreover, it can be
shown that V;(E) is a semisimple representation of G(K/K) = (¢).

Now let ¢, ¢’ denote the Frobenius morphisms on F, E’. From the above considerations
and the assumption, trace(¢,) = trace(¢,) (also det(¢y) = degp = deg¢’ = det(¢y), so
the characteristic polynomials for ¢, ¢,1 are the same, and trace(¢}) = trace(¢}")), i.e.
the characters corresponding to the Galois representations Vy(E;) and Vy(E;) are equal.

18.785 ANALYTIC NUMBER THEORY PS#6



Problem 4 6

By semisimplicity we can write V,(Fy) = @n;V; and Vi(Es) = @ n.V; where V; are the
irreducible representations. Equality of characters says that n; = n}, so Vy(E;) = V,(F>) and
Hompg (Vi(EL), Ve(E)) # 0, as needed.
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