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Problem 1

Label the edges of the fundamental parallelogram as follows.

α + ω2
C2 // α + ω1 + ω2

C3wwooooooooooo

α

C1

;;wwwwwwwww
α + ω1

C4

oo

We calculate
∫
∂P

zf ′(z)
f(z)

dz in two ways.
Way 1:∫

∂P

zf ′(z)

f(z)
dz =

[∫
C1

zf ′(z)

f(z)
dz +

∫
C3

zf ′(z)

f(z)
dz

]
+

[∫
C2

zf ′(z)

f(z)
dz +

∫
C4

zf ′(z)

f(z)
dz

]
.

Noting that C3 is just C1 shifted by ω1 and reversed, and that C2 is just C4 shifted by ω2

and reversed, this equals∫
∂P

zf ′(z)

f(z)
dz =

∫
C1

[
zf ′(z)

f(z)
− (z + ω1)f ′(z + ω1)

f(z + ω1)

]
dz+

∫
C4

[
zf ′(z)

f(z)
− (z + ω2)f ′(z + ω2)

f(z + ω2)

]
dz.

Since f is elliptic, f(z) = f(z + ω1) = f(z + ω2), giving∫
∂P

zf ′(z)

f(z)
dz = −ω1

∫
C1

f ′(z)

f(z)
dz − ω2

∫
C4

f ′(z)

f(z)
dz.

Now ln(f(z)) can be defined in a neighborhood around C1 and C4, since f has no poles or
zeros on ∂P . Since f(α) = f(α+ω1) = f(α+ω2), we have ln(f(α+ω1))− ln(f(α)) = 2πic1

and ln(f(α))− ln(f(α+ω2)) = 2πic2 for some integers c1 and c2. But these equal the above
integrals by definition of ln f(z), so∫

∂P

zf ′(z)

f(z)
dz = −2πi(ω1c1 + ω2c2). (1)

Way 2: Note Resa
f ′(z)
f(z)

= orda f so Resa
zf ′(z)
f(z)

= a orda f . Letting ak be the poles and
zeros of f in P , we get by Cauchy’s Theorem that∫

∂P

zf ′(z)

f(z)
= 2πi

∑
k

Resak
f ′(z)

f(z)
= 2πi

∑
k

mkak. (2)
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Equating (1) and (2) give∑
k

mkak = −ω1c1 − ω2c2 ≡ 0 (mod Λ).

Problem 2

For α ∈ Λ, let Pα = {α + t1ω1 + t2ω2|ti ∈ [0, 1)}. Let d be the diameter of P . Let
Cm,n = {x : m ≤ |x| < n}. Let

Rn =
⋃

α∈Λ∩Cn−1,n

Pα.

The area of Rn is related to the number of points of Λ in the annulus by a constant:

[Rn] = |Λ ∩ Cn−1,n|[P ] (3)

([·] denotes area.) Next note that no point of Rn can be more than distance d away from
Cn−1,n, since each Pα has diameter d and contains the point α ∈ Cn−1,n. Hence Rn ⊆
Cn−d−1,n+d, and for n ≥ d+ 1,

[Rn] ≤ [Cn−d−1,n+d] = π((n+ d)2 − (n− d− 1)2) ≤ π(4d+ 2)n. (4)

From (3) and (4) we get

|Λ ∩ Cn−1,n| ≤
π(4d+ 2)

[P ]
n

Hence for s > 2, letting m = dde,

∑
λ∈Λ−{0}

1

|λ|s
=

∑
λ∈(Λ−{0})∩C0,m

1

|λ|s
+

∞∑
n=m+1

∑
λ∈Λ∩Cn−1,n

1

|λ|s
.

The first sum is finite since a lattice is discrete, while∑
λ∈Λ∩Cn−1,n

1

|λ|s
≤ |Λ ∩ Cn−1,n|

1

(n− 1)s
≤ π(4d+ 2)

[P ]
· n

(n− 1)s
.

Hence the second sum converges by comparison to the convergent series
∑

n≥1
1

ns−1 (since
s− 1 > 1).

Problem 3

(A)
There exists α such that αΛ1 = Λ2 (the lattices are homothetic) if and only if their corre-
sponding elliptic curves are isomorphic, E(Λ1) ∼= E(Λ2). The j-invariant of Λ is equal to the
j-invariant of E(Λ) so it suffices to show that two elliptic curves in the form y2 = x3 +ax+ b
are isomorphic iff their j-invariants are equal.
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(The equation of E(Λ) is y2 = 4x3 − g2x − g3 = 0 which under change of coordinates
becomes y2 = x3 − 4g2x− 16g3. By definition the j-invariant of this elliptic curve is j(E) =

1728(4(−4g2)3)
16(4(−4g2)3+27(−16g3)2)

=
1728g32
g32−27g23

= j(Λ).)

Let y2 = x3 + ax + b be an elliptic curve. Two elliptic curves are isomorphic over C iff
they are related by a change of coordinates; the only possible change of coordinates keeping
this form of the equation are x = u2x′, y = u3y′ which transform the equation to

y′2 = x′3 + a′x′ + b′, a′ =
a

u4
, b′ =

b

u6
. (5)

The new j-invariant is

j′ =
1728(4a′)3

16(4a′3 + 27b′2)
=

1728(4a)3

16(4a3 + 27b2)
= j.

Hence if two elliptic curves are isomorphic then their j-invariants are equal. Conversely,
suppose the j-invariants of y2 = x3 + ax + b and y2 = x3 + a′x + b′ are equal. Then

1728(4a′)3

16(4a′3+27b′2)
= 1728(4a)3

16(4a3+27b2)
, giving a3b′2 = a′3b2. Either none of a, a′, b, b′ are zero, or a, a′ are

zero, or b, b′ are zero (since a, b can’t both be zero, and neither can a′, b′). Hence one of
(
b
b′

) 1
6

or
(
a
a′

) 1
4 is defined (or they’re both defined and equal). Taking u in (5) to be this value

transforms the first equation into the second. Hence if two elliptic curves have the same
j-invariant then they are isomorphic.

(B)(i)
Let Λ1 be the set of all points in Λ in the first quadrant or on the positive real axis. Then
Λ∗ = Λ1 ∪ iΛ1 ∪ i2Λ1 ∪ i3Λ1. Hence

G6(Λ) =
∑
λ∈Λ∗

1

λ6

=
∑
λ∈Λ1

(
1

λ6
+

1

(iλ)6
+

1

(−λ)6
+

1

(−iλ)6

)
=
∑
λ∈Λ1

(
1

λ6
− 1

λ6
+

1

λ6
− 1

λ6

)
= 0.

Then g3 = 0 and hence

j(Λ) =
1728g3

2

g3
2 − 27��>

0
g3

2
= 1728.

(ii)
Let Λ1 be all the points of Λ between the positive real axis and the ray with angle 2π

3
, including
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the positive real axis but not the other ray. Let ω = e
2πi
3 . Then Λ∗ = Λ1 ∪ ωΛ1 ∪ ω2Λ1 so

G4(Λ) =
∑
λ∈Λ∗

1

λ4

=
∑
λ∈Λ1

(
1

λ4
+

1

(ωλ)4
+

1

(ω2)4

)
=
∑
λ∈Λ1

(1 + ω + ω2)
1

λ4

= 0.

Thus g2 = 0 and j(Λ) = 0.

Problem 4

(A)
Taking logs,

lnσ(z) = ln(z) +
∑
λ∈Λ∗

ln
(

1− z

λ

)
+
z

λ
+

1

2

(z
λ

)2

.

Then

d

dz
lnσ(z) =

1

z
+
∑
λ∈Λ∗

−1/λ

1− z
λ

+
1

λ
+

z

λ2

d2

dz2
lnσ(z) = − 1

z2
+
∑
λ∈Λ∗

− 1

λ2

(
1

1− z
λ

)2

+
1

λ2
= −℘(z).

(B)
By periodicity ℘(z) = ℘(z + λ). Integrating twice and using (A) gives

lnσ(z + λ) = lnσ(z) + az + b

for some constants a, b. Exponentiating gives

σ(z + λ) = eaz+bσ(z).

(C)(i)
If
∑r

k=1 ni(zi) = λ, then replace it with (
∑r

k=1 ni(zi)) − (λ) + (0), to make it equal to 0.
(This is okay since modulo Λ, (λ) = (0).)

From the infinite product, σ(z) has a simple zero at each z ∈ Λ and no other zeros or
poles. Let f(z) =

∏r
k=1 σ(z−zk)nk ; note f is meromorphic. From the above observation, f(z)

has a zero/pole of order nk at each zk, and no other zeros modulo Λ, so div(f) =
∑r

k=1 ni(zi).
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Next we show that f is elliptic. From (B), for λ ∈ Λ we have

f(z + λ) =
r∏

k=1

σ(z + λ− zk)nk

=
r∏

k=1

enk(a(z−zk)+b)σ(z − zk)nk

= e(az+b)
∑r
k=1 nk+(−a)

∑r
k=1 nkzkf(z) = f(z).

Hence f is elliptic.

(ii)
First we show that f is an analytic isomorphism. Let (x, y) on the elliptic curve be given.
Now ℘(z)− x is a non-constant elliptic function, so it has a zero, say z = a. Since ℘ is even
z = −a is also a zero, and ℘′(z) = ±℘(a) depending on whether z = a or−a. Now (x,±℘′(a))
are exactly the points on E with first coordinate x (from the equation y2 = ax3 + bx + c).
Hence f is surjective. (Note 0 gets sent to the point at infinity.)

Now suppose φ(z1) = φ(z2). Then ℘(z) − ℘(z1) has zeros z1, z2. Since ℘(z) − ℘(z1) has
exactly two zeros (since it has one pole of order 2), and ℘ is even, z1 = ±z2. (If 2z1 ≡ 0
(mod Λ) then ℘(z)− ℘(z1) has a double zero at z1, and that is the only zero.) But ℘′(z1) is
odd so

℘′(z1) = ℘′(z2) = ℘′(±z1) = ±℘′(z1)

so either z1 ≡ z2 (mod Λ) or ℘′(z1) = 0, z1 6≡ z2 (mod Λ). Let ω1, ω2 generate Λ and let
ω3 = ω1 + ω2. Note ℘′(ωm/2) = 0 because ℘′ is odd and ωm/2 ≡ −ωm/2 (mod Λ). Since
the equation of the elliptic curve is cubic in x, and (℘(z), ℘′(z)) ∈ E, these three are the
only possible values of ℘(z) given that ℘′(z) = 0. Since ℘(z) − ℘(ωm/2) is even, it has a
double zero at ωm/2; since its only pole is of order 2 this is its only zero modulo Λ. Hence
℘(z) 6= ℘(ωm) for z 6≡ ωm (mod Λ). This shows φ is injective.

Next to show that φ is analytically an isomorphism, note dx
y

is a nonvanishing holomorphic
differential on E, and

φ∗(dx/y) = d℘(z)/℘′(z) = dz

is nonvanishing holomorphic on C/Λ.
From part (i), there exists f such that

div(f) = (z1 + z2)− (z1)− (z2) + (0).

Since every elliptic function is a rational combination of ℘ and ℘′, we can write f = F (℘, ℘′)
for some F ∈ C(x, y). The function f on C/Λ corresponds to F on E, since f = F ◦φ. Since
φ is an analytic isomorphism, it preserves zeros and poles:

div(F ) = (φ(z1 + z2))− (φ(z1))− (φ(z2)) + (0).

Hence (φ(z1 + z2)) − (φ(z1)) − (φ(z2)) + (0) is a principal divisor. From [1, III.3.5], φ(z1 +
z2)− φ(z1)− φ(z2) + 0 = 0, so φ(z1 + z2) = φ(z1) + φ(z2).
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(D)
Note ℘(z), and hence ℘(z)− ℘(a), has a pole of multiplicity 2 at z = 0 and no other poles.
Hence its zeros have total multiplicity 2. Now ℘(z) − ℘(a) has a zero at z = a; since it is
even it has a zero at z = −a. (If a ≡ −a (mod Λ) then this is a zero of multiplicity 2.) By

the construction in (C), σ(z+a)σ(z−a)
σ(z)2

has zeros and poles with the same orders as ℘(z)−℘(a).

Now the quotient between these two functions is entire and bounded (since its maximum
and minimum are attained on the (closed) fundamental parallelogram, which is compact),
so a constant, by Liouville’s Theorem.

To find the constant, we note that z2(℘(z) − ℘(a)) equals 1 at z = 0 (the coefficient of
1
z2

in the Laurent expansion is 1), while (using the fact that the expansion of σ(z) is z+ · · · ,
and σ is odd as Λ∗ = −Λ∗)

z2 σ(z + a)σ(z − a)

σ(z)2

∣∣∣∣
z=0

= σ(a)σ(−a) = −σ(a)2.

Hence the constant is − 1
σ(a)2

, and

℘(z)− ℘(z) = −σ(z + a)σ(z − a)

σ(z)2σ(a)2
.
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