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Problem 1 (Nonvanishing Poincaré series)

The nth Fourier coefficient of P,(z), the Poincaré series of weight k, is

2 ~1 2mn
plnm) = 1+ =03 Sn(n/hnfhs ) Jy (E) |

c>0

To show that the Poincaré series does not vanish, it suffices to show p(n,n) # 0. For this,

it suffices to show that |A| <1 where A = 253" _ ¢ 'Sr(n/h,n/h;c)Jy—1 (32). Note that
any c in the sum is an integer because I' C SLy(Z).

We assume k > 4 and the smallest ¢ is greater than 1 (so at least 2). Below Cy,Cy, ...
will represent constants.

First, [2, 4.1] gives the bound

Ju(z) < (2mk)~ (%)k

Hence (noting h > 1),

k—1

s (B < nti 1)t () < cuorot

(k — 1)k 2ch-1

From Proposition 4.9.1,
|Sr(m,n;c)| < - c(s,s) .

Putting these two estimates together, and letting ¢y = ¢(s, s),

k-1

1
A< Cy(2me)i— 1
< Gallme) T L 1)

( )k; nk—l ) 1

< Cy(2me —/ dx

? C()(k — 1)k_% cp—1 xkig
nk—l (CO _ 1)—k+4
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This is at most 1 if
nF 1 < Cy(2me) (k= 1)F 2 (k — 4)eg (o — 1)F*
<=n < Cyk(cy— 1)
<= n < Cskey.

Thus if n < Cskcy then P,(z) does not vanish.

If instead ¢y = 1, then by letting n < Ckcy = Ck with appropriate C', we may assume
that term ¢ = 1 in the sum 1) is less than a constant, say %, since

k-1 k—1
1 C(Ck
z 1 k4 < C’2(271—6)16(—)1
(k— 15 ch (k— 1)
Then it suffices for the rest of the terms to sum to at most % Replacing the lower limit in
the integral estimate with ¢y, the proof goes the same as before with modified constants.

k-1
< Cy(2meC)k <L) < Co(2meC)E - e.

k
02(27Tk) F—1

Problem 2 (Kloosterman sums)

(A) S(m,n;c) = S(n,m;c)
The definition of S(m,n;c) is symmetric in both m and n:

Smm= Y e (M) .
di1d2=1 (mod c) ¢

(B) S(an,m;c) = S(n,am;c) if ged(a,c) =1

d d
Sanmi)= Y e <w>
d1d2=1 (mod c) ¢
B Z . (and+ m3>
B c
d (mod*c)
ad ad
_ Z e(an(a ) +ma ) @)
c
d (mod* c)
(nd + amE)
= Z (& —_—
c
d (mod*c)
B Z . (nd1 + amd2>
N c
di1d2=1 (mod c)
= S(n,am;c)

In (2)), we replaced d with a@d; this is legitimate since ged(a,c) = 1 and as d ranges over the
units modulo ¢, so does ad.

(C) S(nym,c) =34 ged(emn) dS(mnd=2 1;cd™)

We prove this for ¢ = p” a prime power.
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Lemma 2.1:
(d) {—1, r>1
> el )= 0 1
d (mod* p") p ’ r=4

_ . . d _
Proof. For r = 1, just note that the sum of roots of unity Zd(modp) e (;) = 0.

For r > 1, using the fact that the sum of kth roots of unity is 0 for any k£ > 1,

5950 5 ()

d (mod*pr) d (mod p™) d (mod pr—1)

Lemma 2.2: Suppose p|m and r > 2. Then S(m, 1;p") = 0.
Proof. Write m = p*l with p 1. Consider two cases.
1. k< r: Then

Sm,Lp)= > e (M)

d (mod*p") p

_ Yoo <p’fl(p”“:c +a)+p R+ a)
)

pr
z (mod p*) a (mod X pr—F

- ¥ S (pkla+kax+a> )

r
a (mod*p™—F) z (mod p¥) p

As x ranges from 1 to p¥, p—kz + a attains the values @+ p"~*b for all b (mod p¥). Now

p’f
circle so sum to 0. Hence the inner sum in (3)) is 0.

the e (’M) for a fixed and b varying modulo p* are equally spaced on the unit

2. k> r: Then
e
P ld+d)
S(im, 1;p") = el —
= 3 e
d (mod* p™)
)
- Z “\
d (mod™ p™) p
=0
by Lemma 2.1
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Let ged(n,m,c) = pk. Write n = p*n’ and m = p*m/; note that p does not divide both
m’ and n'.
Then
Z dS(mnd 2 1;¢cd ™) = Z dS(m/n'p**d=2,1;p"d™")
d| ged(e,m,n) d|pk

k
_ Zpis<mln/p2k72i’ Lprfz)
=0

If k& < r then all terms except the last are 0 by Lemma [2.2] so this equals

ka(m’n', 1;pr7k) — ka(m', n/;pr7k> (4)
/ IJ
g m'd +n'd
-F Y (M5
d (mod ™ p"—k)
pPm'd + pFn'd
T
d (mod™ p™)
= S(m,n;c)

In (4) we used (B), noting that one of m’,n’ is relatively prime to p, and in (5)) we note that
the invertible residues modulo p" cover the invertible residues modulo p"~*, p* times.

If instead k& = r then all terms except the last two are 0 by Lemma 2.2 and the sum
equals

prS(m'n’, 1;1) + p"tS(m/n'p®, L;p) = p" —p'
= o(p")
=S, pn’;p").

Note we used S(m'n’, 1;p) = 34 moaxp) € <g> = —1 by Lemma [2.1}
(D) S(m, ;) = S(dm, din; do)S(Tym, dyni dy)

Denote by f(r1,rs) the unique residue modulo d;ds which is congruent to r; modulo dy and
ro modulo dy. (It’s well defined by the Chinese Remainder Theorem.)

. . dy dyag do dyaz
S(@om. T dy) S (@, Ty dy) — Z . (m 101 +1n 1a1> Z . (m 90y + 1 mz)

da dy
a1 (mod* dg) a2 (mod*dj)

Z e ((md_1a1d1 + md_gagdg) + (nd_la_ldl + md_Qa_ng)
a1 (mod* dz) d1d2
a2 (mod*dj)

_ f(may, mas) + f(nay,naz)
-2 6( dd, >

a1 (mod* ds)
a2 (mod*dy)

18.785 ANALYTIC NUMBER THEORY PS # 4

)



Problem 3 5

_ mf(ay,az) +nf(ai,az)
_ Yy . ( ) )

a1 (mod* da)
a2 (mod*dy)

_ Z . ma + na
N dyds

a (mod*dyd2)

= S(m,n;c).

We used the fact that the units modulo d;ds are exactly the residues which are units both
modulo d; and modulo dy, by the Chinese Remainder Theorem.

Problem 3 (Sali¢ sum)
(A)

Lemma 3.1: Suppose 2m is relatively prime to c¢. Then

<@> g(n,c) = g(mn,c).

c
Proof. From [I], 4.8], g(n,c) = €. (%) v/c where

. I, ¢=1 (mod4)
‘" li, ¢=3 (mod 4).

Hence m ma n mn
()t (2) (2) 5= (2) Vo= som
c c c c
m
Lemma 3.2 (Ramanujan sum): Let ¢, be a primitive ¢th root of unity, and let
cq(n) = Z Cq
a (mod* q)
Then q
cq(n) = Z du (c_l> :
d| ged(gq,m)
Proof. Let ny(n) = > 1_; (;m. Since all gth roots of unity are primitive dth roots of unity

for exactly one d|g,

ng(n) = caln).

dlq

cu(m) =Y 1t (3) malm).

dlq

By Mobius inversion,

But the sum 7,(n) = 32¢_, ¢#* is 0 unless d|n, in which case it equals d (each term being 1).
This gives the lemma. [
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>

O

x (mod ¢) d (mod*c)
_ y2—4mn
4nd

S ORC
-y x| (d—)

| S

d (mod* ¢) « (mod c)

d (mod*c) t (modc)
2 —4mn

= Z g(nd,c)e ( dnd )

d (mod* c)

2 _ 4 1 1

= Z g(nd?, c)e (—c L RE) by Lemma, |3.]]

d (mod*c)

ged(dmn — 4%, c)d

—glne) Y e (B ()

d (mod* c)

—g(n,0) D dp (g) :

d| ged(4mn—y?2,c)

In @ we replaced & by 4nd- M:_yz’c) which is legit since 4n - M:_y%) is a unit modulo
c. We used g(nd?,c) = 32, (mod o) € < ) >t (mod ) © < ) = g(n,c), since as t ranges

over units modulo ¢ so does dt.

(B)

Taking the inverse Fourier Transform of (A) gives

F<x>=%z (D)oo > an(5)

y (mod c) d| ged(dmn—y2,c)

Ic) g

y (mod c),d|4mn—y?

=g<w>% s

y2=4mn (mod c)

=g(n,c) > 6(25”7?/)

y2=mmn (mod c)

Note that in the inner sum for d # c is 0, because a solution y to d|4mn — y? can be
grouped with the solutions y + dk for 0 < k < §, and the resulting e (zy) are evenly spaced
around the unit circle (for z invertible modulo c) and sum to 0.
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In particular, putting in x = 1 gives

Tm,mic) =g(n,c) 3 e(%y)

y2=mn (mod c)

Problem 4 (Line bundles)

(A)
Let K =R or C.
The trivial line bundle 7’ : M x K — M has the nonvanishing section ¢ defined by

g(m) = (m, 1)'

Conversely suppose there is a nonvanishing section f : M — L. Let w : L — M be the
projection map. We find a way to identify L with M x K so that f is identified with the
map m — (m, 1) given above. Define h : L. — M x K as follows:

h(l) = (ﬂz),%) |

Since the fiber above 7(l) is a one-dimensional vector space and f(m(l)) does not correspond
to the zero vector (as f is nonvanishing), the division is well-defined. We claim that the

following commutes:

L—M M<K

f /

M
Indeed, h(f(m)) = <m, %) = (m,1) = g(m). Note h is a diffeomorphism: given [ € L,
we can choose an open neighborhood U around 7(l) so that #=!(U) = U x K; then the map
from U x K — M x K induced by h: L - M x K is clearly a diffeomorphism. It remains
to note that h carries 771(1) bijectively to 7/~1(1), and it is a linear transformation here, for
each [.

(B)
The Mébius strip is not isomorphic to S x R.

We identify S with the reals modulo 1. Let U; = (0,1) and Uy = (.9,1) U [0,.1). As a
set, let L be a copy of S x R. Let 7 : L — S* be the projection map. Give 7—1(U;) the
same topology as the usual topology U; x R C L. However, define the topology on U, as
follows: Let h: 7=!(Uy) — Uy x R be the map defined by

_ @), we(9 1)
h((z,y)) = {(:z:,—y), z €[0,.1)
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and topologize 7~!(Uy) so that h is a homeomorphism. Note the topology on U; N Uy is
consistent in both cases: on the component (.9, 1) h is simply the identity map on sets, while
on the component (0,.1) h is the map (a,b) — (a, —b) which is a automorphism of (0,.1) x R.
L is known as the Mobius strip.

Now let f be any section S' — L. Write f as f(z) = (x, fi(z)). Then from the topology
on L, in order for f to be continuous,

£(0) = — lim f(x).

r—1—

If f1(0) = 0 then f vanishes, else, f1(0) and f;(1 — ¢) are of different sign for small €, so f;
vanishes somewhere on (0, 1) and again f vanishes. Thus by (A), L 2 S' x R.
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