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Problem 1 (Invariant measure)

(A) Bruhat decomposition
Since S ∈ SL2(R), B ∪BSB ⊆ SL2(R).

Now we show that for M = [ a bc d ] ∈ SL2(R), M ∈ B iff c = 0 and M ∈ BSB iff c 6= 0.
The first is obvious. For the second, note that the matrices in BSB are in the form[

e f
0 e−1

] [
0 −1
1 0

] [
g h
0 g−1

]
=

[
fg fh− eg−1

e−1g e−1h

]
, e, g 6= 0.

The lower left entry is hence nonzero. Conversely, if c = 0, then M can be written in the
above form by letting

e = c−1

f = a

g = 1

h = dc−1.

(Note this gives b = ad−1
c

which is true since det(M) = 1.) Hence M ∈ BSB. This shows
SL2(R) = B tBSB.

(B)

1. |y|−2dxdy is invariant under diagonal matrices: The matrix

[
a 0
0 a−1

]
∈ SL2(R) cor-

responds to the transformation z 7→ cz or x + yi 7→ cx + cyi, where c = a2. Then
|y|−2dxdy becomes

|cy|−2d(cx)d(cy) = |y|−2dxdy.

2. |y|−2dxdy is invariant under unipotent matrices: The matrix

[
1 a
0 1

]
corresponds to

the transformation z 7→ z + a, or x+ yi 7→ (x+ a) + yi. Then |y|−2dxdy becomes

|y|−2d(x+ a)dy = |y|−2dxdy.
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3. |y|−2dxdy is invariant under S: S corresponds to the transformation z 7→ −1
z
, or

r cis θ 7→ −1
r

cis(−θ). Noting that the Jacobian from rectangular to polar coordinates
is r,

|y|−2dxdy =
r

|r sin θ|2
drdθ.

Under S, this gets sent to

1
r∣∣ 1

r2
sin θ

∣∣2d
(
−1

r

)
d(−θ) =

−r3

|r sin θ|2
· dr
r2
· (−dθ) =

r

|r sin θ|2
drdθ,

which is the same as the original expression.

Now note that B = DU , where D is the subgroup of diagonal matrices in SL2(R) and U is
the subgroup of unipotent matrices, as[

a 0
0 a−1

] [
1 ba−1

0 1

]
=

[
a b
0 a−1

]
.

Since |y|−2 is invariant under D, U , and S, it is invariant under B and BSB. Hence by the
Bruhat decomposition it is invariant under SL2(R).

Problem 2 (Genus)

(A)
By the Riemann-Hurwitz formula, for f : R → R′ a holomorphic map of compact Riemann
surfaces that is m-to-1 at finitely many points,

2g(R)− 2 = m(2g(R′)− 2) +
∑
p∈R

(ep − 1), (1)

where ep is the ramification index of p. We also have the following: For p′ ∈ R′,

m =
∑

p∈R,f(p)=p′

ep. (2)

Let Γ′ = SL2(Z). For a group G ⊆ SL2(Z), let G denote its image in PSL2(Z). Putting
in R′ = Γ′\H∗ and R = Γ\H∗, and noting that g(SL2(Z)\H∗) = 0, m = µ = [Γ′ : Γ], (1)
becomes

g(Γ\H∗) = 1− µ+
1

2

∑
p∈Γ\H∗

(ep − 1).

Now the only nonequivalent cusp of Γ′ is ∞ and the only nonequivalent elliptic points of
Γ′ are i and ω = e

2πi
3 , by Proposition 3.5.3. Thus the stabilizer of any elliptic point z of Γ′

is a subgroup Γ′z conjugate to one of the following subgroups.

Γ′ω =
{
±I,±

[
0 −1
1 −1

]
,±
[ −1 1
−1 0

]}
(3)

Γ′i = {±I,± [ 0 −1
1 0 ]} (4)
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These groups have order 2 and 3 in PSL2(Z), respectively. If z ∈ H∗ elliptic in Γ′ = SL2(Z)
remains elliptic under Γ, we must have Γ′z ⊆ Γ; in this case ez = [Γ′z : Γz] = 1. Otherwise,
ez = [Γ′z : Γz] = |Γ′z|.

First consider the points of Γ\H∗ lying over i. Note ν2 is the number of such points with
ez = 1. Let a be the number of points with ez = 2. By (2),

µ = 2a+ ν2,

so a = µ−ν2
2

. Hence ∑
p∈Γ\H∗, f(p)=i

(ep − 1) = a =
µ− ν2

2
. (5)

Next consider the points of Γ\H∗ lying over ω. Note ν3 is the number of points with
ez = 1. Let b be the number of points with ez = 3. By (2),

µ = 3a+ ν3,

so a = µ−ν3
3

. Hence ∑
p∈Γ\H∗, f(p)=ω

(ep − 1) = a =
2(µ− ν3)

3
. (6)

Finally consider the cusps of Γ. We claim that if p is a cusp of Γ′, then it is a cusp of
Γ. Indeed, if γ is a parabolic element of Γ′ fixing p, then since Γ has finite index in Γ′, some
nonzero power γm is contained in Γ; it fixes p. (Note γm 6= I since γ has infinite order.)
Hence using (2),

∑
p∈Γ\H∗, f(p)=∞

(ep − 1) =

 ∑
p∈Γ\H∗, f(p)=∞

ep

− ν∞ = µ− ν∞. (7)

We’ve accounted for all elliptic points and cusps of Γ. Putting (5), (6), and (7) into (1)
gives

g = 1 +
µ

12
− ν2

4
− ν3

3
− ν∞

2
. (8)

(B)
Below, p will always represent a prime.

Lemma 2.1:

[PSL2(Z) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
.

Proof. Let G be the group

{(a, y)|a ∈ (Z/NZ)×, y ∈ Z/NZ}/{±(1, 0)}

with the operation
(a, y)(a′, y′) = (aa′, ay′ + a′−1y).
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The fact that G is a group can be shown directly, or by noting that the group structure on
G is the “pushforward” of the group structure on Γ0(N) by π below. We claim that

1→ Γ(N)→ Γ0(N)
π−→ G→ 1

is a short exact sequence, where

π

([
a b
Nc d

])
= (a, b) mod N.

We verify:

1. π is surjective: Given (a, b) ∈ G, we can choose b so that a ≡ a (mod N), b ≡ b
(mod N) so that gcd(a, b) = 1. Let d be an integer such that ad ≡ 1 (mod N). By
Bézout’s Theorem we can find k, l so that ak− lb = 1−ad

N
. Then a(d+ kN)−Nlb = 1,

and the following matrix is in SL2(Z).

π

([
a b
Nl d+ kN

])
= (a, b).

2. ker(π) = Γ(N): The inclusion Γ(N) ⊆ ker(π) is clear. Conversely, if A =

[
a b
Nc d

]
∈

Γ0(N), π(A) = (1, 0), then a ≡ 1 (mod N) and b ≡ 0 (mod N); moreover ad−(Nc)d =
1 and a ≡ 1 (mod N) imply b ≡ 1 (mod N).

First suppose N 6= 2. Then |G| = 1
2
ϕ(N)N , so

[PSL2(Z) : Γ0(N)] =
[PSL2(Z) : Γ(N)]

|G|
=

N3

2

∏
p|N

(
1− 1

p2

)
N
∏

p|N

(
1− 1

p

) = N
∏
p|N

(
1 +

1

p

)
.

For N = 2, [PSL2(Z),Γ(N)] = 6 and |G| = 2, so [PSL2(Z) : Γ0(N)] = 3 (and the above
formula works as well).

Lemma 2.2: The equivalence classes of elliptic points of order 2 in Γ0(N) are in bijection
with the solutions to a2 + 1 ≡ 0 (mod N), and the elliptic points of order 3 in Γ0(N) are in
bijection with the solutions to a2 + a+ 1 ≡ 0 (mod N).

Proof. Let z be an elliptic point of order 2 in Γ0(N). Its stabilizer subgroup in PSL2(Z) is
conjugate to (4), and must be the same as the stabilizer subgroup in Γ0(N). Let γz = z
with γ 6= ±1. Then γ is conjugate to [ 0 −1

1 0 ] and has characteristic polynomial x2 + 1. It

must have trace 0 and be in Γ0(N). Hence modulo N it is in the form[
a b
0 a−1

]
, a+ a−1 ≡ 0 (mod N). (9)

This gives a so that a2 + 1 ≡ 0 (mod N). Note that the map z 7→ a is well-defined because
equivalent z get sent to the same a: If z1 and z2 are elliptic points with γjzj = zj, γj 6= ±I
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and τz1 = z2, τ ∈ Γ0(N), then τγ1τ
−1z2 = z2 so τγ1τ

−1 = γ2. Working modulo N , we write
γ1 =

[
a b
0 a−1

]
, τ =

[
c d
0 c−1

]
and hence

γ2 = τγ1τ
−1 =

[
a −ad+ c2b+ ca−1d
0 a−1

]
which has the same upper-left-hand entry.

Let m be the number of solutions to a2 + 1 ≡ 0 (mod N). Note for every such solution,[
a 1

−a2−1 −a
]

is an elliptic matrix with upper lefr corner a, so there are at least m Γ0(N)-
inequivalent elliptic points of order 2. It suffices to show there are at most m distinct elliptic
points of order 2.

Lemma 2.3: For each

(z, t) ∈ P :=
(Z/NZ)2 − {(0, 0)}

(Z/NZ)×

take an integer matrix of the form [ x yz t ]. These matrices form a set of right coset represen-
tatives for Γ0(N) in SL2(Z) (or of Γ0(N) in PSL2(Z)).

Proof. First note that coset representatives for Γ0(N) in SL2(Z) correspond to coset repre-
sentatives for Γ0(N)/Γ(N) in SL2(Z/NZ). Thus we work modulo N . We show that the map
(of sets)

SL2(Z/NZ)\(Γ0(N)/Γ(N))→ P[
x y
z t

]
7→ (z, t)

is well-defined and bijective. For each (z, t) ∈ P we can find a matrix of the above form by
Bézout, so this map is surjective.

First, it is well-defined: If
[
a−1 b

0 a

]
∈ Γ(N), then[

a−1 b
0 a

] [
x y
z t

]
=

[
a−1x+ bz a−1y + bt

az at

]
. (10)

whose bottom row is just the original multiplied by a.
It remains to show that the map is injective, i.e. every matrix in the form

[
x′ y′

az at

]
∈

SL2(Z) with a ∈ (Z/NZ)× is in the same coset. Suppose [ x yz t ] ∈ SL2(Z/NZ) is the coset
representative. Assume z 6= 0 (if z = 0, work with t instead of z; the argument is similar).
Then given

[
x′ y′

az at

]
∈ SL2(Z), we have ax′t−ay′z = 1 so x′t−y′z = a−1. Taking this modulo

gcd(z,N) gives x′t ≡ a−1 (mod gcd(z,N)), which has a unique solution for x′ modulo
gcd(z,N). Hence there are N

gcd(z,N)
possible values of x′ modulo N . The value of x′ uniquely

determines y′, so there are N
gcd(z,N)

matrices with bottom row az, at. Fixing a and letting b

range over the residues modulo N in (10), a−1x + bz can take N
gcd(z,N)

values. Hence all the

matrices with bottom row az, at are in the coset Γ0(N)

[
x y
z t

]
, as needed.
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Let γ1, γ2 6= ±I be stabilizers for elliptic points p1, p2 in Γ0(N), and suppose p1, p2 are
Γ0(N)-inequivalent. By Proposition 3.5.3, we can write γj = MjSM

−1
j , where S = [ 0 −1

1 0 ]
and Mj ∈ PSL2(Z). Write Mj = AjRj where Rj is one of the coset representatives above

and Aj ∈ Γ0(N). Then

γ1 = A1R1SR
−1
1 A−1

1

γ2 = A2R2SR
−1
2 A−1

2

Let R =

[
x y
z t

]
be a coset representative chosen above. Then

RSR−1 =

[
yt+ xz −x2 − y2

t2 + z2 −yt− zx

]
.

In order for this to be in Γ0(N), we must have

t2 + z2 ≡ 0 (mod N). (11)

We count the number of (t, z) ∈ P that make this equation true. Note that gcd(t, z) = 1.
Let g = gcd(t, N). If (11) holds then g|z giving g = 1. Thus we can divide the equation
above by z2 and let x = t

z
to get x2 + 1 ≡ 0 (mod N). Each solution (t, z) corresponds to a

solution x. Thus there are m coset representatives R such that RSR−1 ∈ Γ0(N).
Now if R1 = R2, then γ2 = A2A

−1
1 γ1A1A

−1
2 so γ1, γ2 are conjugate in Γ0(N) and p1, p2

are Γ0(N)-equivalent. The number of Γ0(N)-inequivalent elliptic points is hence at most the
number of distinct coset representatives R such that RSR−1 ∈ Γ0(N), which equals m. But
we’ve already shown there are at least m distinct elliptic points, so the number must equal
exactly m.

For the case that z is an elliptic point of order 3, we have γz = z for some γ conjugate
to T =

[
0 −1
1 −1

]
instead. The proof is the same with minor changes.

1. The trace is 1 so we have a2 + a+ 1 ≡ 0 (mod N) in (9) instead.

2. The map z 7→ a is sujective because the elliptic point corresponding to
[

a 1
−a2−a−1 −1−a

]
maps to a.

3. Keeping the same notation, the bottom-left entry in RTR−1 is z2 + tz + t2 instead of
t2 + z2.

It remains to count the number of solutions to a2 + 1 ≡ 0 (mod N). Let p|N, p 6= 2. The
number of solutions to a2 ≡ −1 (mod p) is 2 if −1 is a square modulo p and 0 otherwise.
By Hensel’s Lemma solutions lift uniquely to modulo pvp(n). The number of solutions to
a2 ≡ −1 (mod 2α) is 1 if α = 1 and 0 if α > 1. Hence by the Chinese Remainder Theorem
the total number of solutions is

ν2 =

{∏
p|N, p6=2

(
1 +

(
−1
p

))
, 4 - N

0, 4|N.
(12)
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Now a2 +a+1 ≡ 0 (mod N) has no solutions if 2|N . If 2 - N , then rewrite as (2a+1)2 ≡ −3
(mod N). For p 6= 2, 3, this equation has 2 solutions if −3 is a square mod p and 0 otherwise;
solutions mod p lift to solutions mod pvp(n). For p = 3, we see that there is 1 solution mod
3 but none mod 9. Hence

ν3 =

{∏
p|N, p6=2,3

(
1 +

(
−3
p

))
, 2 - N, 9 - N

0, else.
(13)

Finally, we count the cusps.

Lemma 2.4: Suppose z ∈ H, Γ′ is a discrete subgroup of SL2(R), Γ ⊆ Γ′ is a subgroup of
finite index, and σ1, . . . , σk ∈ Γ′ are such that σj(z) are all the Γ-inequivalent points. Then

Γ′ =
k⊔
j=1

ΓσjΓ
′
z.

Proof. Given γ ∈ Γ′, there exists σj such that γ(z) is Γ-equivalent to σj(z). This means
there exists A ∈ Γ such that γ(z) = Aσj(z). Then σ−1

j A−1γ(z) = z so there exists τ ∈ Γ′z
such that σ−1

j A−1γ = τ . Rearranging gives

γ = Aσjτ ∈ ΓσjΓ
′
z.

These double cosets are disjoint because if γ ∈ ΓσjΓ
′
z, then γ(z) is Γ-equivalent to σj(z),

and by assumption different σj(z) are Γ-inequivalent.

Take Γ′ = SL2(Z), Γ = Γ0(Z), and z = 0 = [ 0 −1
1 0 ]∞; then σ1(z), . . . , σk(z) are all

the cusps, and ν∞ is the number of double cosets Γ0(N)\Γ′/Γ′z. Considering our coset
representatives [ ∗ ∗z t ], two of them are in the same double coset if they are related on the
right by an element of Γ′z = {[ 1 0

n 1 ]}. Now[
∗ ∗
z t

] [
1 0
n 1

]
=

[
∗ ∗

nt+ z t

]
.

Thus the number of double cosets is the number of pairs (z, t) under the equivalence relation
(z, t) ∼ (z′, t′) if z′ = nt+ z, t = t′ for some n. Fixing t, there are ϕ(gcd(n/t, t)) inequivalent
choices for z. Hence

ν∞ =
∑
d|N

ϕ(gcd(n, n/d)). (14)

Now we can put (12), (13), and (14) into (8) to get g(X0(N)).

Problem 3 (Picard’s Little Theorem)

Suppose f is an entire function omitting two values y1, y2.
Note µ2 = 6 so

g(X(2)) = 1 + µN ·
N − 6

12N

∣∣∣∣
N=2

= 0.
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The number of cusps is
µN
N

= 3.

There is one cusp at ∞ and two inequivalent cusps on R. Note that Γ(2)\H is analytically
isomorphic to C − {y1, y2} (say, via ϕ) since they both have genus 0 and two finite points
omitted.(From [?], any compact Riemann surface of genus 0 and no cusps is analytically
isomorphic to the Riemann sphere.)

Thus f induces a holomorphic map g : C → Γ(2)\H. Now H is a covering space of
Γ(2)\H so g induces a analytic map h so that the following diagram commutes. (Here π is
the projection map.)

H
π

��

C
g

//

h

99rrrrrrrrrrrr

f

%%KKKKKKKKKKK Γ(2)\H
ϕ∼=

��

C− {y1, y2}.

Now u(z) = eiz is an analytic map from H to D−{0} (D being the unit disc centered at 0).
Hence u(h(z)) is an entire function with image contained in D. Then u(h(z)) is bounded so
constant by Liouville’s Theorem. But the inverse image of any point under u is discrete, so
this means that h(z) is constant, and f(z) = ϕ(π(h(z)) is constant.

Problem 4 (An automorphic form)

For γ =

[
a b
c d

]
∈ SL2(Z),

γ(z) =
az + b

cz + d

γ′(z) =
���

��: 1
ad− bc

(cz + d)2
(15)

We differentiate the equation

f |[γ]k(x) = f(γ(x))(cx+ d)−k = f(x) (16)

and use (15) and (16) to obtain

f ′(x) = f ′(γ(x))γ′(x)(cx+ d)−k − kf(γ(x))(cx+ d)−k−1

= f ′(γ(x))(cx+ d)−2−k − kf(x)(cx+ d)−1 (17)

f ′(γ(x)) = (cx+ d)k+1(f ′(x)(cx+ d) + kf(x)). (18)
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Now differentiate f ′(x) again and use (15), (16), and (18) to obtain

f ′′(x) = f ′′(γ(x))γ′(x)(cx+ d)−2−k − f ′(γ(x))(k + 2)(cx+ d)−3−k

− kf ′(x)(cx+ d)−1 + kf(x)(cx+ d)−2

= f ′′(γ(x))(cx+ d)−4−k − (2 + k)(cx+ d)−2(f ′(x)(cx+ d) + kf(x))

− kf ′(x)(cx+ d)−1 + kf(x)(cx+ d)−2

f ′′(γ(x)) = f ′′(x)(cx+ d)k+4 + (k + 2)(cx+ d)k+2(f ′(x)(cx+ d) + kf(x))

+ kf ′(x)(cx+ d)k+3 − kf(x)(cx+ d)k+2. (19)

Use (16), (18), and (19) to write

g(γ(x)) = (k + 1)f ′(γ(x))2 − kf(γ(x))f ′′(γ(x))

= (k + 1)(cx+ d)2k+2
[
f ′(x)2(cx+ d)2 + 2kf(x)f ′(x)(cx+ d) + k2f(x)2

]
− kf(x)(cx+ d)k[f ′′(x)(cx+ d)k+4 + (k + 2)(cx+ d)k+2(f ′(x)(cx+ d) + kf(x))

+ kf ′(x)(cx+ d)k+3 − kf(x)(cx+ d)k+2]

= (cx+ d)2k+4
[
(k + 1)f ′(x)2 − kf ′′(x)

]
+ (cx+ d)2k+3

[
2k(k + 1)f(x)f ′(x)− k(k + 2)f(x)f ′(x)− k2f(x)f ′(x)

]
+ (cx+ d)2k+2

[
k2(k + 1)f(x)2 − k2(k + 2)f(x)2 + k2f(x)2

]
= (cx+ d)2k+4[(k + 1)f ′(x)2 − kf ′′(x)]

= (cx+ d)2k+4g(x)

Hence g|[γ]2k+4 = g, and g is a weight (2k + 4)-modular form. (Note that since f is holo-
morphic, so are its derivatives, and so g is holomorphic.)

If f is a modular form, then translating a cusp to ∞ we can write the Fourier expansion
as

f(z) =
∑
n≥0

ane
2πinz.

Note f ′(z) =
∑

n≥1 2πinane
2πinz has no constant term, and neither does f ′′(z). Hence

g(z) = (k + 1)f ′(z)2 − kf(z)f ′′(z) has no constant term, and is a cusp form.
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