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Problem 1 (Nonvanishing Poincaré series)

The nth Fourier coefficient of Pn(z), the Poincaré series of weight k, is

p(n, n) = 1 +
2π

ikh

∑
c>0

c−1SΓ(n/h, n/h; c)Jk−1

(
2πn

ch

)
.

To show that the Poincaré series does not vanish, it suffices to show p(n, n) 6= 0. For this,
it suffices to show that |A| < 1 where A = 2π

ikh

∑
c>0 c

−1SΓ(n/h, n/h; c)Jk−1

(
2πn
ch

)
. Note that

any c in the sum is an integer because Γ ⊆ SL2(Z).
We assume k > 4 and the smallest c is greater than 1 (so at least 2). Below C1, C2, . . .

will represent constants.
First, [2, 4.1] gives the bound

Jk(x) ≤ (2πk)−
1
2

(ex
2k

)k
.

Hence (noting h ≥ 1),

Jk−1

(
4πn

ch

)
≤ (2π(k − 1))−

1
2

(
2πen

(k − 1)ch

)k−1

≤ C1(2πe)k
nk−1

(k − 1)k−
1
2 ck−1

.

From Proposition 4.9.1,
|SΓ(m,n; c)| ≤ c2 · c(s, s)−1.

Putting these two estimates together, and letting c0 = c(s, s),

A ≤ C2(2πe)k
nk−1

c0(k − 1)k−
1
2

∑
c≥c0

1

ck−3
(1)

≤ C2(2πe)k
nk−1

c0(k − 1)k−
1
2

∫ ∞
c0−1

1

xk−3
dx

= C2(2πe)k
nk−1

c0(k − 1)k−
1
2

(c0 − 1)−k+4

k − 4
.
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This is at most 1 if

nk−1 ≤ C3(2πe)−k(k − 1)k−
1
2 (k − 4)c−1

0 (c0 − 1)k−4

⇐ n ≤ C4k(c0 − 1)

⇐ n ≤ C5kc0.

Thus if n ≤ C5kc0 then Pn(z) does not vanish.
If instead c0 = 1, then by letting n ≤ Ckc0 = Ck with appropriate C, we may assume

that term c = 1 in the sum (1) is less than a constant, say 1
2
, since

C2(2πk)k
nk−1

(k − 1)k−
1
2

1

ck−4
0

≤ C2(2πe)k
C(Ck)k−1

(k − 1)k−
1
2

≤ C2(2πeC)k
(

k

k − 1

)k−1

≤ C2(2πeC)k · e.

Then it suffices for the rest of the terms to sum to at most 1
2
. Replacing the lower limit in

the integral estimate with c0, the proof goes the same as before with modified constants.

Problem 2 (Kloosterman sums)

(A) S(m,n; c) = S(n,m; c)
The definition of S(m,n; c) is symmetric in both m and n:

S(n,m; c) =
∑

d1d2≡1 (mod c)

e

(
nd1 +md2

c

)
.

(B) S(an,m; c) = S(n, am; c) if gcd(a, c) = 1

S(an,m; c) =
∑

d1d2≡1 (mod c)

e

(
and1 +md2

c

)

=
∑

d (mod×c)

e

(
and+md

c

)

=
∑

d (mod×c)

e

(
an(ad) +mad

c

)
(2)

=
∑

d (mod×c)

e

(
nd+ amd

c

)

=
∑

d1d2≡1 (mod c)

e

(
nd1 + amd2

c

)
= S(n, am; c)

In (2), we replaced d with ad; this is legitimate since gcd(a, c) = 1 and as d ranges over the
units modulo c, so does ad.

(C) S(n,m, c) =
∑

d| gcd(c,m,n) dS(mnd−2, 1; cd−1)
We prove this for c = pr a prime power.
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Lemma 2.1: ∑
d (mod×pr)

e

(
d

pr

)
=

{
−1, r > 1

0, r = 1.

Proof. For r = 1, just note that the sum of roots of unity
∑

d (mod p) e
(
d
p

)
= 0.

For r > 1, using the fact that the sum of kth roots of unity is 0 for any k > 1,∑
d (mod×pr)

e

(
d

pr

)
=

∑
d (mod pr)

e

(
d

pr

)
−

∑
d (mod pr−1)

e

(
d

pr−1

)
= 0− 0 = 0.

Lemma 2.2: Suppose p|m and r ≥ 2. Then S(m, 1; pr) = 0.

Proof. Write m = pkl with p - l. Consider two cases.

1. k < r: Then

S(m, 1; pr) =
∑

d (mod×pr)

e

(
pkld+ d

pr

)

=
∑

x (mod pk)

∑
a (mod×pr−k)

e

(
pkl(pr−kx+ a) + pr−kx+ a

pr

)

=
∑

a (mod×pr−k)

∑
x (mod pk)

e

(
pkla+ pr−kx+ a

pr

)
(3)

As x ranges from 1 to pk, pr−kx+ a attains the values a+pr−kb for all b (mod pk). Now

the e
(
pkla+a+pr−kb

pr

)
for a fixed and b varying modulo pk are equally spaced on the unit

circle so sum to 0. Hence the inner sum in (3) is 0.

2. k ≥ r: Then

S(m, 1; pr) =
∑

d (mod×pr)

e

(
pkld+ d

pr

)

=
∑

d (mod×pr)

e

(
d

pr

)
= 0

by Lemma 2.1.
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Let gcd(n,m, c) = pk. Write n = pkn′ and m = pkm′; note that p does not divide both
m′ and n′.

Then ∑
d| gcd(c,m,n)

dS(mnd−2, 1; cd−1) =
∑
d|pk

dS(m′n′p2kd−2, 1; prd−1)

=
k∑
i=0

piS(m′n′p2k−2i, 1; pr−i)

If k < r then all terms except the last are 0 by Lemma 2.2, so this equals

pkS(m′n′, 1; pr−k) = pkS(m′, n′; pr−k) (4)

= pk
∑

d (mod×pr−k)

e

(
m′d+ n′d

pr−k

)

=
∑

d (mod×pr)

e

(
pkm′d+ pkn′d

pr

)
(5)

= S(m,n; c)

In (4) we used (B), noting that one of m′, n′ is relatively prime to p, and in (5) we note that
the invertible residues modulo pr cover the invertible residues modulo pr−k, pk times.

If instead k = r then all terms except the last two are 0 by Lemma 2.2, and the sum
equals

prS(m′n′, 1; 1) + pr−1S(m′n′p2, 1; p) = pr − pr−1

= ϕ(pr)

= S(prm′, prn′; pr).

Note we used S(m′n′, 1; p) =
∑

d (mod×p) e
(
d
p

)
= −1 by Lemma 2.1.

(D) S(m,n; c) = S(d1m, d1n; d2)S(d2m, d2n; d1)
Denote by f(r1, r2) the unique residue modulo d1d2 which is congruent to r1 modulo d2 and
r2 modulo d1. (It’s well defined by the Chinese Remainder Theorem.)

S(d1m, d1n; d2)S(d2m, d2n; d1) =
∑

a1 (mod×d2)

e

(
md1a1 + nd1a1

d2

) ∑
a2 (mod×d1)

e

(
md2a2 + nd2a2

d1

)

=
∑

a1 (mod×d2)
a2 (mod×d1)

e

(
(md1a1d1 +md2a2d2) + (nd1a1d1 +md2a2d2)

d1d2

)

=
∑

a1 (mod×d2)
a2 (mod×d1)

e

(
f(ma1,ma2) + f(na1, na2)

d1d2

)
.
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=
∑

a1 (mod×d2)
a2 (mod×d1)

e

(
mf(a1, a2) + nf(a1, a2)

d1d2

)

=
∑

a (mod×d1d2)

e

(
ma+ nā

d1d2

)
= S(m,n; c).

We used the fact that the units modulo d1d2 are exactly the residues which are units both
modulo d1 and modulo d2, by the Chinese Remainder Theorem.

Problem 3 (Salié sum)

(A)

Lemma 3.1: Suppose 2m is relatively prime to c. Then(m
c

)
g(n, c) = g(mn, c).

Proof. From [1, 4.8], g(n, c) = εc
(
n
c

)√
c where

εc =

{
1, c ≡ 1 (mod 4)

i, c ≡ 3 (mod 4).

Hence (m
c

)
g(n, c) = εc

(m
c

)(n
c

)√
c = εc

(mn
c

)√
c = g(mn, c).

Lemma 3.2 (Ramanujan sum): Let ζq be a primitive qth root of unity, and let

cq(n) =
∑

a (mod×q)

ζanq .

Then
cq(n) =

∑
d| gcd(q,n)

dµ
(q
d

)
.

Proof. Let ηq(n) =
∑q

k=1 ζ
kn
q . Since all qth roots of unity are primitive dth roots of unity

for exactly one d|q,
ηq(n) =

∑
d|q

cd(n).

By Möbius inversion,

cq(n) =
∑
d|q

µ
(q
d

)
ηd(n).

But the sum ηq(n) =
∑d

k=1 ζ
nk
d is 0 unless d|n, in which case it equals d (each term being 1).

This gives the lemma.
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F̂ (y) =
∑

x (mod c)

∑
d (mod×c)

(
d

c

)
e

(
md+ ndx2

c

)
e

(
−yx
c

)

=
∑

d (mod×c)

∑
x (mod c)

(
d

c

)
e

(
nd
(
x− y

2nd

)2 − y2−4mn
4nd

c

)

=
∑

d (mod×c)

∑
t (mod c)

(
d

c

)
e

(
ndt2 − y2−4mn

4nd

c

)

=
∑

d (mod×c)

(
d

c

)
g(nd, c)e

(
−y2−4mn

4nd

c

)

=
∑

d (mod×c)

g(nd2, c)e

(
−(y2 − 4mn)

c
· 1

4n
· 1

d

)
by Lemma 3.1

= g(n, c)
∑

d (mod×c)

e

(
gcd(4mn− y2, c)d

c

)
(6)

= g(n, c)
∑

d| gcd(4mn−y2,c)

dµ
( c
d

)
.

In (6) we replaced 1
d

by 4nd· gcd(4mn−y2,c)
c

, which is legit since 4n· gcd(4mn−y2,c)
c

is a unit modulo

c. We used g(nd2, c) =
∑

t (mod c) e
(
n(dt)2

c

)
=
∑

t (mod c) e
(
nt2

c

)
= g(n, c), since as t ranges

over units modulo c so does dt.

(B)
Taking the inverse Fourier Transform of (A) gives

F (x) =
1

c

∑
y (mod c)

e(xy
c

)
g(n, c)

∑
d| gcd(4mn−y2,c)

dµ
( c
d

)
= g(n, c)

1

c

∑
d|c

dµ( c
d

) ∑
y (mod c),d|4mn−y2

e
(xy
c

) (7)

= g(n, c)
1

c

∑
y2≡4mn (mod c)

ce
(xy
c

)
= g(n, c)

∑
y2≡mn (mod c)

e

(
2xy

c

)

Note that in (7) the inner sum for d 6= c is 0, because a solution y to d|4mn − y2 can be
grouped with the solutions y + dk for 0 ≤ k < c

d
, and the resulting e

(
xy
c

)
are evenly spaced

around the unit circle (for x invertible modulo c) and sum to 0.
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In particular, putting in x = 1 gives

T (m,n; c) = g(n, c)
∑

y2≡mn (mod c)

e

(
2y

c

)
.

Problem 4 (Line bundles)

(A)
Let K = R or C.

The trivial line bundle π′ : M ×K →M has the nonvanishing section g defined by

g(m) = (m, 1).

Conversely suppose there is a nonvanishing section f : M → L. Let π : L → M be the
projection map. We find a way to identify L with M × K so that f is identified with the
map m 7→ (m, 1) given above. Define h : L→M ×K as follows:

h(l) =

(
π(l),

l

f(π(l))

)
.

Since the fiber above π(l) is a one-dimensional vector space and f(π(l)) does not correspond
to the zero vector (as f is nonvanishing), the division is well-defined. We claim that the
following commutes:

L
h // M ×K

M

f

OO
g

::uuuuuuuuu

Indeed, h(f(m)) =
(
m, f(m)

f(m)

)
= (m, 1) = g(m). Note h is a diffeomorphism: given l ∈ L,

we can choose an open neighborhood U around π(l) so that π−1(U) = U ×K; then the map
from U ×K → M ×K induced by h : L→ M ×K is clearly a diffeomorphism. It remains
to note that h carries π−1(l) bijectively to π′−1(l), and it is a linear transformation here, for
each l.

(B)
The Möbius strip is not isomorphic to S1 × R.

We identify S1 with the reals modulo 1. Let U1 = (0, 1) and U2 = (.9, 1) ∪ [0, .1). As a
set, let L be a copy of S1 × R. Let π : L → S1 be the projection map. Give π−1(U1) the
same topology as the usual topology U1 × R ⊆ L. However, define the topology on U2 as
follows: Let h : π−1(U2)→ U2 × R be the map defined by

h((x, y)) =

{
(x, y), x ∈ (.9, 1)

(x,−y), x ∈ [0, .1)
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and topologize π−1(U2) so that h is a homeomorphism. Note the topology on U1 ∩ U2 is
consistent in both cases: on the component (.9, 1) h is simply the identity map on sets, while
on the component (0, .1) h is the map (a, b)→ (a,−b) which is a automorphism of (0, .1)×R.
L is known as the Möbius strip.

Now let f be any section S1 → L. Write f as f(x) = (x, f1(x)). Then from the topology
on L, in order for f to be continuous,

f(0) = − lim
x→1−

f(x).

If f1(0) = 0 then f vanishes, else, f1(0) and f1(1− ε) are of different sign for small ε, so f1

vanishes somewhere on (0, 1) and again f vanishes. Thus by (A), L � S1 × R.
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