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Problem 1

Label the edges of the fundamental parallelogram as follows.

a + wy e o+ wy + wy
C1
Cs
o Ch o+ wq
We calculate [, Z}cég) dz in two ways.
Way 1:
!/ / / / /
) dz = [ ) dz + Z—(z)dz} + [ ) dz + Z—(z)dz} .
or f(2) a f(2) c; [(2) e, f(z) a f(2)

Noting that Cj5 is just C shifted by w; and reversed, and that Cy is just Cy shifted by ws
and reversed, this equals

2f'(2) dz:/cl [zf'(z) (z+w1)f’(z+w1)} dz+/c4 [zf’(z) <z+wz)f’<z+wz)} s

or (2) f) fletw) /() /(2 +w)
Since f is elliptic, f(z) = f(z 4+ w1) = f(z + we), giving
O O (O
o 1 T T T S T

Now In(f(2)) can be defined in a neighborhood around C; and Cy, since f has no poles or
zeros on OP. Since f(a) = f(a+wi) = f(a+ws), we have In(f(a+w1)) —In(f(a)) = 2mic;
and In(f(«)) —In(f(a+ws)) = 2micy for some integers ¢; and co. But these equal the above
integrals by definition of In f(z), so

2f'(2)
op f(2)

Way 2: Note Res, J;((ZZ)) = ord, f so Res, ZJ{ES) = aord, f. Letting a, be the poles and
zeros of f in P, we get by Cauchy’s Theorem that

TG o Z}; Resak% = 2ri zk:mkak- (2)

dz = —2mi(wicy + wacs). (1)

op f(2)
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Equating and give

kaak = —wic; —wyce =0 (mod A).
k

Problem 2

For a € A, let P, = {a + tyjwy + taws|t; € [0,1)}. Let d be the diameter of P. Let
Conn ={z:m <|z| <n}. Let
R.= |J P

OcEAﬂOn_Ln

The area of R, is related to the number of points of A in the annulus by a constant:
[Ra] = [AN Cro1n] [P] (3)

(['] denotes area.) Next note that no point of R, can be more than distance d away from
Cr—1n, since each P, has diameter d and contains the point o € C,_;,. Hence R, C
Crn—d—1n+d, and for n > d + 1,

R < [Cridimyd) = T(n+d)? — (n—d—1)%) < 7(4d + 2)n. (4)
From and we get
m(4d + 2)
<A
|AﬂCn—l,n| ~ [P] n

Hence for s > 2, letting m = [d],

Z |;|s: Z |/\1|s+ f: Z |):\l|s

AeA—{0} AE(A—{0}NNCo.m n=m+1 AXeANCrn_1,n

The first sum is finite since a lattice is discrete, while

1 1 4 2
Z N S |AﬂCn_1’n| — S 7T( dP_'_ ) . nl .
seancr . A (n—1) k1 (n—1)

. . 1 .
Hence the second sum converges by comparison to the convergent series ) -, <= (since
s—1>1).

Problem 3
(A)

There exists a such that aA; = Ag (the lattices are homothetic) if and only if their corre-
sponding elliptic curves are isomorphic, E(A;) = E(Az). The j-invariant of A is equal to the
j-invariant of F(A) so it suffices to show that two elliptic curves in the form y? = 2%+ az +b
are isomorphic iff their j-invariants are equal.
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(The equation of F(A) is y* = 42® — gox — g3 = 0 which under change of coordinates
becomes y? = 13 — 4gox — 16g3. By definition the j-invariant of this elliptic curve is j(E) =

1728(4(—4g2)3) o 1728¢g3 .
16(4(7492)3+27g(2*1693)2) o g§—27;§ o (A>)

Let y? = 23 + ax + b be an elliptic curve. Two elliptic curves are isomorphic over C iff
they are related by a change of coordinates; the only possible change of coordinates keeping
this form of the equation are z = u?z’,y = u3y’ which transform the equation to

2 3 I / r a4, b
y =2 +ada + U, a_ﬂ’b_ﬁ' (5)
The new j-invariant is
y 1728(4a’)>  1728(4a)?

T T 16(4a® + 2707) T 16(4d® + 2707)

Hence if two elliptic curves are isomorphic then their j-invariants are equal. Conversely,
suppose the j-invariants of y?> = 2® 4+ ax + b and y?> = 2% + @’ + V' are equal. Then
1728(4a’)3 1728(4a)3
16(4a/3+276'7) — 16(4a3+2752)

, giving a3b? = a®b%. Either none of a,a’, b,V are zero, or a,a’ are

1
zero, or b, b’ are zero (since a, b can’t both be zero, and neither can «’,b’"). Hence one of (bﬁ,) 6

1
or (£)* is defined (or they’re both defined and equal). Taking u in to be this value
transforms the first equation into the second. Hence if two elliptic curves have the same
j-invariant then they are isomorphic.

(B)(i)
Let A; be the set of all points in A in the first quadrant or on the positive real axis. Then
AN = A1 U ZA1 U izAl U ’iSAl. Hence

Then g3 = 0 and hence

(ii)

Let A; be all the points of A between the positive real axis and the ray with angle %”, including
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the positive real axis but not the other ray. Let w = e’ Then A* = Ay UwA; Uw?A; so

Gy(A) = Z %

AEA*

-3 o )

AeEA

1
= Z(1+w+w2)F
AEA
= 0.

Thus g2 = 0 and j(A) = 0.

Problem 4

(A)
Taking logs,

AEA*
Then
d 1 -1/A 1 =z
| — — 4=
EhE =) It
AEA*
d? 1 1 1 \* 1
EhoE)=-5+2> -5 (1 - ) 3 = 90)
AEA* A

(B)

By periodicity p(z) = p(z + A). Integrating twice and using (A) gives
Ino(z+A) =lno(z)+az+0b
for some constants a,b. Exponentiating gives

o(z+ ) = e o (2).

(C)(i)
If > _1ni(z) = A, then replace it with (>°,_, n:(z;)) — () + (0), to make it equal to 0.
(This is okay since modulo A, (A) = (0).)

From the infinite product, o(z) has a simple zero at each z € A and no other zeros or
poles. Let f(z) = [[,_, 0(z—2)™; note f is meromorphic. From the above observation, f(z)
has a zero/pole of order ny, at each z;, and no other zeros modulo A, so div(f) = >, _; ni(z).
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Next we show that f is elliptic. From (B), for A € A we have

flz+ ) = Haz+)\—zk

_ H G g (g

k=1
_ o(0240) Sim et (-0) Sho ek £ () = f(2).

Hence f is elliptic.

(i)
First we show that f is an analytic isomorphism. Let (z,y) on the elliptic curve be given.
Now p(z) — x is a non-constant elliptic function, so it has a zero, say z = a. Since p is even
z = —ais also a zero, and ¢'(2) = £p(a) depending on whether z = a or —a. Now (z, £¢'(a))
are exactly the points on E with first coordinate z (from the equation y* = az® + bx + ¢).
Hence f is surjective. (Note 0 gets sent to the point at infinity.)

Now suppose ¢(z1) = ¢(z2). Then p(z) — p(21) has zeros 21, z5. Since p(z) — p(z1) has
exactly two zeros (since it has one pole of order 2), and g is even, z; = +2z5. (If 229 =0
(mod A) then p(z) — p(21) has a double zero at 21, and that is the only zero.) But ©/(z) is
odd so

' (z21) = ¢ (22) = ¢ (F21) = £¢'(21)

so either z; = 2y (mod A) or p/(21) = 0,21 # 29 (mod A). Let wy,ws generate A and let
w3 = wy + wq. Note ©'(wn/2) = 0 because ' is odd and w,,/2 = —w,,,/2 (mod A). Since
the equation of the elliptic curve is cubic in x, and (p(z), ¢'(2)) € E, these three are the
only possible values of p(z) given that ©'(z) = 0. Since p(z) — p(wy,/2) is even, it has a
double zero at w,,/2; since its only pole is of order 2 this is its only zero modulo A. Hence
0(2) # p(wn) for z # w,, (mod A). This shows ¢ is injective

Next to show that ¢ is analytically an isomorphism, note < is a nonvanishing holomorphic

differential on F, and
¢*(dx/y) = dp(2)/¢'(2) =

is nonvanishing holomorphic on C/A.
From part (i), there exists f such that

le(f) = (21 —+ ZQ) — (Zl) — (ZQ) + (O)

Since every elliptic function is a rational combination of p and @', we can write f = F(gp, ¢)
for some F' € C(x,y). The function f on C/A corresponds to F' on E, since f = F o¢. Since
¢ is an analytic isomorphism, it preserves zeros and poles:

div(F) = (¢(21 + 22)) — (¢(21)) — (¢(22)) + (0).

Hence (¢(z1 + 22)) — (¢(21)) — (¢(22)) + (0) is a principal divisor. From [I], II1.3.5], ¢(2z1 +
22) - ¢(zl) ¢( ) +0=0,s0 ¢(Zl + 2’2) = ¢(2’1) + ¢(2’2)
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(D)
Note p(z), and hence p(z) — p(a), has a pole of multiplicity 2 at z = 0 and no other poles.
Hence its zeros have total multiplicity 2. Now p(z) — p(a) has a zero at z = a; since it is

even it has a zero at z = —a. (If a = —a (mod A) then this is a zero of multiplicity 2.) By
the construction in (C), % has zeros and poles with the same orders as p(z) — p(a).

Now the quotient between these two functions is entire and bounded (since its maximum
and minimum are attained on the (closed) fundamental parallelogram, which is compact),
so a constant, by Liouville’s Theorem.

To find the constant, we note that 2%(p(2) — p(a)) equals 1 at 2 = 0 (the coefficient of
Z% in the Laurent expansion is 1), while (using the fact that the expansion of o(z) is z+- - -,

and o is odd as A* = —A*)

2 o(z+a)o(z—a)
o(z)?

Hence the constant is —ﬁ, and
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