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Problem 1

(A)
Since Γ0(N) acts on Sk(Γ1(N)) by the slash operation and the subgroup Γ1(N) fixes Sk(Γ1(N)),
Sk(Γ1(N)) is a representation of Γ0(N)/Γ1(N). The kernel of the map Γ0(N) → (Z/NZ)×

given by [
a b
c d

]
7→ d (mod n)

is the set of elements [ a bc d ] ∈ Γ0(N) where d ≡ 1 (mod n). However, since c ≡ 0 (mod n)
and the determinant is 1, this forces a ≡ 1 (mod n), and [ a bc d ] ∈ Γ1(N). Hence the kernel
is Γ1(N) and Γ0(N)/Γ1(N) = (Z/NZ)× by the isomorphism sending the class of [ a bc d ] to d
(mod n).

Since Sk(Γ1(N)) is a finite-dimensional representation of Γ0(N)/Γ1(N) = (Z/NZ)×, it
decomposes into irreducible representations of (Z/NZ)×. Thus we can write

Sk(Γ1(N)) =
⊕
ρN

VρN

where the sum is over all irreducible representations of (Z/NZ)×, and VρN is the subspace
where Γ0(N)/Γ1(N) = (Z/NZ)× acts by ρN . (Specifically, [ a bc d ] ∈ Γ0(N)/Γ1(N), corre-
sponding to d (mod p) ∈ (Z/NZ)×, acts by ρN(d).) These are the same as the characters χN
since all irreducible representations of (Z/NZ)× are one-dimensional. If χN corresponds to
ρN , then by definition, VρN = Sk(Γ0(N), χN), giving the desired result.

(B)
Let f be a modular form of weight k on a congruence subgroup containing Γ(n).

Let N = n3, and let α =
[
n 0
n 1
n

]
. Then for any

[
a b
c d

]
∈ Γ1(N), we have

α

[
a b
c d

]
α−1 =

[
a− n2b n2b

a+ c
n2 − n2b− d n2b+ d

]
≡
[
1 0
0 1

]
(mod n)

since a ≡ d ≡ 1 (mod n3), and c ≡ 0 (mod n3). This shows that for any β ∈ Γ1(N),
αβα−1 ∈ Γ(n) so

f |[αβα−1]k = f for all β ∈ Γ1(N).
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Then
f |[α]k|[β]k = f |[α]k for all β ∈ Γ1(N)

so f |[α]k ∈Mk(Γ1(N)).

Problem 2

Consider f(z) = ee
−iz

on the strip <z ∈ [−π, π]. We verify:

1. f(z) = O(1) when <(z) = ±π: If z = ±π + iy with y ∈ R, then

f(z) = ee
−y±πi

= e−e
−y
< e0 = 1.

2. f(z) 6= O(1) when <(z) = 0: If z = iy, y ∈ R, then

f(z) = ee
−i(iy)

= ee
y

which is clearly not bounded.

Problem 3

Lemma 3.1 (Schreier’s subgroup lemma): Let G be a group, H a subgroup, and T a right
transversal of H in G containing 1. For every g ∈ G, let g be the unique element t ∈ T such
that Hg = Ht.

Suppose G is generated by the set S. Then

{ts(ts)−1 : s ∈ S, t ∈ T}

generates H.

Let G = SL2(Z) and H = Γ0(5). By the algorithm in PSet 2, problem 5, we find coset
representatives of H in G to be

I,

[
0 −1
1 0

]
,

[
0 −1
1 1

]
,

[
0 −1
1 2

]
,

[
0 −1
1 −1

]
,

[
0 −1
1 −2

]
.

Note G is generated by S = {[ 1 1
0 1 ] , [ 0 −11 0 ]}. Thus the lemma gives the following generators

for Γ0(5):

s\r I2

[
0 −1
1 0

] [
0 −1
1 1

] [
0 −1
1 2

] [
0 −1
1 −1

] [
0 −1
1 −2

]
[
1 1
0 1

] [
1 1
0 1

]
I2 I2

[
1 0
−5 1

]
I2 I2[

0 −1
1 0

]
I2 −I2

[
1 −1
0 1

] [
−2 −1
5 2

]
−
[
1 1
0 1

] [
2 −1
5 −2

]
To show f is a modular form for Γ0(N), i.e. invariant under all elements of Γ0(N), it

suffices to show f is invariant under all the matrices in the above table. It is clear that f
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is invariant under ±I2. f is invariant under the translation [ 1 ±10 1 ] because it has a Fourier
series expansion. It suffices to show f is invariant under [ 1 0

−5 1 ] and [ −2 −15 2 ].
First we show that

f | [ 0 −1
N 0 ]

k
= f, (1)

i.e.

f(z) =
√
N
−k/2

z−kf

(
−1

Nz

)
.

By the given functional equation,

L(s) =
L∗(s)(2π)s√
N
s
Γ(s)

=
i−kL∗(k − s)(2π)s√

N
s
Γ(s)

=
i−k · [(2π)−(k−s)

√
N
k−s

Γ(k − s)L(k − s)] · (2π)s√
N
s
Γ(s)

=
i−kΓ(k − s)L(k − s)(2π)2s−k

√
N

2s−k (2)

By Proposition 5.1.2, for σ large enough, for y ∈ R,

f(iy)− a0 =
1

2πi

∫ σ+i∞

σ−i∞
Γ(s)L(s)(2πy)−s ds

=
1

2πi

∫ σ+i∞

σ−i∞

i−kΓ(k − s)L(k − s)(2π)2s−k
√
N

2s−k Γ(s)(2πy)−s ds by (2)

=
√
N
−k

(iy)−k
1

2πi

∫ σ+i∞

σ−i∞
Γ(k − s)L(k − s)

(
2π

Ny

)−(k−s)
ds

=
√
N
−k

(iy)−k

(
1

2πi

∫ (k−σ)+i∞

(k−σ)−i∞
Γ(k − s)L(k − s)

(
2π

Ny

)−(k−s)
ds−

√
N
k
(iy)ka0

)
(3)

=
√
N
−k

(iy)−k
1

2πi

∫ σ+i∞

σ−i∞
Γ(s)L(s)

(
2π

Ny

)−s
ds− a0

=
√
N
−k

(iy)−kf

(
i

Ny

)
− a0

We have |Γ(σ + it)| ∼
√

2π|t|σ− 1
2 e−π|t|/2 → 0 as |t| → ∞, L(s) bounded in vertical strips by

assumption, and that the absolute value of
(

2π
Ny

)−s
, s = σ + it is determined by σ. Hence

Γ(s)L(s)
(

2π
Ny

)−s
→ 0 as |t| → ∞, so Γ(k− s)L(k− s)

(
2π
Ny

)−(k−s)
→ 0 as |t| → ∞. Thus by

Phragmén-Lindelöf, Γ(k − s)L(k − s)
(

2π
Ny

)−(k−s)
is bounded on vertical strips, and our use

of Cauchy’s Theorem to move the path of integration in (3) is justified. This shows (1).
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Now note that [
1 0
−5 1

]
= −

[
0 1
−5 0

] [
1 1
0 1

] [
0 1
−5 0

]−1
.

Since f is invariant under slashing by both

[
1 1
0 1

]
and

[
0 1
−5 0

]
, it is invariant under[

1 0
−5 1

]
.

Lemma 3.2:

f |
[
2 0
0 1

]
k

+ f |
[
1 0
0 2

]
k

+ f |
[
1 1
0 2

]
k

= 21− k
2 a(2)a(n).

Proof. We calculate

f |
[
2 0
0 1

]
k

+ f |
[
1 0
0 2

]
k

+ f |
[
1 1
0 2

]
k

=
∞∑
n=0

a(n)

[
2
k
2 e(2nz) + 2−

k
2 e
(nz

2

)
+ 2−

k
2 e

(
n(z + 1)

2

)]
=
∞∑
n=0

a(n)
[
2
k
2 e(2nz) + 2−

k
2 e
(nz

2

)(
1 + e

(n
2

))]
=
∞∑
n=0

a(n)2
k
2 e(2nz) +

∑
n≥0, n even

21− k
2 e
(nz

2

)(
1 + e

(n
2

))
=
∞∑
n=0

(
a
(n

2

)
2
k
2 + a(2n)21− k

2

)
e(nz)

where, for convenience, we set a(n) = 0 for n 6∈ N. Let b(n) = a
(
n
2

)
2
k
2 + a(2n)21− k

2 .
Now consider the p = 2 term in the Euler product:

1

1− a(2)2−s + 2k−14−s
=
∞∑
n=0

cn2−ns

Rewriting this with 2−s = x,

1

1− a(2)x+ 2k−1x2
=
∞∑
n=0

cnx
n

=⇒ 1 = (1− a(2)x+ 2k−1x2)
∞∑
n=0

cnx
n

Matching the coefficients of xj+1 on both sides gives

cj+1 − a(2)cj + 2k−1cj−1 = 0, j ≥ 0

(where c−1 = 0). Since cj = a(2j), this rewrites to

2k−1a(2j−1) + a(2j+1) = a(2)a(2j).
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Since f has an Euler product expansion, a(m) is multiplicative. Given m, suppose 2j−1||m.
Then multiplying the above by a

(
m

2j−1

)
gives

2k−1a(m) + a(4m) = a(2)a(2m).

Thus b(n) = a
(
n
2

)
2
k
2 + a(2n)21− k

2 = 21− k
2 a(2)a(n). (If n is odd, then b(n) = a(2n)21− k

2 =

21− k
2 a(2)a(n) as well.)

Let w = [ 0 1
−5 0 ]. Now f |[w]k = f from (1), so

f

∣∣∣∣[w [ 2 0
−5 1

]
w−1

]
k

= f.

Hence

f |
[
2 0
0 1

]
k

+ f |
[
1 0
0 2

]
k

+ f |
[
1 1
0 2

]
k

= f

∣∣∣∣[w [2 0
0 1

]
w−1

]
k

+ f

∣∣∣∣[w [1 0
0 2

]
w−1

]
k

+ f

∣∣∣∣[w [1 1
0 2

]
w−1

]
k

= f |
[
1 0
0 2

]
k

+ f |
[
2 0
0 1

]
k

+ f |
[

2 0
−5 1

]
k

.

This shows f | [ 1 1
0 2 ] = f | [ 2 0

−5 1 ]. Slashing by 1
2

[ 2 1
0 1 ] gives

f |
[

2 1
−5 −2

]
= f |

[
1 1
0 1

]
= f.

Similar results would probably hold for other N , with similar proof.
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