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Introduction

Jacob Fox taught a course (18.997) on Probabilistic Method at MIT in Spring 2011. These
are my “live-TEXed” notes from the course. The template is borrowed from Akhil Mathew.

Please email corrections to holden1@mit.edu.



Lecture 1 Notes on Probabilistic Method

Lecture 1

Tue. 2/1/2011

§1 Ramsey Numbers

What is the probabilistic method? Come up with probability space; show something exists
with positive probability.

Three theorems due to Erdös.

Definition 1.1: A Ramsey number R(k, l) is the minimum n such that every red-blue
edge-coloring of the complete graph Kn on n vertices contains a red Kk or a blue Kl.

Theorem 1.2 (Ramsey’s Theorem): R(k, l) is finite for all k, l.

If there are a lot of people at a party, you can find a large number that are friends or a
large number that are not friends.

Probabilistic method gives a lower bound.

Proposition 1.3: If
(
n
k

)
21−(k2) < 1, then R(k, k) > n. Thus R(k, k) ≥

⌊
2
k
2

⌋
for k ≥ 3.

Proof. Consider a random coloring of Kn where each edge is colored independently red or
blue with probability 1

2
.

For any set S of k vertices, let AS be the even that S induces a monochromatic Kk. The
probability is

P (AS) = 21−(k2)

because there are
(
k
2

)
edges between vertices of S, and they could either be all red or all blue.

There are
(
n
k

)
choices for S. Thus (since P (A∨B) = P (A)+P (B)−P (A∧B) ≤ P (A)+P (B)),

P (at least one As occurs) ≤
(
n

k

)
21−(k2) < 1.

Thus with positive probability no event AS occurs, and there exists a 2-coloring of Kn with
no monochromatic Kk. This means R(k, k) > n.

If n =
⌊
2
k
2

⌋
and k ≥ 3,

21−(k2) ≤ 21+ k
2

k!

nk

2k2/2
< 1.

Question: Can we construct a 2-edge-coloring of Kn without a monochromatic K2 logn?

Silly answer: Yes; try all 2(n2) colorings.
Better answer: Still wide open (can it be done in polynomial time?).

But... a random coloring almost surely works, since 21+
k
2

k!
→ 0 as k →∞. (Verification?)

Probabilistic method shows coloring exists but does not tell us how to find one!
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Lecture 1 Notes on Probabilistic Method

§2 Tournaments

Definition 1.4: A tournament is an oriented complete graph. (Each edge has an orien-
tation from one vertex to another.) One way to interpret this is that the vertices represent
players and there is an edge from x to y if x beats y. Say a tournament T (with at least k
vertices) has property Sk if for every k vertices, there is another vertex which beats them
all. In other words, there is no small set of winners.

Theorem 1.5 (Erdös): If
(
n
k

)
(1 − 2−k)n−k < 1, then there exists a tournament T on n

vertices with property Sk. (For sufficiently large n the inequality holds.)

Proof. Consider a random tournament on n vertices V = {1, . . . , n}, each edge having prob-
ability 1

2
of going either way. For every K ⊆ V , |K| = k, let AK be the event that there is

no vertex which beats K. The probability that a fixed vertex outside of K beats all of K is
2−k, and there are n− k vertices outside of K, so

P (AK) = (1− 2−k)n−k.

Since there are
(
n
k

)
possibilities for K,

P (any AK occurs) =
∑
K

P (AK) =

(
n

k

)
(1− 2−k)n−k < 1.

Hence with positive probability, no AK occurs and there exists a tournament T on n vertices
with property SK .

Let f(k) be the minimum n such that there exists T on n vertices with property SK .

Using the bound
(
n
k

)
>
(
en
k

)k
and 1− x < e−x =⇒ (1− 2−k)n−k < e−(n−k)/2k , this gives

f(k) ≤ (ln 2 + o(1))k22k.

Szekeres showed that f(k) ≥ ck2k (so this bound is pretty good).

§3 Sum-free subsets

Definition 1.6: A subset A of an abelian group is sum-free if there do not exist a1, a2, a3

such that a1 + a2 = a3.

Theorem 1.7: Every set B = {b1, . . . , bn} of n nonzero integers contains a sum-free subset
A with |A| > n

3
.

Proof. Let p = 3k+ 2 be a prime with p > 2 max{|bi| : 1 ≤ i ≤ n}. Let C = {k+ 1, . . . , 2k+
1} ⊆ Z/p; C is sum-free subset containing more than 1

3
of the nonzero residues modulo Z/p:

|C|
p− 1

=
k + 1

3k + 1
>

1

3
.
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Lecture 2 Notes on Probabilistic Method

Choose x ∈ {1, . . . , p− 1} uniformly at random. Let di ≡ xbi (mod p) with 0 ≤ di < p. As
x ranges from 1, . . . , p− 1, di ranges from 1 to p− 1 as well. Then

P (di ∈ C) =
|C|
p− 1

.

Adding up the probabilities (expected values add linearly),

E(#di ∈ C) ≥ n

3
.

Therefore there exists x and A ⊆ B with |A| > n
3

such that xa (mod p) ∈ C for all a ∈ A.
Now A is sum-free: indeed if a1 + a2 = a3 with a1, a2, a3 ∈ A, then xa1 +xa2 ≡ xa3 (mod p)
with xai ∈ C, contradiciton the fact that C is sum-free.

A history...

Erd̈os |A| ≥ n

3

Alon, Kleitman |A| ≥ n+ 1

3

Bourgain |A| ≥ n+ 2

3

It isn’t known where 1
3

is the best constant. The current best construction is 11n
28

.

Lecture 2

Thu. 2/3/2011

First problem set: 1.1, 2, 4*, 6*, 8, 10, due Feb. 24 (latex please)

§1 Dominating sets

Definition 2.1: A set U ⊆ V is dominating in a graphG = (V,E) if every vertex v ∈ V −U
is has at least one neighbor in U .

Theorem 2.2: Let G = (V,E) be a graph on n vertices with minimum degree δ > 1. Then

G has a dominating set of size at most n(1+ln(δ+1))
δ+1

∼ n ln δ
δ

(as δ →∞).

Proof. New technique: Let probability be arbitrary and choose it later on.
Fix p ∈ [0, 1]. Pick randomly and independently each vertex with probability p. Set X

to be the set of picked vertices. Then

E(|X|) = pn. (1)

Let Y be the set in vertices in V −X with no neighbors in X. Then U = X∪Y is dominating.

7



Lecture 2 Notes on Probabilistic Method

The probability that a vertex is in Y is (since there is probability p that a given vertex
is in X; we care about the vertex and its neighbors)

P (v ∈ Y ) = (1− p)deg(v)+1 ≤ (1− p)δ+1.

Hence
E(|Y |) ≤ n(1− p)δ+1. (2)

Then by linearity of expectation with (1) and (2),

E(|U |) = E(|X|+ |Y |) = E(|X|) + E(|Y |) ≤ pn+ (1− p)δ+1n.

This works for any p ∈ [0, 1] so we can choose p to make this expression small. We use
1−p ≤ e−p (these are actually close to each other for p small). Thus there exists U = X ∪Y
which is dominating and |U | ≤ pn+ e−p(δ+1)n. Taking p = ln(δ+1)

δ+1
, we get

|U | ≤ n(1 + ln(δ + 1))

δ + 1
.

(Note that actually calculating the minimum and plugging it in is messier.)

This proof reveals four important ideas.

1. Linearity of expectation:

E

(
n∑
i=1

Xi

)
=

n∑
i=1

E(Xi).

Note that independence is not required.

2. Alteration principle: X wasn’t enough; we had to alter it a bit. (See Chapter 3)

3. Optimized p at the end of the proof.

4. Asymptotic estimates. (The actual minimum above is p = 1 − (δ + 1)
1
δ , but this is

difficult to work with, and we prefer a clean bound.)

§2 Hypergraph coloring

Definition 2.3: A hypergraph is H = (V,E) consists of a set of vertices V , and a set of
edges E, where an edge is a subset of vertices. H is n-uniform if every edge has exactly n
vetices. (A 2-uniform hypergraph is simply a graph.)

H is 2-colorable (has property B) if there exists a 2-coloring of V with no monochro-
matic edge. Let m(n) be the minimum number of edges of a n-uniform hypergraph without
property B.

Note m(n) ≤
(

2n−1
n

)
≈ 4n because we can let |V | = 2n − 1 and let the edges be all

n-subsets.

8



Lecture 2 Notes on Probabilistic Method

Proposition 2.4: m(n) ≤ 2n−1

Proof. Suppose H is a hypergraph with |E| < 2n−1 edges. Color V randomly with 2 colors.
For each e ∈ E,

P (e is monochromatic) = 2 · 2−n

P (at least one edge is monochromatic) ≤ |E| · 21−n < 1

Thus there exists a 2-coloring without a monochromatic edge, i.e. H has property B.

The upper bound also uses the probabilistic method.

Theorem 2.5: m(n) = O(n22n).

Proof. Fix V with v vertices, where v is even. Pick edges at random. Let χ be a coloring
of V with a points in the first color and b = v − a points in the second color. Let S be a
random subset of V with |S| = n.

Then

P (S is monochromatic under χ) =

(
a
n

)
+
(
b
n

)(
v
n

) ≥
2
(
v/2
n

)(
v
n

) =: p

where the last inequality follows from convexity (Jensen). Let S1, . . . , Sm be chosen uniformly
at random with replacement. Let Aχ be the event that no Si is monochromatic under χ.
Then #χ = 2v. We have

P (Aχ) ≤ (1− p)m

P

(∨
x

Ax

)
≤ 2v(1− p)m < 1 for m =

⌈
v ln 2

p

⌉
Thus there exists H with at most m edges such that every 2-coloring gives monochromatic
edges. (Take Si to be the edges such that

∨
xAx does not hold.) Picking v to minimize

m =

⌈
v ln 2

p

⌉
=

⌈
v(ln 2)

(
v
n

)
2
( v

2
n

) ⌉

we get O(n22n).

§3 Erdös-Ko-Rado Theorem

Definition 2.6: A family F of sets is intersecting if for any A,B ∈ F , A ∩B 6= φ.

Theorem 2.7 (Erdös-Ko-Rado): Suppose n ≥ 2k and F is an intersecting family of k-
subsets of a n-set. Then |F | ≤

(
n−1
k−1

)
, and this bound is attainable.

Proof. Create an “obstruction” and copy it a lot.

Lemma 2.8: For 0 ≤ s ≤ n−1, set As = {s, s+1, . . . , s+k−1} ⊆ Z/nZ. Then F contains
at most k of the sets As.

9



Lecture 3 Notes on Probabilistic Method

Proof. Fix As ∈ F . All other At which intersect As can be partitioned into disjoint pairs
{As−i, As+k−1}. (They are disjoint since n ≥ 2k.) There are k − 1 such pairs.

Pick a permutation σ of {0, . . . , n− 1} and i ∈ {0, . . . , n− 1} at random, uniformly and
independently. Set A = {σ(i), . . . , σ(i + k − 1)} (addition modulo n). For any fixed σ, by
Lemma 2.8,

P (A ∈ F) ≤ k

n
.

Thus this holds for σ chosen randomly. But

P (A ∈ F) =
|F |(
n
k

) .
Hence

|F| ≤ k

n

(
n

k

)
=

(
n− 1

k − 1

)
.

This is attainable by choosing all k-element subsets containing a fixed element.

Lecture 3

Tue. 2/8/2011

§1 Linearity of Expectation

Let X1, . . . , Xn be random variables and X = cX1 + · · ·+ cXn. Then

E(X) = c1E(X1) + · · ·+ cnE(Xn).

(Independence is not required.)

Example 3.1: Let σ be a random permutation of {1, . . . , n}. What is the expected value
of the number of fixed points? (i is a fixed point if σ(i) = i)

Solution. Let X be the number of fixed points. Then X = X1 + . . . + Xn where Xi is
the indicator random variable for the event σ(i) = i. (1 if the event happens, 0 if it doesn’t)
Now E(Xi) = P (Xi) = 1

n
. Hence

E(X) = E(X1 + · · ·+Xn) = E(X1) + · · ·+ E(Xn) = n · 1

n
= 1.

In applications, we often use that there is a point in the probability space for which
X ≥ E(X) and a point where X ≤ E(X).

Theorem 3.2: There exists a tournament T with n players and at least n!
2n−1 hamiltonian

paths. (A hamiltonian path is a sequence of vertices v1, . . . , vn such that vivi+1 is a directed
edge.)

10



Lecture 3 Notes on Probabilistic Method

Proof. Pick a random tournament, each edge has probability 1
2

going either way. Each
permutation σ(1), . . . , σ(n) of the n players has probability 2−(n−1) has probability of forming
a hamiltonian path because there are n − 1 edges between them. Let Xσ be the indicator
random variable for σ forming a hamiltonian path and X =

∑
σ∈Sn Xσ be the number of

hamiltonian paths. Then P (Xσ) = 1
2n−1 and the expected number of hamiltonian paths is

E(X) =
∑
σ∈Sn

E(Xσ) = n!2−(n−1).

Remark 3.3: The bound is roughly best possible.
Every tournament has a hamiltonian path. If T is transitive there is exactly one hamil-

tonian path.

§2 Max-cut

Definition 3.4: The max-cut of a graph G is the maximum number of edges of a bipartite
subgraph of G. (Not necessarily induced subgraph)

Theorem 3.5: If G contains e edges then G contains a bipartite subgraph with at least e
2

edges.

Proof. Let T ⊆ V be a random subset. Let B = V − T . Let H be the bipartite subgraph
consisting of edges between T and B (“crossing edges”). For any edge e of G, P (e ∈ H) = 1

2

(consider where its endpoints lie). Hence letting Xe be the indicator for e ∈ H,

E(number of edges of H) =
∑
e∈E

E(Xe) =
e

2
.

Note greedy algorithm also works. Or use extremal principle; if some vertex has more
edges going to the same group, then move it to the other group to increase the number of
edges of H.

We can improve this by picking T uniformly at random from all n-subsets: (Picking a
better probability space can improve the bound.)

Theorem 3.6: If G has 2n vertices and e edges then G has a bipartite subgraph with at
least n

2n−1 e edges.

Proof. The probability that e ∈ H is n
2n−1

. (Given e = xy and x is in T or B, there is n
2n−1

probability that y is too.) The rest of the proof is the same.

Algorithmic question: compute or estimate max-cut. Goemans and Williamson give a
.878 . . . (polynomial-time) approximation algorithm for max cut. Khot showed that assuming
the Unique Games Conjecture1 this is the best possible.

1 http://en.wikipedia.org/wiki/Unique_games_conjecture
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Lecture 4 Notes on Probabilistic Method

§3 Ramsey multiplicity

Question: How many monochromatic Ka are there in every 2-edge-coloring of Kn?

Theorem 3.7: There exists a 2-coloring of the edges ofKn with at most
(
n
a

)
21−(a2) monochro-

matic Ka.

Proof. Take a random 2-coloring of the edges of Kn. Each Ka has probability 21−(k2) of being
monochromatic. Since #Ka =

(
n
a

)
,

E(number of monochromaticKa) =
∑

a−cliques

21−(a2) =

(
n

a

)
21−(a2).

Thus there exists a coloring with at most
(
n
a

)
21(as) momochromatic Ka.

Remark 3.8: How good is this bound? Erdös conjectures this in 1962; Goodman probed
it true for a = 3 in 1959 (AMM) The theroem is false for a ≥ 4 (thin H = Ka).

If H has e edges random bound gives that there exists a coloring with the fraction of
monochromatic H at most 2n−1.

H = Ka, a
2 ln a, one color class is disjoint union of Kn/(a−1).

Sidoranko conjectures that the random bound is tirght if H is bipartite.

Lecture 4

Thu. 2/10/11

§1 Balancing vectors

Theorem 4.1: Let v1, . . . , vn ∈ Rn, |vi| = 1 for 1 ≤ i ≤ n. Then there exist ε1, . . . , εn = ±1
with

|ε1v1 + · · · εnvn| ≤
√
n

and also ε1, . . . , εn = ±1 with

|ε1v1 + · · ·+ εnvn| ≥
√
n.

Note this is tight because letting vi be the ith standard basis vector we get all vertices
of [−1, 1]n.

Proof. Pick ε1, . . . , εn = ±1 with probability 1
2

uniforomly and independently at random.
Let X = |ε1v1 + · · ·+ εnvn|2. Then

X =
∑

1≤i,j≤n

εiεjvivj.

E(X) =
∑

1≤i,j≤n

vivjE(εiεj).

12



Lecture 4 Notes on Probabilistic Method

If i 6= j then by independence E(εiεj) = E(εi)E(εj) = 0 and if i = j then E(εiεj) = εiεj = 1.
Hence

E(X) =
n∑
i=1

vivj = n.

There exist ε1, . . . , εn = ±1 with X ≤ E(X) and ε1, . . . , εn = ±1 with X ≤ E(X).

This can be proved without probability.

Proof. Pick ε1, . . . , εn sequentially such that

wi = ε1v1 + · · ·+ εivi

satisfies |wi| ≤
√
i for all i, 1 ≤ i ≤ n. Once ε1, . . . , εi have been chosen pick εi+1 such that

εi+1vi+1 and wi make an obtuse (or right) angle. Then

|wi+1|2 ≤ |wi|2 + |εi+1vi+1|2 ≤ i+ 1.

§2 Unbalancing lights

Suppose we have a n × n array of lights; each can be on or off. We want as many on as
possible, but we can only flip all of the lights in a row or all the lights in a column in one
step. How many lights can be turn on?

Theorem 4.2: Let aij = ±1 for 1 ≤ i, j ≤ n. Then there exist xi, yj = ±1 for 1 ≤ i, j ≤ n
so that ∑

1≤i,j≤n

aijxiyj ≥

(√
2

π
+ o(1)

)
n

3
2 .

(The aij are the initial states of the lights; xi is 1 if row i is flipped and 0 otherwise; yj is 1
if row j is flipped and 0 otherwise.)

Proof. Forget the xi. Let y1, . . . , yn be selected uniformly at random. Let

Ri =
n∑
j=1

aijyj, R =
n∑
i=1

|Ri|.

Once yj have been chosen, we can choose xi so the total is R, by choosing xi so xiRi is
positive. Regardless of aij, Ri has distribution Sn, the sum of n random variables from
{−1, 1}. Now

E(|Ri|) = E(|Sn|) =
√
n(E(|N |) + o(1)) =

(√
2

π
+ o(1)

)
√
n

13



Lecture 4 Notes on Probabilistic Method

where N is the standard normal distribution. (Alternatively, use E(|Sn|) = n21−n( n−1

bn−1
2 c
)

and Stirling’s approximation.) Then

E(R) =
n∑
i=1

E(|Ri|) = n

(√
2

π
+ o(1)

)
n

1
2

so there exist y1, . . . , yn = ±1 for which R ≥ E(R). As mentioned, pick xi so that they are
the same sign as Ri.

§3 Alterations

Theorem 4.3 (Markov’s inequality): Let X be a nonnegative random variable. Then

P (X > αE(X)) ≤ 1

α
.

Note for α = 1 this tells us nothing, but for α large the probability is small.

Proof. Substitute t = αE(X) in

E(X) > tP (X > t).

Definition 4.4: The girth of G is the length of the shortest cycle. (Think of G looking
locally like a tree, sparse.)

The chromatic number χ(G) is the minimum number of colors needed to properly
color the vertices of G (i.e. no two adjacent vertices are the same color). (Think of G as
globally dense.)

The independence number α(G) is the maximum size of an independent set, a set of
pairwise nonadjacent vertices.

Theorem 4.5 (Erdös): For all k, l, there exists a graph G∗ with girth(G∗) > l and χ(G∗) >
k.

Proof. Pick θ ∈ (0, 1
l
) and let p = nθ−1. Let G = G(n, p) be a random graph with n vertices

where each edge is picked with probability p independent of the other vertices. Idea: pick p
just right—small enough so that there aren’t a lot of small cycles, and large enough so that
the chromatic number is large.

We can’t avoid short cycles in a random graph G∗ but we can make their number small.
There are 1

2i
ni possible i-cycles (ni ways of choosing the set of vertices; divide by 2i because

rotations and reversals are the same.

E(X) =
n∑
i=3

ni

2i
pi ≤

l∑
i=3

nθi

2i
= o(n)

14



Lecture 5 Notes on Probabilistic Method

We later delete some vertices to get rid of the cycles—alteration. (We won’t have to delete
too many.) By Markov’s Inequality,

P
(
X ≥ n

2

)
= o(1). (3)

Chromatic number is hard to bound directly, so we instead bound α(G) from above and
note

χ(G) ≥ n

α(G)

because a coloring with χ(G) colors partitions the vertices into independent sets, each of

which has size at most α(G), giving n ≥ χ(G)α(G). Set x =
⌈

3
p

lnn
⌉
. Then since there are(

n
x

)
sets of size x and probability (1−p)(

x
2) that a given x-set is independent, using the union

bound gives

P (α(G) ≥ x) ≤
(
n

x

)
(1− p)(

x
2) ≤

(
ne−

p(x−1)
2

)x
= o(1). (4)

Let n be sufficient large so that both probabilities (3) and (4) are less than 1
2
. Pick G with

X < n
2

and α(G) < x. Delete one vertex from each cycle of length at most l, and let G∗ be
the resulting graph. Now

girth(G) > l.

Now X < n
2

so G∗ has n∗ ≥ n
2

vertices. Now G∗ is an induced subgraph of G, so any
independent set in G∗ is also independent in G, and α(G∗) ≤ α(G). Hence (recall p = nθ−1)

χ(G∗) ≥ n∗

α(G∗)
≥ n/2

x
≥ nθ

(6 + ε) lnn
.

For n sufficiently large this is greater than k.

Lecture 5

Tue. 2/15/11

§1 Alterations: Ramsey Numbers

Recall that (
n

k

)
2(k2) =⇒ R(k, k) > n. (5)

We prove a different bound.

Theorem 5.1: For any n,

R(k, k) > n−
(
n

k

)
2(k2) (6)

If we choose n appropriately then this will be a better bound.
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Lecture 5 Notes on Probabilistic Method

Proof. Consider a random 2-coloring of Kn. Let X be the number of monochromatic Kk.
Then

E(X) =

(
n

k

)
21−(k2).

Fix a coloring with X ≤ E(X). Delete a vertex for each monochromatic Kk. The resulting
coloring has no monochromatic Kk and has at least

n−X ≥ n−
(
n

k

)
21−(k2)

vertices.

Alteration idea: first get coloring with not too many monochromatic cliques and then
delete vertices to get rid of them.

Bound (5) gives

R(k, k) >
1

e
√

2
(1 + o(1))k2

k
2

while bound (6) gives

R(k, k) >
1

e
(1 + o(1))k2

k
2 .

The Lovasz Local Lemma in Chapter 5 will give

R(k, k) >

√
2

e
(1 + o(1))k2

k
2 .

The best known upper bound is R(k, k) ≤ (4 + o(1))k. (Improvements are small but are
good examples of the method.)

§2 Independent Sets

If we have a graph with few edges, we expect large independent sets.

Theorem 5.2: Let G have n vertices and dn
2

edges, d ≥ 1 (so the average degree of the
graph is at least d). Then α(G) ≥ n

2d
. (Recall α(G) is the independence number.)

Proof. Let S ⊆ V be a random set defined where P (v ∈ S) = p for any v and these events
are independent of each other. We will delete vertices to make it independent.

Let X = |S|. Then
E(X) = pn.

Let Y be the number of edges in G[S] (the induced subgraph of G with vertices of S). Then
each edge has probability p2 of lying in G[S] so

E(Y ) = p2 · dn
2
.

16



Lecture 5 Notes on Probabilistic Method

Then

E(X − Y ) = E(X)− E(Y ) = pn− p2 · dn
2
.

Letting p = 1
d

maximizes this expression. Then

E(X − Y ) =
n

2d
.

Fix G for which X−Y ≤ E(X−Y ). Delete from S a vertex from each edge. At least X−Y
vertices remain, and it is an independent set.

Turan’s Theorem will give a tighter bound.

§3 Combinatorial Geometry

Let S be a set of n points in a closed unit square U . Let T (S) be the minimal area among
all triangles with vertices in S. Let

T (n) = max
|S|=n

T (S).

Heilbroon conjectured that T (n) = O
(

1
n2

)
, but this was disproved by KPS with a proba-

bilistic method giving T (n) = Ω
(

lnn
n2

)
(complicated).

Theorem 5.3: T (n) ≥ 1
100n2 .

Proof. Let P,Q,R be independent and uniformly selected from U , and let µ = [PQR] be
the area of 4PQR. We bound P ([PQR] ≤ ε). Let x = |PQ|. Now

P (b ≤ x ≤ b+ ∆b) ≤ π(b+ ∆b)2 − πb2

so as ∆b→ 0,
P (b ≤ x ≤ b+ db) ≤ 2πb db.

Given d(P,Q) = b, we bound P (µ ≤ ε). The distance of R from PQ must be h ≤ 2ε
b

; thus

R is in a strip of width 4ε
b

and of length at most
√

2, so given |PQ| = b,

P (µ ≤ ε) ≤
√

2 · 4ε

b
.

Hence

P (µ ≤ ε) ≤
∫ √2

0

√
2 · 4ε

b
· 2πb db = 16πε.

Let P1, . . . , P2n be selected uniformly and independently at random from U . Let X be the
number of triangles P1, P2, P3 with area less than 1

100n2 “bad triangles”. Then

E(X) ≤
(

2n

3

)
16π · 1

100
n2 < n.

Delete point from each bad triangle. The resulting set will have greater than n points and
satisfies the equations.

17



Lecture 6 Notes on Probabilistic Method

An explicit example (Erdös) gives T (n) ≥ 1
2(n−1)2

for n prime (but doesn’t extend to

better bounds). Consider [0, n− 1]× [0, n− 1] and points (x, y) where 0 ≤ x ≤ n− 1, y ≡ x2

(mod n) and 0 ≤ y ≤ n− 1. We claim this set works (after scaling by 1
n−1

). No three points
are collinear: otherwise they are on a line y = mx + b, m rational with denominator less
than n. But then x2−mx− b would have 3 solutions in Z/n, n prime, a contradiction. The
area of every nontrivial lattice triangle is at least 1

2
. Contract by a factor of n− 1.

Definition 5.4: Let C be a bounded measurable subset of Rd (with µ(C) > 0). Let B(x) =
[0, x]d be the d-dimensional cube of side length x. A packing of C in B(x) is a family of
mutually disjoint translates of C lying inside in B(x). Let f(x) be the size of the largest
packing of C in B(x). The packing constant is

δ(C) = µ(C) lim
x→∞

f(x)x−d,

i.e. the fraction of space that can be filled with copies of C.

For example, for C a sphere in R3, δ(C) = π
3
√

2
.

Theorem 5.5: Let X be a bounded, convex, centrally symmetric set around the origin.
Then

δ(C) ≥ 1

2d+1
.

Proof. Take random points xi from B(x). Consider xi+C. Count the number that intersect.
Now (p + C) ∩ (q + C) means that p − q = c2 − c1 ∈ 2C (from convexity and symmetry).
Now [2C] = 2d[C]. Hence

P ((p+ C) ∩ (q + C) 6= φ) ≤ [2C]

xd
=

2d[C]

xd
.

Now delete the problemsome points.

Lecture 6

Thu. 2/17/11

§1 Second Moment Method

Definition 6.1: The variance of a random variable X is

Var(X) = E[(X − E(X))2] = E(X2)− E(X)2

The standard deviation is
σ =

√
Var(X).

Theorem 6.2 (Chebyshev’s Inequality): For any λ > 0,

P (|X − µ| ≥ λσ) ≤ 1

λ2
.

18



Lecture 6 Notes on Probabilistic Method

Proof.
σ2 = Var(X) = E[(X−)2] ≥ λ2σ2P (|X − µ|2 ≥ λ2σ2).

This is Markov’s inequality with Z = (X − µ)2, E(Z) = σ2, and λ2. Now Z ≥ λ2σ2 iff
|X − µ| ≥ λσ.

Suppose X = X1 + · · ·+Xn. Then

Var(X) =
n∑
i=1

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj)

where
Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj).

In particular, if Xi, Xj are independent then

Cov(Xi, Xj) = 0.

Suppose Xi is an indicator random variable, i.e. Xi = 1 if a certain even Ai occurs and 0
otherwise. If Xi = 1 with probability P (Ai) = p then Var(Xi) = p(1 − p) ≤ p = E(Xi).
Hence

Var(X) ≤ E(X) +
∑
i 6=j

Cov(Xi, Xj).

§2 Number Theory

Let ν(n) be the number of prime factors of n. We will show that almost all n have close to
ln lnn prime factors.

Theorem 6.3 (Hardy-Ramanujan): Let ω(n)→∞ arbitrarily slowly. Then the number of
x in {1, . . . , n} with |U(x)− ln lnx| > ω(n)

√
ln lnn is o(n). In other words, for x randomly

chosen from [1, n],

P (|ν(x)− ln lnn| > ω(n)
√

ln lnn) = o(1).

Proof. Let x be randomly chosen from 1 to n. For p prime, let Xp be the indicator random

variable for the event p|x. Set M = n
1
10 and X =

∑
p≤M,p primeXp. Note

x ≤ ν(x) < x+ 10.

since a number has less than 10 prime factors greater than n
1
10 . (We exclude the large primes

because they will give a greater variance for Xp.) Now

E(Xp) =
1

n

⌊
n

p

⌋
=

1

p
+O

(
1

n

)
so

E(X) =
∑
p

E(Xp) =
∑
p

(
1

p
+O

(
1

n

))
= ln lnM +O(1) = ln lnn+O(1)
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using Mertens’s estimate.
The rough idea is to show that for p 6= q, Xp and Xq are almost independent, so the co-

variances are small, and don’t affect the variance of X much. I.e. E(Xp∧Xq) ≈ E(Xp)E(Xq).
We have

Var(Xp) =
1

p

(
1− 1

p

)
+O

(
1

n

)
so ∑

p

Var(Xp) =
∑
p

1

p
+O(1) = ln lnn+O(1). (7)

Now XpXq = 1 iff pq|X, so

|Cov(Xp, Xq)| =

∣∣∣∣∣∣
⌊
n
pq

⌋
n
−

⌊
n
p

⌋
n
·

⌊
n
q

⌋
n

∣∣∣∣∣∣ ≤ 1

n

(
1

p
+

1

q

)
.

Hence ∣∣∣∣∣∑
p 6=q

Cov(Xp, Xq) ≤
1

n

∑
p6=q

(
1

p
+

1

q

)∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣∣
2M

n

∑
p ≤M
p prime

1

p

∣∣∣∣∣∣∣∣∣∣
= o(1). (8)

since we counted each 1
p

at most 2M times. Putting (7) and (8) together,

Var(X) =
∑
p

Var(Xp) +
∑
p 6=q

Cov(Xp, Xq)

= ln lnn+O(1).

Since σ =
√

ln lnn+O(1), by Chebyshev’s inequality

P (|X − ln lnn| ≥ λ
√

ln lnn) < λ−2 + o(1).

and the same holds for ν(X). Letting λ→∞ gives the theorem.

In fact, the distribution of ν(x) approaches a normal distribution with mean and variance
ln lnn.

Theorem 6.4 (Erdös-Kac): Fix λ ∈ R. Then

lim
n→∞

|{x : x ∈ [n], ν(x) ≥ ln lnn+ λ
√

ln lnn}| =
∫ ∞
λ

1√
2π
e−t

2/2 dt.

For λ large, this is asymptotic to
√

2
π
e−λ

2/2/λ� λ−2.
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Proof. (Outline) Fix s(n), s(n) → ∞, and s(n) = o(
√

ln ln) such as s(n) = ln ln lnn.2 Set

M = n
1
n and

X =
∑
p ≤M
p prime

Then
ν(x)− s(x) ≤ X ≤ ν(x).

Let Yp be independent random variables with P (Yp = 1) = 1
p

and P (Yp = 0) = 1 − 1
p
. Yp

represents an idealized version of Xp. Set

µ = E(Y ) = ln lnn+ o((ln lnn)
1
2 )

σ2 = Var(Y ) ∼ ln lnn.

Ỹ =
Y − µ
σ

.

By the Central Limit Theorem, Ỹ approaches the standard normal distribution N and
E(Ỹ k)→ E(Nk). Let X̃ = X−µ

σ
and compare X̃ and Ỹ . For distinct primes p1, . . . , ps,

E(Xp1 · · ·Xps)− E(Xp1) · · ·E(Xps) = O

(
1

n

)
. (9)

Fix k ∈ N. Compare E(X̃k) with E(Ỹ k). Expanding, X̃k is a polynomial in X with coefficient
no(1). Expanding Xj, always reducing Xa

p for a ≥ 2, each Xj = (
∑
Xp)

j gives O(Mk)

terms equal to no(1) of the form Xp1 · · ·Xps . The same expansion applies to Ỹ k. As the
corresponding terms have expectation within O

(
1
n

)
by (9),

E(X̃k)− E(Ỹ k) = o(1).

Thus each moment of X̂ approaches that of the standard normal N , giving that (by a
theorem from probability) X̂ approaches the normal distribution.

Lecture 7

Thu. 2/24/11

§1 Distinct sums

Definition 7.1: A set x1, . . . , xk ∈ N has distinct sums if all sums∑
i∈S

xi, S ⊆ [k]

are distinct.

2Drowning number theorists say log log log.
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Lecture 7 Notes on Probabilistic Method

Let f(n) be the maximum k such that there exists {x1, . . . , xk} ⊆ [n] with distinct sums.
Since {2i|i ≤ log2 n} has distinct sums,

f(n) ≥ 1 + blog2 nc .

(There are actually sequences that do better, f(n) ≥ 3 + blog2 nc for large n.) Erdős asked
the following: Determine if there is a constant C such that f(n) ≤ C + log2 n.

If k = f(n), all 2k sums are distinct and at most kn, giving 2f(n) ≤ f(n)n, and f(n) ≤
log2 n+ log2 log2 n+O(1).

Theorem 7.2:

f(n) ≤ log2 n+
1

2
log2 log2 n+O(1).

Proof. Fix {x1, . . . , xk} ⊆ [n] with distinct sums. Let ε1, . . . , εk be independent random
variables with

P (εi = 0) = P (εi = 1) =
1

2

and set X = ε1x1 + · · ·+ εkxk. Then X is a random sum, and

µ = E(X) =
x1 + · · ·+ xk

2

σ2 = Var(X) =
x2

1 + · · ·+ x2
k

4
≤ n2k

4

since the Xi = εixi are independent random variables. (Var(Xi) = E(X2
i ) − E(Xi)

2 =
X2
i

2
− X2

i

4
.) By Chebyshev, (we want to show that a constant fraction of the sums lie in a

small region around the mean, and use Pigeonhole to conclude that if there’s too many, then
two of them are equal)

P (|X − µ| ≥ λσ) ≤ 1

λ2

P

(
|X − µ| ≥ λ

n
√
k

2

)
≤ 1

λ2

Then

1− 1

λ2
≤ P

(
|X − µ| < λn

√
k

2

)
≤ 2−k(λn

√
k + 1)

since at most λn
√
k + 1 of the sums can be in the interval

(
µ− λn

√
k

2
, µ+ λn

√
k

2

)
and each

is chosen with probability 2−k. Take λ =
√

3. Then the equation gives 2k ≤ Ck
1
2n for some

constant C; take logs to get the answer.
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§2 Some bounds

Let X be a nonnegative integer-valued random variable (e.g. X counts something). We want
to bound P (X = 0) given µ = E(X). If µ ≤ 1, then

P (X > 0) ≤ E(X) =⇒ P (X = 0) ≥ 1− E(X).

If E(X) → ∞, then not necessarily P (X = 0) → 0. But if the standard deviation is small
relative to µ this is true.

Example 7.3: For example, X be the deaths due to nuclear war in the next year. Then
P (X > 0) is small but E(X) is large.

Theorem 7.4: Let X be a nonnegative integer-valued random variable. Then

P (X = 0) ≤ Var(X)

E(X)2
.

Proof. Let µ = µ
σ
. Then Chebyshev’s inequality gives

P (X = 0) ≤ P (|X − µ| ≥ λσ) ≤ 1

λ2
=

Var(X)

E(X)2
.

Corollary 7.5: If Var(X) = o(E(X)2) then P (X > 0)→ 1. In fact

X ∼ E(X)

almost surely. (For each ε > 0, |X − E(X)| < εE(X) goes to 0 as X →∞.)

Proof. Take λ = εµ
σ

and let ε→ 0.

Lecture 8

Tue. 3/1/11

§1 More bounds

Suppose that X = X1 + · · · + Xm where Xi is the indicator random variable for event Ai.
Write i ∼ j if Ai and Aj are not independent. When i ∼ j and i 6= j,

Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj) ≤ E(XiXj) = P (Ai ∧ Aj).

If Ai and Aj are independent then Cov(Xi, Xj) = 0. Let

∆ =
∑
i ∼ j
i 6= j

P (Ai ∧ Aj).
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Then

Var(X) =
∑
i

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj)

≤ E(X) + ∆.

Corollary 8.1: If E(X) → ∞ and ∆ = o(E(X)2) then X ∼ E(X) almost surely. In
particular X > 0 almost surely.

Definition 8.2: X1, . . . , Xm are symmetric if for every i 6= j, there is a measure preserving
mapping of the underlying probability space that sends event Ai to Aj.

For example, Ai is the event that a certain triangle appears in the graph, the indices
numbering all the triangles in Kn. If the Xi are symmetric, then∑

i∼j,i6=j

P (Ai ∧ Aj) =
∑
i

P (Ai)
∑

j∼i,j 6=i

P (Aj|Ai)

independent of i. Let

∆∗ =
∑

j∼i,i 6=j

P (Aj|Ai).

(i is fixed in the sum.) Then

∆ =
n∑
i=1

P (Ai)∆
∗ = ∆∗E(X).

Corollary 8.3: If E(X) → ∞ and ∆∗ = o(E(X)) then X ∼ E(X) almost surely; X > 0
almost surely.

§2 Random Graphs

LetG(n, p) be the random graph on n vertices, each pair of vertices is an edge with probability
p, independent of the other pairs. A property of graph is a family of graphs closed under
isomorphism.

Definition 8.4: A fuction r(n) is a threshold function for some property P if whenever p =
p(n) � r(n) then G(n, p) does not satisfy P almost surely, and whenever p = p(n) � r(n)
then G(n, p) satisfies P almost surely.

Let ω(G) be the class number of G.

Theorem 8.5: The property ω(G) ≥ 4 (i.e. G contains K4) has threshold function n−2/3.

Proof. For every 4-set S of vertices in G(n, p) let AS be the event “S forms a clique.” Let XS

be the indicator random variable for AS. The number of 4-cliques is X :=
∑

S⊆V (G),|S|=4XS.

Note ω(G) ≥ 4 iff X > 0. Now

E(XS) = P = P (AS) = p6

E(X) = p6

(
n

4

)
∼ p6n4

24
.
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If p = p(n)� n−2/3 then E(X) = o(1) and X = 0 almost surely.
Suppose p = p(n) � n−2/3 so E(X) → ∞. By Corollary 8.3, we need to show ∆∗ =∑
S∼T,S 6=T P (AT |AS) = o(E(X)). There are O(n2) sets T with |S ∩ T | = 2 and for each of

them P (AT |AS) = p5, O(n) sets with |S ∩ T | = 3 and for each of them P (AT |AS) = p3.
(The sum is over S, T such that XS, XT are NOT independent.) Hence

∆∗ = O(n2p5) +O(np3) = o(E(X)).

Hence X > 0 almost surely as needed.

Definition 8.6: Let H be a graph with v vertices and e edges. Define the density of H to
be

ρ(H) =
e

v
.

H is balanced if ρ(H ′) ≤ ρ(H) for every subgraph H ′ of H.

Theorem 8.7 (Erdős and Rényi): If H is balanced and A is the event that H is a subgraph
of G then

p = n−
1

ρ(H)

is the threshold function for A.
If H is not balanced, p = n−

1
ρ(H) is not the threshold function for A. The threshold

function is
p = n

− 1
ρ(H1)

where H1 is the subgraph with greatest density.

Proof. Same idea, but more involved.
For the second part, let H1 be the subgraph of H with ρ(H1) maximum, so ρ(H1) > ρ(H).

With this p, E(# of copies of H1) = o(1), so there is no copy of H1 (and hence no copy of
H) almost surely.

§3 Clique Number

Fix p = 1
2
. Consider ω(G). The expected number of cliques X is

E(X) = f(k) =

(
n

k

)
2−(nk).

f(k) drops under 1 at around k = 2 log2 n. (Use the estimate
(
k
2

)
≈ k2

2
.)

Theorem 8.8: Let k = k(n) satisfy f(k)→∞. Then almost surely ω(G) ≥ k.

Proof. For each k-set S let AS be the event that S is a clique, and XS be the indicator
random variable for AS. Then X =

∑
S XS.
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Examine ∆∗. Fix a k-set S. Then T ∼ S iff |T ∩ S| = i with 2 ≤ i ≤ k − 1. Now there
are

(
k
i

)(
n−k
k−i

)
sets of k vertices that intersect S in i vertices.

∆∗ =
k−1∑
i=2

(
k

i

)(
n− k
k − i

)
2(i2)−(k2).

∆∗

E(X)
=

k−1∑
i=2

(
k
i

)(
n−k
k−i

)(
n
k

) 2(i2).

“Not hard” but time-consuming calculation (Stirling...) shows this is o(1). hence ω(G) ≥ k
almost surely.

Theorem 8.9: For all n there exists k such that

P (ω(G) = k or k + 1)→ 1.

Proof. For k ∼ 2 log2 n,

f(k + 1)

f(k)
=
n− k
k + 1

2−k = n−1+o(1) = o(1).

For most n, f(k) → ∞ but f(k + 1) = o(1). For those n, ω(G) = k almost surely. Else we
get a two-point concentration.

Lecture 9

Thu. 3/3/11

§1 Lovász Local Lemma

Consider the Ramsey number lower bound. Not only does there exist a 2-edge coloring of
Kn with n = 2

k
2 without a monochromatic Kk but almost surely a random coloring has this

property.
However, in many cases the probability is not large but we still need to show it is positive.

The Lovász Local Lemma helps in this.
A trivial example with positive but small probability is when we have n mutually inde-

pendent events that each hold with probability p, then they hold with probability pn. Mutual
independence can be generalized to rare dependencies. (“almost mutually independent”—
each event is dependent only on a few other events.)

Definition 9.1: Let A1, . . . , An be events in a probability space. A directed graph D =
(V,E) with V = [n] is called a dependency digraph for the events A1, . . . , An if for each
i, 1 ≤ i ≤ n, Ai is mutually independent of all the events Aj, (i, j) 6∈ E. In other words, Ai
is independent of the event that any combination of those Aj’s occur.
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Lemma 9.2 (Lovász Local Lemma): SupposeD is a dependency digraph for eventsA1, . . . , An
and there exist real numbers x1, . . . , xn with 0 ≤ xi < 1 and P (Ai) ≤ xi

∏
(i,j)∈E(1− xj) for

each i, 1 ≤ i ≤ n. Then

P

(
n∧
i=1

Ai

)
≥

n∏
i=1

(1− xi) > 0.

Thus with positive probability all the Ai occur.

Proof. First we show that for any S ⊂ [n], |S| = s < n, and any i 6∈ S,

P

(
Ai|
∧
j∈S

An

)
≤ xi.

We prove this by induction on s. The base case s = 0 holds. Now assume it holds for all
s′ < s. Let S1 = {j ∈ S : (i, j) ∈ E} and S2 = S\S1. Let

A = Ai, B =
∧
j∈S1

Aj, C =
∧
j∈S2

Aj.

Then since A and C are independent,

P (A|B ∧ C) =
P (A ∧B|C)

P (B|C)
≤ P (A|C)

P (B|C)
=

P (A)

P (B|C)
(10)

We try to show P (B|C) ≥
∏

(i,j)∈E(1 − xi). Suppose S1 = {j1, . . . , jr}. If r = 0 then

P (B|C) = 1. Suppose r ≥ 1. Then by the induction hypothesis,

P (Aj1 ∧ · · · ∧ Ajr |C) =
r∏
i=1

(
1− P

(
Aji |

i−1∧
k=1

Ajk ∧ C

))
≥

r∏
i=1

(1− xjr).

Substituting this and P (A) ≤ xi
∏r

i=1(1− xjr) in (10) gives the claim.
Now

P

(
n∧
i=1

Ai

)
=

n∏
i=1

(
1− P

(
Ai|

i−1∧
k=1

Ak

))
≥ (1− x1) · · · (1− xn).

Lemma 9.3 (Symmetric case): Let A1, . . . , An be events in a probability space with each
Ai mutually independent of all the other Aj but at most d (i.e. D has maximum outdegree
at most d) and P (Ai) ≤ p for all i, 1 ≤ i ≤ n. If ep(d+ 1) ≤ 1 then P

(∧n
i=1Ai

)
> 0. (Here

e = 2.71828...)

Proof. The case d = 0 is trivial, so assume d ≥ 1. Take xi = 1
d+1

for all i. Then(
1− 1

d+ 1

)d
>

1

e
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so

xi
∏

(i,j)∈E

(1− xi) ≥
1

(d+ 1)e
≥ p ≥ P (Ai).

Now apply the general version.

Remark 9.4: We can replace mutual independence and P (Ai) ≤ xi
∏

(i,j)∈E(1 − xi) by a

weaker assumption: For each i and S2 ⊆ [n]\{j : (i, j) ∈ E}, P
(
Ai|
∧
j∈S2

)
≤ xi

∏
(i,j)∈E(1−

xi). (E is some digraph, not dependency digraph.) (In the proof this was P (A|C) = P (A).)

§2 Ramsey Numbers

Consider a random 2-edge-coloring of Kn. For each k-set S, let AS be the event S is

monochromatic. Then P (AS) = 21−(k2). Each AS is mutually independent to all AT except
at most

(
k
2

)(
n−2
k−2

)
. (Such T contain 2 edges of S and k − 2 more edges.)

Proposition 9.5: If e
(
k
2

)(
n−2
k−2

)
21−(k2) ≤ 1, then R(k, k) > n. Thus

R(k, k) >

(√
2

e
+ o(1)

)
k2

k
2 .

Proof. Use the symmetric case of local lemma. The probability that there is no monochro-
matic clique is positive

This is the best bound so far. We get bigger improvements for off-diagonal Ramsey
numbers.

Now consider R(k, 3). The basic probabilistic method gives Ω(k). The alteration method

gives Ω
((

k
ln k

) 3
2

)
. The Lovász Local Lemma gives Ω

((
k

ln k

)2
)

. A pigeonhole argument gives

the upper bound
(
k+1

2

)
. Later it was shown that actually R(3, k) ∼ k2

ln k
.3

Take a 2-edge-coloring Kn, each edge blue with probability p. Construct digraph D. For
each 3-set T , let AT be the event T is monochromatic blue and for each k-set S, let BS be the

event S is red. Now P (AT ) = p3 and P (BS) = (1− p)(
k
2). Each AT is mutually independent

of all AT ′ except at most 3n and all BS’s but at most
(
n
k

)
. Each BS is mutually independent

of all AT ′ but at most
(
k
2

)
(n− 2) and all B′S but at most

(
n
k

)
. If we can find 0 ≤ p, x, y ≤ 1

with

p3 ≤ x(1− x)3n(1− y)(
n
k)

(1− p)(
k
2) ≤ y(1− x)(

k
2)n(1− y)(

n
k)

then R(k, 3) > n. Take p = c1n
− 1

2 , k = c2n
1
2 lnn, x = c3n

− 3
2 , y so that y(nk) = c4. Then use

LLL.
3Differential equation and Rödl nibble. Randomly order

(
n
2

)
edges. Put edges in graph as long as don’t

add triangles. Easy to describe but difficult to actually analyze. Differential equations control parameters—
certain parameters depend on others. Show doesn’t deviate much from ideal version.
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Lecture 10

Tue. 3/8/11

§1 Local lemma on hypergraphs

Theorem 10.1: Let H = (V,E) be a hypergraph in which each edge has at least k vertices,
and suppose each edge intersects at most d other edges. If e(d + 1) ≤ 2k−1, then H has
property B (the vertices can be colored so there is no monochromatic edge).

Proof. Color each vertex v of H randomly and independently with blue or red with proba-
bility 1

2
. For each edge f ∈ R, let Af be the event f is monochromatic. Then

P (Af ) ≤ 2 · 1

2|f |
≤ 21−k.

Each Af is mutually independent of all but at most d other Ag. The result follows from the
symmetric case of LLL (the probability is positive when since ep(d+ 1) ≤ e21−k(d+ 1) ≤ 1).

Corollary 10.2: If H is k-uniform and each vertex has degree at most 1
k
(e−12k−1− 1) then

H has property B. (The degree of a vertex is the number of edges it’s in.)
If H is k-regular and k-uniform if k ≥ 9.

Proof. H being k-uniform means d ≤ e−12k−1.

§2 Compactness arguments

For a k-coloring c : R→ [k] and a subset T ⊆ R, T is multicolored if c(T ) = [k].

Theorem 10.3: Let m, k ∈ N such that e(m(m− 1) + 1)k
(
1− 1

k

)m ≤ 1. Then for any set
S of m real numbers, there is a k-coloring of the reals so that each translation x+ S, x ∈ R,
is multicolored.

For example, this holds when m > (3 + o(1))k ln k.

Proof. We first fix a finite set X ⊆ R and show there exists a k-coloring such that each
translate x ∈ X is multicolored.

Put Y =
⋃
x∈X(x+ S) and choose c : Y → [k] uniformly at random. For each x ∈ X, let

Ax be the event x + S is not multicolored. Then (since the probability that a fixed color is
missing is

(
1− 1

k

)m
, and there are k colors)

P (Ax) < k

(
1− 1

k

)m
Each Ax is mutually independent of all Ax′ except those with

(x+ S) ∩ (x′ + S) = φ,
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so d ≤ m(m− 1). (x+ s1 = x′ + s2, there are d possibilities for s1 and d− 1 possibilities for
s2 6= s1.) Use the symmetic case of LLL.

Now we use a compactness argument to extend the result to reals. Discrete space with
k points is compact. By Tychonoff’s Theorem an arbitrary product of compact spaces is
compact, so the space of all functions f : R → [k] with the product topology is compact.
For each x ∈ R, let Cx be the set of all colorings such that x+S is multicolored. Note Cx is
closed. (Colorings in Cx can be described by their values at a finite number of points.) The
intersection of any finite number of Cx is nonempty from above, so by compactness,

⋂
x∈RCx

is nonempty.

Definition 10.4: A family F of open unit balls in R3 is a k-fold covering if each x ∈ R3

is in at least k balls in F . F is decomposable if there exists a partition F = F1 ∪ F2 so
that each Fi is a covering of R3.

Theorem 10.5 (Mani-Levitska, Pach): For all k, there exists a k-fold covering of R3 which
is not decomposable.

In R2, every 33-fold covering of R2 is decomposable.

Theorem 10.6: Each k-fold covering F = {Bi}i∈I in which each point is in at most t = c2
k
3 ,

c = (219e)−
1
3 balls is decomposable.

Proof. By our choice of t, et3218

2k−1 ≤ 1. Define a hypergraph H = (V (H), E(H)) with V (H) =
F . For each x ∈ R3, let Ex be the set of Bi ∈ F that contain x. Let E(H) = {Ex : x ∈ R3}.

We claim that each Ex intersects less than t3218 other Ey. If Ex ∩ Ey, then x and y are
in intersecting balls, say x ∈ Bi, y ∈ Bj, and y is in an ball of radius 4 around x. Bj takes
up 4−3 = 2−6 of the volume of this ball. Hence the number of such Bj is less than m = 26t.
(Each point is in at most t balls. Note strict inequality holds since balls cannot perfectly
cover a larger ball.)

Any n balls in R3 partition R3 into at most n3 regions (not counting the infinite portion),
so we get less than m3 = 218t3. regions, i.e. edges.

Let L be a finite subhypergraph of H. Put in d = t3218, and use Theorem 10.1 to show
that L has property B.

By the compactness argument, if every finite subhypergraph of H is 2-colorable, then H
is 2-colorable. (Axioim of choice)

Lecture 11

Thu. 3/10/11

§1 Chernoff bounds

First we give an estimate.

Lemma 11.1: (
n

k

)
≤ 1

e

(en
k

)k
.
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Proof. (
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
=
nk

k!
.

Thus it suffices to show that k! ≥ e
(
k
e

)k
. We show this by taking logs and using an integral

estimate:

ln k! =
k∑
i=1

ln i

≥
∫ k

x=1

lnx dx

= k ln k − l + 1.

Exponentiating gives k! > e
(
k
e

)k
, as needed.

Chernoff says that under certain circumstances, tail probabilities decay rapidly—exponentially.
This is useful in random graphs, when we want a union bound over many events.

Consider G(n, p), a random graph with n vertices, each edge picked with probability p.
(When the probability is the below function and n → ∞ the probabilities of the following
go to 1)

1. p < 1
n
: All connected components have size O(lnn), and they are trees or unicyclic.

2. p = 1
n
: The largest component has size Θ(n

2
3 ).

3. p = 1+ε
n

: The largest component has size asymptotic 1+ε
n

. [Phase transition]

Fixing a vertex v,

P (deg(v) = k) =

(
n− 1

k

)
pk(1− p)n−1−k <

(ne
k

)k
pk(1− p)n−1−k.

Hence using the union bound,

P (there exists a vertex of degree ≥ k) ≤ n
∑
i≥k

(
n− 1

i

)
pi(1− p)n−1−i

≤ n

(
n− 1

k

)
pk < n

(ne
k

)k
pk.

At p = 1
n
, this is less than n

(
e
k

)k
. Putting k ∼ lnn

ln lnn
shows that this is approximately the

maximum degree.

Theorem 11.2 (Chernoff bound): Let Xi, 1 ≤ i ≤ n be mutually independent random
variables with P (Xi = 1) = P (Xi = −1) = 1

2
. Set Sn = X1 + · · ·+Xn. Let a > 0. Then

P (Sn > a) < e−a
2/2n.
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The theorem will also work if P (Xi = 1− pi) = pi and P (Xi = −pi) = 1− pi.

Proof. We use Markov’s inequality. If Y is a nonnegative random variable α > 0, then

P (Y > αE(Y )) <
1

α
.

Thus we exponentiate, making the random variables nonnegative, and turning sums into
products. We have to take advantage of independence, which makes products behave nicely.

Fix n, a and let λ > 0 be arbitrary. For 1 ≤ i ≤ n,

E(xλXi) =
eλ + e−λ

2
= coshλ ≤ eλ

2/2.

by looking at Taylor series. Since Xi are mutually independent, so are eλXi . The the expected
values multiply:

E(eλSn) =
n∏
i=1

E(eλXi) ≤ eλ
2n/2.

Now Sn > a iff eλSn > eλa. By Markov’s inequality,

P (Sn > a) = P (eλSn > eλa) <
E(eλSn)

eλa
≤ e

λ2n
2
−λa.

Picking λ = a
n
, we get P (Sn > a) < e−

a2

2n .

Note by symmetry, P (Sn < −a) < e−
a2

2n , so

P (|Sn| > a) < 2e−
a2

2n .

Theorem 11.3: There exists a graph G on n vertices such that for every U ⊆ V (G), with
|U | = u, ∣∣∣∣e(U)− 1

2

(
u

2

)∣∣∣∣ ≤ u
3
2

√
ln
(en
u

)
(11)

= O(n
3
2 )

Proof. Consider a random graph G = G(n, 1
2
). Consider a vertex subset U . Let au =

u
3
2

√
ln
(
en
u

)
. Then using Chernoff’s bound with suitably translated and dilated random

variables,

P

(∣∣∣∣e(U)− 1

2

(
u

2

)∣∣∣∣ > au

)
< 2e

− (2au)
2

2(u2) < e−
4a2u
u2 .
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Hence by the union bound,

P (∃U ⊆ V (G) not satisfying (11)) <
n∑
u=1

(
n

u

)
e−

4a2u
u2

<

n∑
u=1

(ne
u

)u
e−

4a2u
u2

=
n∑
u=1

(ne
u

)−3u

= o(1).

If G has a clique of order k, then χ(G) ≥ k. The converse is not true, but the following
holds.

Conjecture 11.4 (Hajós): If χ(G) ≥ k, then G contains a subdivision of Kk. (This means
that there is H ⊆ G such that we can get to H from Kk by replacing edges by paths.)

(See Graph Theory, Diestel, 7.3.)
This is true for k ≤ 4, false for k ≥ 7. This is in fact very false. Consider G = G(n, 1

2
).

Then χ(G) = (1 + o(1)) n
2 log2 n

almost surely (we only need ≥ here), since the clique number

closely concentrated at 2 log2 n and so is the independence number. But the largest clique
subdivision is of order O(n

1
2 ), much smaller.

Suppose we have a clique subdivision of order u = 10n
1
2 . Then by the Theorem (??) the

edge density in U is at most 3
4
. At least 1

4
of pairs are nonadjacent. For each pair, we need

a path containing at least one vertex. Thus the number of vertices that are used is at least
1
4

(
u
2

)
> n, a contradiction.

Conjecture 11.5 (Hadwiger): If χ(G) ≥ k then G contains a minor of Kk. (H is a minor
of G if we can delete vertices and edges, and contract edges to obtain H. Contracting means
replacing adjacent vertices by a single vertex.)

This is known up to k = 6.

Lecture 12

Tue. 3/15/11

§1 Martingales and tight concentration

Chernoff bounds give tight concentration for sums of independent random variables. We
generalize Chernoff’s inequality for not necessarily independent random variables.

Definition 12.1: A martingale is a sequence of random variables X0, X1, . . . , Xm such
that for 0 ≤ i < m,

E(Xi+1|Xi, . . . , X0) = Xi.
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The natural example is a gambler in a “fair” casino. Let Xi be the gambler fortune
at time i. The gambler starts with X0 dollars. Given Xi, E(Xi+1) = Xi, as needed. The
simplest martingale is where the gambler flips a coin, with $1 stakes each time, normalizing
so that X0 = 0. Letting Y1, . . . , Ym be independent random variables with P (Yi = 1) =
P (Yi = −1) = 1

2
, Xi = Y1 + · · ·+ Yi has distribution Si.

Theorem 12.2 (Azuma’s Inequality): Let c = X0, . . . , Xm be a martingale with |Xi −
Xi−1| ≤ 1 for all 0 ≤ i < m. Let λ > 0. Then

P (Xm − c > λ
√
m) < e−λ

2/2

P (|Xm − c| > λ
√
m) < 2e−λ

2/2

Note Chernoff’s bound is a special case.

Proof. By shifting we may assume X0 = 0. Set α = λ√
m

and Yi = Xi−Xi−1, so |Yi| ≤ 1 and

E(Yi|Xi−1, . . . , X0) = 0.

We imitate the proof of Chernoff’s bound for the Yi. By Karamata Majorization and con-
vexity of ex,

E(eαYi|Xi−1, . . . , X0) ≤ coshα =
eα + e−α

2
≤ eα

2/2.

Then

E(eαXm) = E

(
m∏
i=1

eαYi

)

= E

[
m−1∏
i=1

eαYiE(eαYm|X0, . . . , Xn−1)

]
≤ e(m−1)α2

/2 · eα2/2

= e(m−1)α2/2eα
2/2

= emα/2

So

P (Xm > λ
√
m) = P (eαXm > eαλ

√
m)

< E(eαXm)e−αλ
√
m

≤ e−α
2m/2−αλ

√
m = e−λ

2/2.
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§2 Graph exposure martingales

Let G(n, p) be the underlying probability space and f be a graph theoretic function.

Definition 12.3: Label potential edges {i, j} ⊆ [n] by e1, . . . , em setting m =
(
n
2

)
. We

define the edge exposure martingale X0, . . . , Xm by giving values Xi(H), with

X0(H) = E(f(G))

Xi(H) = E(f(G)|ej ∈ G ⇐⇒ ej ∈ H, 1 ≤ j ≤ i)

Xm(H) = f(H)

First expose i pairs e1, . . . , ei and see if they are in H. The remaining edges are not seen
and considered to be random.

For example, f(H) could be the chromatic number of H.

Definition 12.4: Define X1, . . . , Xn by

Xi(H) = E(f(G)|for x, y ≤ i, {x, y} ∈ G ⇐⇒ {x, y} ∈ H).

(Add a vertex each time and look at the induced subgraph. Note the vertex exposure
martingale is a subsequence of the edge exposure martingale, with suitable ordering of ver-
tices.)

Definition 12.5: A graph theoretic function satisfies the edge Lipschitz condition when-
ever if H and H ′ differ in at most one edge, |f(H) − f(H ′)| ≤ 1. It satisfies the vertex
Lipschitz condition if whenever H,H ′ differ in at most one vertex (in terms of the edges
emanating from the vertex).

Theorem 12.6: When f satisfies the edge Lipschitz condition the corresponding edge ex-
posure martingale satisfies |Xi −Xi−1| ≤ 1.

When f satisfies the vertex Lipschitz condition the corresponding vertex exposure mar-
tingale satisfies |Xi −Xi−1| ≤ 1.

For example the chromatic number satisfies both conditions.

Theorem 12.7: Let G = G(n, p). Let µ = E(χ(G)). Then

P (|χ(G)− µ| > µ
√
n− 1) < 2e−λ

2/2.

The chromatic number is very concentrated around its mean. (The mean is hard to
actually compute, but we can still get concentration results.)

Proof. Consider the vertex exposure martingale X1, . . . , Xn on G(n, p) with f(G) = χ(G).
Since f satisfies the vertex Lipschitz condition, the result follows by Azuma’s inequal-
ity (12.2). (Note we omitted X0.)
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Lecture 13

Thu. 3/17/11

§1 Chromatic number

Theorem 13.1: Let p = n−α where 5
6
< α ≤ 1 is fixed. Let G = G(n, p). Then there

exists v = v(n, p) such that, almost everywhere (i.e. the probability goes to 1 as n → ∞),
v ≤ χ(G) ≤ v + 3.

Proof.

Lemma 13.2: Almost always, every c
√
n vertices of G = G(n, p) is 3-colorable.

Proof. Let T be a minimal set that is not 3-colorable. Then for any x, T −{x} is 3-colorable,

and x must have internal degree at least 3. So T contains at least 3|T |
2

edges. Let t = |T |.
The probability of this occurring for some set T with t ≤ c

√
n vertices is at most

c
√
n∑

t=4

(
n

t

)( (t
2

)
3t/2

)
p

3t
2 ≤

c
√
n∑

t=4

(ne
t

)t(te
3

) 3t
2

p
3t
2 = o(1). (12)

(There are
(
n
t

)
ways to choose t vertices. There are

(
t
2

)
possible edges in T ; we need at least

3t/2 of them.)

Let ε > 0 be arbitrarily small and v = v(p, n, ε) be the least integer such that P (χ(G) ≤
v) > ε. Define Y (G) to be the minimal size of a vertex subset S such that G − S may be
v-colored. This Y satisfies the vertex Lipschitz condition.

Apply the vertex exposure martingale on G(n, p) to Y . Let µ = E(Y ). By Azuma’s
inequality,

P (Y ≥ µ+ λ
√
n− 1) < e−λ

2/2 = ε

P (Y ≤ µ− λ
√
n− 1) < e−λ

2/2 = ε.

Let λ be such that e−λ
2/2 = ε. But P (Y = 0) > ε, so µ < λ

√
n− 1. Thus P (Y ≥

2λ
√
n− 1) < ε.

With probability at least 1− ε there is a v-coloring of all but at most 2λ
√
n− 1 vertices.

Then taking c = 2λ in the lemma we can 3-color the rest almost always (say, with probability
more than 1− ε for large enough n), so we will need at most 3 more colors. Choice of v says
that there is at least probability 1− ε that v colors will be needed. So

P (v ≤ χ(G) ≤ v + 3) ≥ 1− 3ε.
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§2 A general setting

Let Ω = AB be the set of all functions g : B → A. Let pab = P (g(b) = a) with the values of
g(b) independent of each other. Fix a gradation

φ = B0 ⊂ B1 ⊂ · · · ⊂ Bm = B.

For example, let B be the set of all unordered pairs of vertices on n vertices, and A = {0, 1},
denoting whether an edges is there or missing. In G(n, p), p1b = p and p0b = 1− p.

Let L : AB → R be a functional (for example the clique number of a graph). Define a
martingale X0, X1, . . . , Xm by setting

Xi(h) = E(L(g)|g(b) = h(b) for all b ∈ Bi).

Note X0 is a constant, E(L(g)) and Xm = L.
L satisfies the Lipschitz condition relative to the gradation if for all 0 ≤ i < m, h, h′

differ only on Bi+1 −Bi implies |L(h′)− L(h)| ≤ 1.

Theorem 13.3: Let L satisfy the Lipschitz condition relative to a gradation. Then the
corresponding martingale satisfies |Xi+1(h)−Xi(h)| ≤ 1 for all 0 ≤ i < m and h ∈ AB.

Proof. Group things appropriately.
Let H be the family of all h′ that agree with h on Bi+1. Then

Xi+1(h) =
∑
h′∈H

L(h′)wh′

where wh′ is the conditional probability that g = h′ given that g = h on Bi+1. For every
h′ ∈ H let H[h′] be the family of h∗ that agree with h′ on all points except possibly Bi+1−Bi.
The H(h′) partition the family of h∗ that agree with h on Bi.

Xi(h) =
∑
h′∈H

∑
h∗∈H(h′)

L(h∗)qh∗wh′

where qh∗ is the conditional probability that g agrees with h∗ on Bi+1 given that it agrees
with h on Bi. Using the Triangle Inequality,

|Xi+1(h)−Xi(h)| =

∣∣∣∣∣∣
∑
h′∈H

wh′

L(h′)−
∑

h∗∈H(h′)

L(h∗)qh∗

∣∣∣∣∣∣
=
∑
h′∈H

wh′
∑

h∗∈H(h′)

|qh∗(L(h′)− L(h∗))|

≤
∑
h′∈H

wh′
∑

h∗∈H(h′)

qh∗ = 1.
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Theorem 13.4 (General Azuma’s inequality): Let L satisfy the Lipschitz condition relative
to a gradation of length m and µ = E(L(g)). Then for all λ > 0,

P (L(g) ≥ µ+ λ
√
m) < e−λ

2/2

P (L(g) ≤ µ− λ
√
m) < e−λ

2/2.

Example 13.5: Let g be the random function from {1, . . . , n} to itself, all nn functions
equally likely. Let L(g) be the number of values not hit, i.e. the number of y such that
g(x) = y has no solution. By linearity of expectation,

µ = E(L(g)) = n

(
1− 1

n

)n
∈
[
n− 1

e
,
n

e

]
.

Set Bi = {1, . . . , i}. Note L satisfies the Lipschitz condition. By the general Azuma’s
inequality (13.4),

P
(∣∣∣L(g)− n

e

∣∣∣ > λ
√
n+ 1

)
< 2e−λ

2/2.

Lecture 14

Tue. 3/29/11

§1 Talagrand’s Inequality

First, a motivating example. Consider a random permutation of {1, . . . , n} how long of

an increasing subsequence can we expect? With high probability it is O(n
1
2 ). Azuma’s

inequality gives a concentration of O(n
1
2 ), which is bad, especially in the lower part. Ta-

lagrand’s inequality gives a concentration of O(n
1
4 ). (The whole distribution is known now

known; the concentration is O(n
1
6 ); the distribution for 2

√
n−X
n

1
6

approaches the Tracy-Widom

distribution.)
Talagrand’s inequality gives concentration around the median. (If the concentration is

low, then the mean is close to the median.)

Theorem 14.1 (Talagrand’s Inequality): Let Ω =
∏n

i=1 Ωi where each Ωi is a probability
space and Ω has the product measure. Let A ⊆ Ω and ~x = (x1, . . . , xn) ∈ Ω.

Define ρ(A, ~x) to be the minimum value such that for all ~α = (α1, . . . , αn) ∈ Rn with
|~α| = 1 there exists ~y = (y1, . . . , yn) ∈ A with

∑
xi 6=yi αi ≤ ρ(A, ~x). Now matter what α you

choose with length at most 1, you can move from ~x to some vector ~y in A. I.e. it measures
the minimum cost of moving from ~x to a ~y ∈ A by changing coordinates when a suitably
restricted adversary sets the cost of each change. (Note ~y may depend on ~α.)

For any real t ≥ 0, let At = {~x ∈ Ω : ρ(A, ~x) ≤ t}. (Note A0 = A.) Then

P (A)(1− P (At)) ≤ e−
t2

4 .

In particular if P (A) ≥ 1
2

and t is large then all but a small proportion of Ω is within distance
t of A.
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Take Ω = {0, 1}n with the uniform distribution. Let τ be the Hamming distance. Then

ρ(A, ~x) ≥ min~y∈A τ(~x, ~y)n−
1
2 . (The adversary takes all αi = 1√

n
.

Suppose to move from ~x to A the values x1, . . . , xl must be changed. Then ρ(A, ~x) ≥ l
1
2 .

Let U(A, ~x) be the set of ~s = (s1, . . . , sn) ∈ {0, 1}n such that if there exists ~y ∈ A with
xi 6= yi then si = 1. Then ρ(A, ~x) is the minimum ρ such that with |~α| = 1, there exists
~s ∈ U(A, ~x) with ~α · ~s ≤ ρ. Let V (A, ~x) be the convex hull of U(A, ~x).

Theorem 14.2:
ρ(A, ~x) = min

~v∈V (A,~x)
|~v|.

Proof. The case ~x ∈ A is obvious. Assume ~x 6∈ A.
Let ~v achieve the minimum. The hyperplane through ~v perpendicular to the line from

the origin to ~v separates the origin from V (A, ~x). (Else by convexity there would be a closer
point.) For all ~s ∈ V (A, ~x), ~s · ~v ≥ ~v · ~v.

Set ~α = ~v
|~v| so |~α| = 1. Then all ~s ∈ U(A, ~x) ⊆ V (A, ~x) satisfy ~s · ~α ≥ ~v · ~v|~v| .

Conversely, pick any ~α with |~α| = 1. Then ~α · ~v = |~v|. As ~v ∈ V (A, ~x), we can write
v =

∑
i λi~si where ~si ∈ U(A, ~x) and λi ≥ 0,

∑
λi = 1.

Then |~v| ≥
∑
λi(~α · ~si) and hence some ~α · ~si ≤ |~v|.

Theorem 14.3: Let Ω = {0, 1}n, then ρ(A, ~x) is the Euclidean distance from ~x to the
convex hull of A. Furthermore, ∫

Ω

e
1
4
ρ2(A,~x) d~x ≤ 1

P (A)
.

Proof. (of Talagrand’s inequality from Theorem 14.3) Fix A and consider random variables
X = ρ(A, ~x). Then by Markov’s inequality

P (At) = P (X > t) = P (e
x2

4 > e
t2

4 ) ≤ E(e
X2

4 )e−
t2

4 .

Lecture 15

Thu. 3/31/11

§1 Applications of Talagrand’s inequality

Let Ω =
∏n

i=1 Ωi where each Ωi is a probability space and Ω has the product measure. Let
h : Ω→ R. Under certain constraints, Talagrand’s inequality will show h is concentrated.

Definition 15.1: A function h : Ω→ R is Lipschitz if |h(x)−h(y)| ≤ 1 whenever x, y differ
in at most 1 coordinate.

h is k-Lipschitz
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Definition 15.2: A function f : N → N is h-certifiable if whenever h(x) ≥ s there is
I ⊆ {1, . . . , n} with |I| ≤ f(s) such that all y ∈ Ω that agree with x on the coordinates I
have h(y) > s.

Example 15.3: For example consider G(n, p) as the product of all
(
n
2

)
coin flips. Let h(G)

be the number of triangles in G. Then h is certifiable with f(s) = 3s.
If an graph G has at least s triangles, take the edges of those triangles; there are at most

3s. Any graph which agrees with G on those edges has at least s triangles as well. Warning:
h is not Lipschitz; h(x)

n
is.

We’d expect variance on the order of n2: We make
(
n
2

)
coin flips, so there’s variance on

the order of n2 on the number of edges; the number of edges correlates linearly with the
number of triangles.

Theorem 15.4: Assume h is Lipschitz and f -certifiable. Let X = h(x) where x is a random
element of Ω. Then for all b and t,

P (X ≤ b− t
√
f(b))P (X ≥ b) ≤ e−

t2

4 .

If h is k-Lipschitz, replace with X ≤ b− tk
√
f(b).

Proof. Set A = {x : h(x) < b − t
√
f(b)}. Suppose h(y) ≥ b. We claim y 6∈ At. Let I be

a set of indices of size at most f(b) that certifies h(y) ≥ b. Define αi = 0 when i ∈ I and

αi = |I|− 1
2 when i ∈ I, so |α| = 1. If y ∈ At, then there exists a z ∈ A that differs from y in

at most t|I|− 1
2 ≤ t

√
f(b) coordinates of I (so that the distance is at most (t|I| 12 )|I|− 1

2 ) and
at arbitrarily many coordinates outside I.

Let y′ agree with y on I and z outside I. By certification, h(y′) ≥ b. Since y′ and z differ
in at most t

√
f(b) coordinates. By Lipschitz, h(z) ≥ h(y′) − t

√
f(b) ≥ b − t

√
f(b). Hence

z 6∈ A, contradiction.
This shows P (X ≥ b) ≤ P (At). By Talagrand’s inequality,

P (X < b− t
√
f(b))P (X ≥ b) ≤ P (A)(1− P (At)) ≤ e−

t2

4 .

By continuity we can replace “<” with “≤”.

Usually pick b to be the median, or b−tk
√
f(b) to be the median. Note if m = b−t

√
f(b)

then usually b ≈ m+ t
√
f(m), so the probability of being much larger than m is small.

Example 15.5: Let x = (x1, . . . , xn) where the xi are independent and uniformly chosen
from [0, 1]. There is probability 0 that two of them match, so the ordering of the elements
is basically a random permutation.

Let X = h(x) be the length of the longest increasing subsequence of X. Elementary
methods give c1

√
n < X < c2

√
n almost surely. Note X is Lipschitz. Applying Azuma’s

inequality we get |X − µ| < s almost surely if s� n, no good.
We use Talagrand’s inequality. Note X is certifiable with f(s) = s; any x′ which agrees

with x on an increasing sequence of length s has length of longest increasign sequence at
least s. By Theorem 15.4 with m equal to the median (which is on the order

√
n),

P (X ≤ m− t
√
m)P (X ≥ m) ≤ e−

t2

4 ,
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giving concentration O(n
1
4 ).

§2 Correlation inequalities

Let G = G(n, p). Let H be the event that G is Hamiltonian, let P be the event that P is
planar. We want to compare P (H ∧ P ) and P (H)P (P ). H and P are negatively correlated
if P (H ∧P ) ≤ P (H)P (P ), independent if P (H ∧P ) = P (H)P (P ) and positively correlated
if P (H ∧ P ) ≥ P (H)P (P ). Note H is monotone increasing (if we add edges, Hamiltonian
paths become more likely) and P is monotone decreasing (if we add edges, the graph is less
likely to be planar).

We expect P (P |H) ≤ P (P ), so P (P∧H) ≤ P (P |H)P (H) ≤ P (P )P (H). This inequality
is a special case of the FKG ineqality of 1971.

Definition 15.6: A is a monotone decreasing family of subsets of {1, . . . , n} if whenever
A′ ∈ A and A′′ ⊆ A, we have A′′ ∈ A.

Theorem 15.7: If A and B are monotone decreasing families of subsets of {1, . . . , n}. Then
|A ∩B|2n ≥ |A||B|.

Lecture 16

Tue. 4/5/11

§1 Four-function theorem

Theorem 16.1 (Ahlswede-Daykin four function theorem): Suppose n ≥ 1 and set N =
{1, . . . , n}. Let P (N) be the power set of N . Let R≥0 be the set of nonnegative reals. For a
function ρ : P (N)→ R≥0 and A ⊆ P (N), let

ρ(A) =
∑
A∈A

ρ(A).

For A,B ⊆ P (N), define

A ∪ B = {A ∪B : A ∈ A, B ∈ B}
A ∪ B = {A ∪B : A ∈ A, B ∈ B}.

Let α, β,≥, δ : P (N)→ R≥0. If for every A,B ⊆ N ,

α(A)β(B) ≤ γ(A ∪B)δ(A ∩B), (13)

then, for every A,B ⊆ P (N),

α(A)β(B) ≤ γ(A ∪ B)δ(A ∩ B). (14)
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Proof. We may modify α, β, γ, δ by defining α(A) = 0 for every A 6∈ A and β(B) = 0 for
every B 6∈ B, γ(C) = 0 for every C 6∈ A ∪ B, and δ(D) = 0 for every D 6∈ A ∩ B. Note (13)
still holds. (If A ∈ A, B ∈ B, neither the LHS and RHS changes. Else the LHS is 0.) Thus
we may assume that A = B = A ∪ B = A ∩ B = P (N).

We induct on n. For n = 1, P (N) = {φ,N}. For each ρ ∈ {α, β, γ, δ} let ρ0 = ρ(ϕ) and
ρ1 = ρ(N). (13) gives

α0β0 ≤ γ0δ0

α0β1 ≤ γ1δ0

α1β0 ≤ γ1δ0

α1β1 ≤ γ1δ1.

(Note the RHS do not range over all γiδj.) We need (α0 + α1)(β0 + β1) ≤ (γ0 + γ1)(δ0 + δ1).
If γ1 = 0 or δ0 we’re good. Otherwise

γ0 ≥
α0β0

δ0

δ1 ≥
α1β1

γ1

so it suffices to show
(
α0β0
δ0

+ γ1

)(
δ0 + α1β1

γ1

)
≥ (α0+α1)(β0+β1). This is true as rearranging

gives
(γ1δ0 − α0β1)(γ1δ0 − α1β0) ≥ 0.

Suppose the theorem holds for n− 1 (n ≥ 2); we prove it for n. Put N ′ = N\{n} and define
for each ρ ∈ {α, β, γ, δ}, A ∈ P (N ′)

ρ′(A) = ρ(A) + ρ(A ∪ {n})

since this makes
ρ′(P (N ′)) = ρ(P (N)).

Note (13) would follow from applying the induction hypothesis to α′, β′, γ′, δ′. To use the
induction hypothesis we need to check (13) for these new functions: for all A′, B′ ⊆ N ′,

α′(A′)β′(B′) ≤ γ′(A′ ∪B′)δ′(A′ ∩B′).

Now

α(φ) = α(A′) α(T ) = α(A′ ∪ {n})
β(φ) = β(B′) β(T ) = β(B′ ∪ {n})
γ(φ) = γ(A′ ∪B′) γ(T ) = γ(A′ ∪B′ ∪ {n}
δ(φ) = δ(A′ ∩B′) δ(T ) = δ(A′ ∩B′ ∪ {n}.

42



Lecture 16 Notes on Probabilistic Method

By (13)
α(S)β(R) ≤ γ(S ∪R)δ(S ∩R)

for all S,R ⊆ T . Hence using the n = 1 case,

α′(A′)β′(B′) = α(P (T ))β(P (T ))

≤ γ(P (T ))δ(P (T ))

= γ′(A′ ∪B′)δ′(A′ ∩B′).

Definition 16.2: A lattice is a poset in which every two elements x, y have a unique
minimal upper bound (join) x ∨ y and a unique maximal lower bound c ∧ y. A lattice is
distributive if for all x, y, z ∈ L,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Equivalently, x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). For X, Y ⊆ L, define

X ∨ Y = {x ∨ y : x ∈ X, y ∈ Y }
X ∧ Y = {x ∨ y : x ∈ X, y ∈ Y }

Any L ⊆ P (N) where N = {1, . . . , n}, where posets are ordered by inclusion, is a finite
distributive lattice.Conversely, every finite distributive lattice is of this form.

Corollary 16.3 (Four function theorem for distributive lattices): Let L be a finite distribu-
tive lattice and α, β, γ, δ : L→ R≥0. Then the same theorem holds.

The simplest case is α, β, γ, δ = 1. Then we get the following.

Corollary 16.4: Let L be a finite distributive lattice and X, Y ⊆ L. Then

|X||Y | ≤ |X ∨ Y | · |X ∧ Y |.

Corollary 16.5: Let A ⊆ P (N) and A\A = {A\A′ : A,A′ ⊆ A}. Then

|A\A| ≥ |A|.

Proof. Let L be a finite distributive lattice on P (N). By Corollary 16.4 with B = {N\F :
F ∈ A},

|A|2 = |A| · |B| ≤ |A ∪ B| · |A ∩ B| = |A\A|2.
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§2 FKG inequality

Definition 16.6: Let L be a finite distributive lattice. A function µ : L → R≥0 is called
log-supermodular if µ(x)µ(y) ≤ µ(x∧ y)µ(x∨ y), increasing if µ(x) ≤ µ(y) for all x ≤ y
and decreasing if µ(x) ≥ µ(y) for all x ≤ y.

Theorem 16.7 (FKG inequality): Let L be a finite distributive lattice and µ : L→ R≥0 be
a log-supermodular function. Let f, g : L→ R≥0 be increasing functions. Then(∑

x∈L

µ(x)f(x)

)(∑
x∈L

µ(x)g(x)

)
≤

(∑
x∈L

µ(x)f(x)g(x)

)(∑
x∈L

µ(x)

)
.

Proof. Define α, β, γ, δ by

α(x) = µ(x)f(x)

β(x) = µ(x)g(x)

γ(x) = µ(x)f(x)g(x)

δ(x) = µ(x).

We claim these functions satisfy (13); then the conclusion follows from the four function
theorem. Indeed,

α(x)β(y) = µ(x)f(x)µ(y)g(y)

≤ µ(x ∧ y)f(x)µ(x ∨ y)g(y)

≤ µ(x ∧ y)f(x ∨ y)µ(x ∨ y)g(x ∨ y)

= δ(x ∧ y)γ(x ∨ y).

Same holds if both f, g decreasing; just reverse γ, δ. If one is increasing and the other is
decreasing, inequality reverses.

Lecture 17

Thu. 4/7/11

§1 Applications of FKG inequality

Above, it is helpful to view µ as a measure on L. We can define for any f : L → R≥0 its
expectation

〈f〉 =

∑
x∈L µ(x)f(x)∑

x∈L µ(x)
.

With this notation we can write the FKG inequality as

〈fg〉 ≥ 〈f〉〈g〉.

By considering P (N) as a probability space, P (A) = |A|
2n

.
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Lemma 17.1 (Kleitman’s lemma): Let A,B ⊆ P (N) be monotone increasing, and C,D ⊆
P (N) be monotone decreasing. Then

P (A ∩ B) ≥ P (A)P (B)

P (C ∩ D) ≥ P (C)P (D)

P (A ∩ C) ≥ P (C)P (C).

In other words, 2n|A ∩ B| ≥ |A||B|, etc.

Proof. Let f : P (N)→ R≥0 be the characteristic function of A. Let g be the characteristic
function of B and µ ≡ 1, which is log-supermodular. Applying FKG gives

P (A ∩ B) = 〈fg〉 ≥ 〈f〉〈g〉 = P (A)P (B).

The others follow similarly.

For a real vector (p1, . . . , pn) with 0 ≤ pi ≤ 1, consider the probability space where for
each A ⊆ N ,

P (A) =
∏
i∈A

pi
∏
i 6∈A

(1− pi),

obtained by picking each i ∈ N with probability pi independently of the other elements.
For each A ⊆ P (N), let Pp(A) denote its probability in this space. Define µ = µp by

µ(A) = Pp(A). Note µ is log-supermodular; in fact µ(A)µ(B) = µ(A ∪ B)µ(A ∩ B). Thus
Kleitman’s lemma generalized to the following.

Theorem 17.2: For any p = (p1, . . . , pn), Pp(A∩B) ≥ Pp(A)Pp(B), and similarly with the
other inequalities.

For example, suppose A1, . . . , Ak are arbitrary subsets of N and suppose we pick A ⊆ N
by choosing each i ∈ N with probability p independent of the other elements. Then applying
the theorem k − 1 times, (the family of sets intersecting some Ai is monotone increasing)

P (A intersects each Ai) ≥
k∏
i=1

P (A intersects Ai).

Note this fails if we pick a subset of a random set uniformly at random. By viewing N as the
n =

(
m
2

)
edges on V = {1, . . . ,m}, we can get a correlation inequality for random graphs.

Let G = G(m, p). A property of graphs Q is monotone increasing if whenever G has Q
and whenever H is obtained from G by adding edges, then H has Q as well. For monotone
decreasing, replace “adding edges” with “deleting edges.”

Theorem 17.3: Let Q1, Q2, Q3, Q4 be graph properties. Let Q1, Q2 be monotone increasing
and Q3, Q4 be monotone decreasing. Let G = G(m, p). Then

P (G ∈ Q1 ∩Q2) ≥ P (G ∈ Q1)P (G ∈ Q2)

P (G ∈ Q3 ∩Q4) ≥ P (G ∈ Q3)P (G ∈ Q4)

P (G ∈ Q1 ∩Q3) ≤ P (G ∈ Q1)P (G ∈ Q3)
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Example 17.4: Let Q be the Hamiltonian property; it is monotone increasing. Let P be
the planarity property; it is monotone decreasing. Then

P (G ∈ P ∩H) ≤ P (G ∈ H)P (G ∈ P ).

(The number of labeled planar graphs on n vertices is asymptotic to αnβγn.)

Definition 17.5: A linear extension of a poset is a total ordering the preserves inequality
relations.

Theorem 17.6 (XYZ Theorem): Let P be a poset with n elements a1, . . . , an. For a
uniformly random linear extension,

P (a1 ≤ a2 ∧ a1 ≤ a3) ≥ P (a1 ≤ a2)P (a1 ≤ a3).

Lecture 18

Tue. 4/12/11

§1 Pseudorandomness

Here are two examples where pseudorandomness comes into play.

Theorem 18.1 (Szemerédi): Every set A ⊆ N of positive density contains arbitrarily long

arithmetic progressions. (The density is lim supn→∞
|A∩[1,n]|

n
.)

Proof. (Sketch) There are proofs using graph theory (Szemerédi regularity), ergodic theory,
Fourier analysis (gives estimates, Gowers), and hypergraph regularity.

If the set acts like a random set, then it has long arithmetic progression Otherwise the
density increments a lot somewhere, and we have a subsequence with fewer elements and
greater density; apply induction.

Theorem 18.2 (Green-Tao): The primes contain arbitrarily long arithmetic progressions.

Proof. (Sketch) The primes form a dense subset of a pseudorandom set R, and behaves much
like a dense subset of N.

Probabilistic methods give existence, but we prefer an explicit construction, because it can
increase our understanding of the problem, and more importantly, can be used in algorithms.
By an explicit construction we mean an algorithm, guaranteed to work, in polynomial time
with respect to the parameters of the desired structure.

For example, find an explicit construction for a Ramsey graph, a graph of n vertices
that has no clique or independent set of size 2 log2 n. Erdős’s question, to find (an explicit
construction of) a family of graphs G whose largest clique or independent set has order
O(log |G|), is still unanswered.

Explicit constructions are known for several other problems.
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§2 Quadratic residue tournament

Definition 18.3: A tournament (V,E) is a directed graph with one edge between every
pair of vertices, i.e. an orientation of a complete graph. We say x beats y to mean (x, y) ∈ E.
Given permutation π of V , (x, y) ∈ E is consistent if x precedes y in π.

Find a ranking with the most consistent edges.
Let c(π, T ) be the number of consistent edges of T with respect to π, and let c(π) =

max c(π, T ). Note c(T ) ≥ 1
2

(
n
2

)
. (If π′ is the reverse of π, then c(π) + c(π′) =

(
n
2

)
.) As an

exercise, show c(T ) = 1
2

+ Ω(n
3
2 ).

The probabilistic method shows there exists T with c(T ) =
(

1
2

+ o(1)
) (

n
2

)
; a more in-

volved proof shows c(T ) = 1
2

(
n
2

)
+O(n

3
2 ).

Example 18.4: Find T for which c(T ) is small.

Solution. Let p ≡ 3 (mod 4) be a prime and T = Tp be a tournament on Fp. Let (i, j)
be a directed edge iff j − i is a square modulo p. (−1 is not a perfect square.)

Theorem 18.5:

c(Tp) =
1

2

(
p

2

)
+O(p

3
2 ln p).

Proof. For y ∈ Fp, define

χ(y) = y
p−1
2 =


0, if y = 0

1, if y a quadratic residue

−1, else

Let D = [dij]
p−1
i,j=0 be an exponential matrix with dij = χ(ij − j). For distinct j, l,∑

i∈Fp

dijdil =
∑
i

χ(i− j)χ(i− l)

=
∑
i 6=j,l

χ(i− j)χ(i− l)

=
∑
i 6=j,l

χ

(
i− j
i− l

)
=
∑
i 6=j,l

χ

(
1 +

l − j
i− l

)
=
∑
t6=0,1

χ(t)

= 0− χ(0)− χ(1) = −1

since l−j
i−l runs through everthing except 0,1. For A,B ⊆ Fp, let e(A,B) be the number of

edges (a, b) ∈ A×B. Then ∑
i∈A

∑
j∈B

dij = e(A,B)− e(B,A).
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Lemma 18.6: ∣∣∣∣∣∑
i∈A

∑
j∈B

dij

∣∣∣∣∣ ≤ |A| 12 |B| 12p 1
2 .

Proof. By Cauchy-Schwarz,(∑
i∈A

∑
j∈B

dij

)2

≤ |A|
∑
i∈A

(∑
j∈B

dij

)2

≤ |A|
∑
i∈Fp

(∑
j∈B

dij

)2

≤ |A|
∑
i∈Fp

(
|B|+ 2

∑
j<l;j,l∈B

dijdil

)
≤ |A||B|p+ 2

∑
j<l;j,l∈B

∑
i∈Fp

dijdil

≤ |A||B|p− 2

(
|B|
2

)
≤ |A||B|p,

where we used
∑

i∈Fp dijdil = −1. Take square roots.

Let r be the smallest integer such that 2r ≥ p. Let π be arbitrary permutation of Tp,

π = (π1, . . . , πp) and let π′ = (πp, . . . , π1). We need to show c(π, Tp) ≤ 1
2

(
p
2

)
+ O(p

3
2 ln p),

or equivalently c(π, Tp) − c(π′, Tp) = O(p
3
2 ln p). Take a1, a2 such that p = a1 + a2 and

a1, a2 ≤ 2r−1. Let A1 be the set of first a1 elements, and A2 be the last a2 elements. By
Lemma (18.6), e(A1, A2) − e(A2, A1) ≤ (a1a2p)

1
2 ≤ 2r−1p

1
2 . Now continue to partition A1

and A2 into two sets, and of size at most 2r−2, and so on. Continuing until we are down to
singleton sets and adding up, c(π, Tp)− c(π′, Tp) ≤ 2r−1p

1
2 r = O(p

3
2 ln p).

The quadratic residue tournament also gives vertices without k-dominating sets.

Lecture 19

Thu. 4/14/11

§1 Eigenvalues and expanders

Definition 19.1: G = (V,E) is called a (n, d, c)-expander if

1. |V | = n,

2. it is d-regular, and
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3. for every W ⊆ V with N(W ) ≤ n
2
, |N(W )| ≥ c|W |. (Here N(W ) is the set of all

v ∈ V \W adjacent to some vertex in W .

Definition 19.2: A family of linear expanders of density (or degree) d and expansion c is a
sequence {Gi}∞i=1 of (ni, d, c)-expanders with ni →∞ as i→∞.

Note similar definitions can be made for graphs with maximum degree at most d (but
the regular case is nicer). This has many applications in theoretical computer science.

Definition 19.3: Let G = (V,E) be a graph with n vertices. Its adjacency matrix
A = AG has

aij =

{
1 if ij ∈ E
0 if ij 6∈ E.

Note A is symmetric, so has real eigenvalues and a complete set of real orthogonal eigen-
vectors.

Suppose G is d-regular. Then the largest eigenvalue of A is d: indeed, the all ones vector
is associated to the eigenvalue d; d is the largest since the sum of all entries of Ap is the total
number of walks of length p (which is ndp), which is at least the number of closed walks
of length p (which is Tr(Ap)). Hence ndp ≥

∑n
i=1 λ

p
i where λi are the eigenvalues. Or use

Perron-Frobenius.
Let λ = λ(G) be the second largest eigenvalue. For subsets B,C ⊆ V let c(B,C) be the

number of ordered pairs (b, c) ∈ B × C which are edges.

Theorem 19.4: For every partition V = B ∪ C, e(B,C) ≥ (d−λ)|B||C|
n

.

Proof. Let |V | = n, b = |B|, and c = |K| = n− b. Let D = dI. Consider

〈(D − A)x, x〉 =
∑
u∈V

d(x(u))2 −
∑

v∈N(u)

x(u)x(v)


= d

∑
u∈V

x(v)2 −
∑
uv∈E

x(u)x(v)

=
∑
uv∈E

(x(u)− x(v))2.

Define x by x(v) = −c for all v ∈ B, x(v) = b for all v ∈ C, and x(v) = 0 for all other values.
Note

∑
v∈V x(v) = 0.

We claim that A and D − A have the same eigenvalues. Note if µ is an eigenvalue of A
then d − µ is an eigenvalue of D − A. Note x is orthogonal to the (constant) eigenvector
corresponding to the smallest eigenvalue 0 of D−A. The eigenvectors of D−A are orthogonal
and form a basis for Rn. Now x is a linear combination of the other eigenvectors. Since d−λ
is the second smallest smallest eigenvalue of D − A,

〈(D − A)x, x〉 ≥ (d− λ)〈x, x〉 = (d− λ)(bc2 + cb2) = (d− λ)bcn.

But choosing x as mentioned, the LHS is e(B,C)(b+ c)2; divide by (b+ c)2.
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Corollary 19.5: Keeping the same assumptions, G is a (n, d, c)-expander with

c =
d− λ

2d
.

Proof. Let |B| ≤ n
2
. Let C = B. The above shows that e(B,C) ≥ (d−λ)|B||C|

n
≥ (d−λ)|B|

2
.

Since G is d-regular,

|N(B)| ≥ (d− λ)|B|
2d

.

Alon improved this to c = 2(d−λ)
3d−2λ

.

Theorem 19.6: If G is a (n, d, c)-expander then λ ≤ d− d2

4+2c2
.

How small can λ be?

Theorem 19.7 (Alon Nilli):

λ ≥ 2
√
d− 1

(
1−O

(
1

diam k

))
.

(Alon Nilli is a pseudonym of Noga Alon.) A Ramanujan graph is a graph with λ ≤
2
√
d− 1.

Theorem 19.8 (Expander mixing lemma): Let G be a d-regular graph. For every B,C ⊆
V (G), let λ be the eigenvalue with second largest absolute value. Suppose |B| = bn, |C| = cn.
Then

|e(B,C)− bcdn| ≤ λ
√
bcn.

Corollary 19.9: ∣∣∣∣e(B)− 1

2
b2dn

∣∣∣∣ ≤ 1

2
λbn.

(Take B = C, e(B,C) = 2e(B).)

The number of walks of length p is ndp. What if we want walks missing a linear-size
subset? For an expander, it’s exponentially smaller. (If we restrict to a subset of half the
size, it is “approximately” a d

2
-regular graph on half the vertices.) This is useful in algorithms,

especially in Monte Carlo for amplification, for example, in primality testing.

Lecture 20

Thu. 4/21/11

§1 Quasi-random graphs

Definition 20.1: For graphs G,H, define N∗G(H) to be the number of labeled induced copies
of H in G. Define NG(H) to be the number of labeled copies of H in G (not necessarily
induced).
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Note
NG(H) =

∑
L contains copy of H

N∗G(L).

(The sum is over L obtained by adding edges to H.) Suppose the eigenvalues of the adjacency
matrix are λ1, . . . , λn with |λ1| ≥ · · · ≥ |λn|. For a vertex v of G and S ⊆ V (G), let

1. N(v) be the set of neighbors of v

2. e(S) be the set of edges inside S

3. e(B,C) be the number of pairs in B × C which are edges, so e(S, S) = 2e(S).

Definition 20.2: Define the following properties of random graphs:

1. P1(s): For every H on s vertices, N∗G(H) = (1 + o(1))ns2−(s2). (Expected number of
copies of H)

2. P2: NG(C4) ≤ (1 + o(1))
(
n
2

)4
. (Expected number of 4-cycles)

3. P3: |λ2| = o(n). (Second eigenvalue small)

4. P4: For every S ⊆ V (G), e(S) = 1
4
|S|2 + o(n2) (Edges uniformly distributed)

5. P5: For every S, T ⊆ V (G), e(S, T ) = 1
2
|S||T |+ o(n2).

6. P6:
∑

u,v∈V

∣∣|N(u) ∩N(v)| − 1
n
4
∣∣ = o(n3).

Theorem 20.3: All properties are equivalent for d-regular graph on n vertices with d =(
1
2

+ o(1)
)
n.

Proof. P1(4) =⇒ P2 =⇒ P3 =⇒ P4 =⇒ P5 =⇒ P2 and P5 =⇒ P1(s) for all s.

P1(4)⇒ P2: We have the right count for each of the following graphs.

Then
NG(C4) =

∑
L

N∗G(L) = 4(1 + o(1))n42−6.

P2 ⇒ P3: Note Tr(A4) = NG(C4) +O(n3) ≤
(
n
2

)2
+ o(n4) (it counts the number of 4-cycles plus

degenerate 4-cycles). But Tr(A4) =
∑n

i=1 λ
4
i ≥ λ4

1 + λ4
2. Since λ1 = d =

(
1
2

+ o(1)
)
n,

λ4
2 = o(n4), giving |λ2| = o(n).
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P3 ⇒ P4: Proof omitted.

P4 ⇒ P5: First suppose S and T are disjoint. Then

e(S, T ) = e(S∪T )−e(S)−e(T ) =
1

4
(|S|+|T |)2− |S|

2

4
− |T |

2

4
+O(n2) =

1

2
|S||T |+o(n2).

If they aren’t disjoint, rewrite in terms of the three sets S\T, T\S, S ∩ T .

P5 ⇒ P6: Since G is d-regular with d =
(

1
2

+ o(1)
)
n. Fix v ∈ G and let

B1 =
{
u : |N(u) ∩N(v)| ≥ n

4

}
B2 =

{
u : |N(u) ∩N(v)| < n

4

}
.

Let C = N(v). Now∑
u∈B1

∣∣∣|N(u) ∩N(v)| − n

4

∣∣∣ =
∑
u∈B1

(
|N(u) ∩N(v)| − n

4

)
= e(B1, C)− n

4
|B1|

=
1

2
|B1|d+ o(n2)− |B1|

n

4
= o(n2).

Similarly
∑

u∈B2

∣∣|N(u) ∩N(v)| − n
4

∣∣ = o(n2). Now sum over v ∈ V .

P6 ⇒ P2: The number of walks of length 4 is
∑

u,v |N(u) ∩ N(v)|2 = n2
(
n
4

)2
+ o(n4). But the

LHS is NG(C4) +O(n3).

P5 ⇒ P1: We try to build copies of H, one vertex at a time.

FIXFIX

Suppose H has vertex set [s]. Then (va, vb) is an edge iff (a, b) is an edge. After i
steps, we have picked a walk v1, . . . , vi and subsets V i

j with |V i
j | = (1 + o(1))2−in and

V i
j being the set of vertices connected to vi. Now (va, u) with u ∈ V i

j is an edge iff
(a, j) is an edge. Pick vi+1 ∈ V i

i+1. In total the number of copies is

s∏
i=1

21−in(1 + o(1)) = (1 + o(1))n22−(s2).

Definition 20.4: A quasirandom graph is one with about half the edges and satisfying any
of the following equivalent properties.
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Lecture 21

Tue. 4/26/11

§1 Dependent Random Choice

Suppose H is sparse or small, G is larger than H and dense, and we want to show that H
is a subgraph of G. It is helpful to find a “rich” subset U that is large and such that all, or
almost all, small subsets of U have many common neighbors. Then we can embed H. We
assume H is bipartite (but the method can be adapted for nonbipartite graphs), and embed
H one vertex at a time in U .

We don’t want to take vertices independently from one another (think of the case that
G is a union of two cliques). Instead, we pick a small random set of vertices T and let
U = N(T ), where N(T ) denote the vertices adjacent to all vertices of T . This favors subsets
with large common neighborhood.

Lemma 21.1 (Dependent random choice): Let a, d,m, n, r ∈ N. Let G = (V,E) be a graph

with |V | = n vertices and average degree d = 2|E(G)|
n

. If there is t ∈ N such that

dt

nt−1
−
(
n

r

)(m
n

)t
≥ a

then G contains a subset U of size at least a such that every r vertices in U have at least m
common neighbors.

Proof. We we the alteration method; pick U as noted and then delete a few vertices.
Pick a set Γ of t vertices at random with repetition. Set A = N(Γ) and X = |A|. Then

because the probability that a given vertex is a neighbor of v is |N(v)|
n

,

E(X) =
∑
v∈G

(
|N(v)|
n

)t
= n−t

∑
v∈G

|N(v)|t ≥ n1−t
(∑

v∈G |N(v)|
n

)t
=

dt

nt−1

using Power Mean.
Let Y be the number of r-sets S ⊆ A with |N(S)| < m. For a given S,

P (S ⊆ A) =

(
|N(S)|
n

)t
(if S ⊆ A, the vertices of T have to be adjacent to all vertices in S) and

E(Y ) <

(
n

r

)(m
n

)t
.

Now E(X−Y ) > a. Fix a choice of T such that X−Y > a. For each S ⊆ A with |S| = r
and |N(S)| < m, delete a vertex in S from A. Let U be the remaining subset.
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Definition 21.2: ex(n,H) is the maximum number of edges of a graph on n vertices with
no copy of H.

For example, by Turan’s Theorem, ex(n,K3) =
⌊
n2

4

⌋
. For H not bipartite, this gives an

asymptotic formula for ex.

Theorem 21.3:

ex(H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
.

Theorem 21.4: If H = (A∪B,E) is bipartite graph in which all vertices in B have degree
at most r, then

ex(n,H) ≤ cn2− 1
r , c = c(H).

If H = Kr,s and s ≥ r! then

ex(n,H) = Θ(n2− 1
r ).

Proof. Let a = |A|, b = |B|, m = a+ b, t = r, c = max(a
1
r , 3(a+b)

r
). Suppose G has n vertices

and at least cn2− 1
r edges. From the lemma, there exists U with |U | ≥ a such that all subsets

of size r have at least m = a+ b common neighbors. So it suffices to show the following.

Lemma 21.5: Let H = (A∪B,E) be bipartite, such that a = |A|, b = |B|, and all vertices
of B have degree at most r. If G has a subset U with |U | ≥ a and all subsets S ⊆ U with
|S| = r have |N(S)| ≥ m = a+ b, then H is a subgraph of G.

Proof. We find an embedding f : A ∪ B → V (G). Map f : A → U arbitrarily injectively.
Label the vertices of B by v1, . . . , vb. We need f(vi) to be adjacent to all f(a) with a ∈ N(vi).
The condition on U allows us to greedily embed.

The second part comes from a construction from algebraic geometry.

Let Qr denote the r-dimensional cube on 2r vertices. Its vertices are in {0, 1}r, with
two vertices adjacent if they differ in one position. Note Qr ir r-regular. The Burr-Erdös
conjecture is that r(Qr) = O(2r) = O(|V (Qr)|).
Theorem 21.6:

r(Qr) ≤ 23r.

Proof. Set N = 23r. The denser color has at least 1
2

(
N
2

)
≥ 2−

7
3N2 edges. Let G be the graph

of this color. The average degree is at least 2−
4
3
N . Let t = 3

2
r,m = 2r, a = 2r−1. Then the

inequality in Lemma 21.1 is satified so there is U ⊆ V (G) with |U | ≥ a, every r vertices of
U have at least m = 2r common neighbors. Then Qr is a subgraph of this denser color.

Note we didn’t use any properties of Qr except it’s bipartite, the number of its vertices
and the maximum degree of a vertex.

We just need “almost all” subsets to have large common neighborhood; this gives tighter
bounds.

Theorem 21.7: There exists G with n vertices with edge density 1
2

such that for any
U ⊆ V (G) with |U | = |Ω(n)|, there exist u, v ∈ U with only o(n) common neighbors.
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This shows the limitations of dependent random choice.

Lecture 22

Thu. 4/28/11

§1 Dependent Random Choice

For a number of application, “almost all” small subsets of U having many common neighbors
is enough.

Lemma 22.1: Let G = (A,B,E) by a bipartite graph and |E| = c|A||B|. For every

0 < ε < 1 there exists U ⊆ A such that |U | ≥ c|A|
2

and at least a (1 − ε) fraction of the

ordered pairs in U have at least εc2|B|
2

common neighbors.

Proof. Pick v ∈ B uniformly at random. Let X = |N(v)|. We bound E(X2):

E(X2) ≥ E(X)2 = (c|A|)2.

Let T = (a1, a2) ∈ A×A and call T bad if |N(T )| < εc2|B|
2

. Now choosing v ∈ B at random,

P (T ⊆ N(v)) =
|N(T )|
|B|

since there are |B| possibilities for B and N(T ) of them are adjacent to both elements of T .
If T is bad, this probability is less than εc2

2
.

Let Z be the number of bad pairs in N(v). We have

E(Z) ≤ εc2

2
A2

(since the probability of a bad T being in N(v) is at most εc2

2
and there are |A|2 pairs) and

E
(
X2 − Z

ε

)
= E(X2)− 1

ε
E(Z) ≥ c2|A|2

2
.

Thus there exists v so that X2 − Z
ε
≥ c2|A|2

2
. Then |X| ≥ c|A|

2
and |Z| ≤ εX2. Set U =

N(v).

This can be generalized to n-tuples instead of pairs.
For A,B sets of integers, define the sumset and partial sumsets

A+B = {a+ b | a ∈ A, n, b ∈ B}

A
G
+ B = {a+ b| (a, b) ∈ E} .

For A an arithmetic proression of length n
2

plus n
2

“random vertices,” |A
G
+ A| = O(n) and

|A+ A| = Ω(n2).
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Theorem 22.2 (Balog-Szemerédi): If |A| = |B| = n, G has at least cn2 edges and |A
G
+ B| ≤

Cn2, then there exists A′ ⊆ A and B′ ⊆ B such that |A′|, |B′| ≥ c′n, and |A′ + B′| ≤ C ′n,
where c′ and C ′ depend on c and C alone.

Lemma 22.3: Let G = (A,B,E) with |A| = |B| = n and |E| = cn2. Then there exist
A′ ⊆ A,B′ ⊆ B, each of size at least cn

8
and there are at least 2−12c5n2 paths of length 3

between any a′ ∈ A′ and b′ ∈ B′.

Proof. (of 22.2 given 22.3) Let A′, B′ be as in the lemma above. Given y ∈ A′ + B′, we can
find a ∈ A′ and b ∈ B′ such that y = a+b. To each such y there correspond at least 2−12c5n2

pairs (a′, b′) such that a, b′, a′, b is a path. Writing

y = (a+ b) = (a+ b′)︸ ︷︷ ︸
x

− (b′ + a′)︸ ︷︷ ︸
x′

+ (a′ + b)︸ ︷︷ ︸
x′′

,

we have that each y ∈ A′+B′ corresponds to 2−12c5n2 triplets in (A
G
+ B)3 =: X3. Moreover

the triplets corresponding to different y are distinct.
Since |X| ≤ Cn there are at most C3n3 such triples. Then

|A′ +B′| = |X|3

2−12c5n2
≤ 212C3c−5n.

Proof. (of Lemma 22.3) Let A1 ⊆ A consist of vertices of degree at least cn
2

. Let c1 = e(A1,B)
|A1||B| .

Note e(A1, B) ≥ cn2

2
. Also c1 ≥ c, c1 ≥ cn2/2

|A1||B| = cn/2
|A1| .

Apply Lemma 22.1 to A1, B (c replaced by c1, ε = c
16

) to get U ⊆ A1 with |U | ≥ c1|A1|
2
≥

cn
4

and at most c|U |2
16

ordered pairs in U are “bad,” i.e. have less than
εc21n

2
≥ c3n

32
common

neighbors.
Let A′ ⊆ U be those vertices a in at most c|U |

8
bad pairs (a, a′). The number of bad pairs

is at least |U\A′| · c|U |
8

, giving |U\A′| ≤ |U |
2

and |A′| ≥ |U |
2
≥ cn

8
.

Let B′ be the set of vertices in B with at least c|U |
4

neighbors in U . By counting and
choice of U , |B′| ≥ cn

4
. Pick a ∈ A′ and b ∈ B′. By choice of A′, a has common neighbors

with all but a small fraction of U , and b has many neigbhors in U . This gives paths of length
3. The theorem follows after some calculation.

Lecture 23

Tue. 5/3/11

§1 Crossing number, incidences, and sum-product estimates

Definition 23.1: For a graph G = (V,E) let the crossing number cr(G) be the minimum
number of crossings in any drawing of G.
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Note the following facts:

1. (Farey’s theorem) If a planar graph can be represented using curves, then it can be
represented using line segments. (Disk representation theorem) Any planar graph can
be represented as nonoverlapping disks, with adjacency if they touch.

2. cr(G) = 0 iff G is planar.

3. cr(G) ≤
(|E|

2

)
.

4. If n ≥ 3 and G is planar, m ≤ 3n− 6. (Consider a triangulation.) For any planar G,
m ≤ 3n.

5. cr(G) ≥ m− 3n. (Keep pulling out edges one by one.)

We use the probabilistic method to amplify this simple bound and prove the following.

Theorem 23.2 (Crossing lemma): If G has m ≥ 4n edges then

cr(G) ≥ m3

64n2
.

Proof. Let t = cr(H)
Pick each vertex with probability p independent of the other vertices. Let H be the

induced subgraph with these picked vertices. Then

E(|V (H)|) = pn

E(|E(H)|) = p2m

E(cr(H)) ≤ p4t

The inequality comes from the fact that for a crossing to appear in H, the four vertices
involved must be in H. Using cr(H) ≥ |E(H)| − 3|V |, we get

p4t ≥ E(cr(H)) ≥ E(|E(H)|)− 3E(|V (H)|) = p2m− pn.

or
t ≥ p−2m− 3p−3n.

To maximize the right-hand side take p = 4n
m

; this gives the desired result.

Theorem 23.3 (Szemerédi-Trotter incidence theorem): Let P be a set of points in R2 and
L be a set of lines in R2. Let l(P,L) be the set of pairs (p, `) ∈ P × L which are incident.
Then there is a constant c such that

l(P,L) ≤ 4(m
2
3n

2
3 +m+ n)

where m = |L| and n = |P |.
Note that the dominant term depends on the relative sizes of m and n.
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Proof. We can assume all lines have at least one point and all points are on at least one
line. Consider the graph (V,E) where V is the set of points, E = (p, p′) is an edge if p and
p′ are the closest points on a line ` ∈ L. Then |V | = n and |I| = |E| + |L|. The graph is
embedded in the plane, and the number of crossings is at most the number of pairs of lines.
If |E| < 4n, then |I| ≤ m4n; else by the crossing lemma,

(|I| −m)3

64n2
≤ cr(G) ≤

(
m

2

)
≤ m2

2

and the bound follows:

(|I| −m)3 ≤ 32m2n2

|I| ≤ 32
1
3m

2
3n

2
3 +m.

The extra n comes from removing the initial assumption.

Example 23.4 (Unit distance problem): Given n points in R2, how many unit distances
can you have?

Solution. (Sketch) Look at unit circles around the points, and say two vertices are
adjacent if they are adjacent in a circle. The maximum number of edges between any two
vertices is at most 2 (we’re counting them once for each circle they’re in); use a variant of
the crossing lemma for nonsimple graphs.

For A,B ⊆ R,

A+B = {a+ b | a ∈ A, b ∈ B}
A ·B = {a · b | a ∈ A, b ∈ B}.

Let |A| = n. Then |A + A| ≥ 2n − 1 with equality iff A is an arithmetic progression. To
prove this note that if a1 < . . . < an then

a1 + a1 < a1 + a2 < · · · < a1 + an < a2 + an < · · · < an + an.

The following is a generalization.

Theorem 23.5 (Freiman’s Theorem): If |A + A| ≤ Cn then A is a dense subset of a
generalized arithmetic progression.

By taking exponentials, we get a similar result for geometric progressions and A ·A. The
following says that we can’t have a set with A + A and A · A both small, i.e. looking both
like an arithmetic and geometric progression.

Theorem 23.6 (Elekes):

max(|A+ A|, |A · A|) ≥ c|A|
5
4 .

Proof. Let `a,b be the line y = a(x − b). Note `a,b contains the point (c + b, c · a) ∈ P for
all c ∈ A. Let L = {`a,b | a, b ∈ A}; note |L| = |A|2. Let P = (A + A) × (A · A); then
|P | = |A+ A||A · A|. We obtain a bound for |P |.
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By the incidence theorem,

c(|L|
2
3 |P |

2
3 + |L|+ |P |) ≥ I(P,L) ≥ |L||A|.

Some calculation finishes the problem.

Lecture 24

Thu. 5/5/11

§1 Independence number of triangle-free graphs

Suppose G is a graph G with n vertices and maximum degree d. Then by greedy picking,

α(G) ≥ n

d+ 1
.

Theorem 24.1 (Ajtai, Komlós, Szemerédi, Sheover): If G is triangle-free, then

α(G) ≥ n log d

8d
.

Proof. We may assume d ≥ 16. Let W be an independent set of G, chosen randomly among
all independent sets. For each v ∈ V (G), let

Xv = d|{v} ∩W |+ |N(v) ∩W |

where N(v) is the set of all neighbors of v.

Claim 24.2:

E(Xv) ≥
1

4
log d.

Proof. Let H be the induced subgraph of G with vertex set V (G) − ({v} ∪ N(v)). Fix an
independent set S in H. Let X ⊆ N(v) be the nonneighbors of S; these are precisely the
elements of N(v) that can be added to S and still give an independent graph. Note none
of the lements of X are connected to each other, because they are all adjacent to v and the
graph is triangle free.

It suffices to show

E(Xv|W ∩ V (H) = S) ≥ log d

4

for all choices of S. Conditioning on W ∩ V (H) = S, there are 2x + 1 choices for W : either
W contains v, or W does not contain v and contains a subset of W . Then since v contributes
d to Xv, and the average size of a subset of X is x

2
(|X| = x),

E(Xv|W ∩ V (H) = S) =
d+ x

2
2x

2x
≥ 1

4
log d

by computation.
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By the claim, E(
∑

vXv) ≥ n
4

ln d. But
∑

vXv ≤ 2d|W | since for v ∈ W , Xv gets
contribution d from v and for each u ∈ N(v), Xv gets a contribution 1 from u. Thus, taking
expected values, E(|W |) ≥ n log d

8d
. Thus there exists W so that |W | ≥ n log d

8d
.

Consider R(3, k). It is the minimum number of vertices in a complete graph such that
in any coloring with red of blue, there is a red triangle of blue Kk. Alternatively, it is the
minimum n such that any triangle-free graph on n vertices has an independent set of size n.
By Pigeonhole, R(3, k) ≥ k2. By Lovász Local Lemma, R(3, k) ≥ ck2

(ln k)2
.

Theorem 24.3:

R(3, k) = Θ

(
k2

ln k

)
.

Proof. For the lower bound, randomly order all
(
N
2

)
e1, . . . , e(N2 ). Add the ei in order unless

ei makes a triangle with edges already inside. With high probability this gives a triangle-free
graph with no independent set of size n. A lot of computation here. (30 pages)

Let G have at least n = 8k2

log k
vertices and be triangle-free. If the maximum degree is at

least k we are done. Otherwise by the previous theorem, α(G) ≥ n log k
8k

= k.

The cast R(4, k) is unsolved; we just know
(

k
log k

) 5
2 ≤ R(4, k) ≤ ck3

(log k)2
.

§2 Local Coloring

If G has n vertices, with n large, and every subset of size 10−20n vertices is 3-colorable, is G
100-colorable? No.

Theorem 24.4: For all positive integers k, there exists ε > 0 such that for all n sufficiently
large, there exists G on n vertices with χ(G) ≥ k and χ(G[S]) ≤ 3 for every S of size εn.
I.e. we can’t detect global colorability by local colorability.

Proof. Let c > 2kH
(

1
k

)
ln 2 whereH is the entropy functionH(x) = −x lnx−(1−x) ln(1−x).

Let ε = 1
4
e−s33c−3. (In relation to the question above, note for n = 100, ε > 10−20.) Set p = c

n

and consider G(n, p). If χ(G) ≤ k then α(G) ≥ n
k
. The expected number of independent

sets is (for convenience, assume k|n)

E
(

number of independent sets of size
n

k

)
=

(
n

n/k

)
(1− p)(

n/k
2 )

< 2n(H( 1
k)+o(1))

= e−
cn
2k2

(1+o(1)) = o(1)

where we used Stirling’s formula to get
(
n
an

)
= 2n(H(a)+o(1)).

If there exists S, |S| ≤ εn with χ(G[S]) ≥ 4, then there exists a minimum such S and
every vertex in G[S] would have degree at least 3. (If there is a vertex v of degree smaller
than 3, and if S\{v} is colored with at most 3 colors, then v can be colored with one of those
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3 colors.) Then E(G[S]) ≥ 3t
2

. We show it is unlikely for any subgraph to have so many
edges.

Now

P

(
∃S : |S| ≤ εn, S has at least

3|S|
2

edges

)
≤
∑
t≤εn

(
n

t

)((t
2

)
3t
2

)( c
n

) 3t
2

= o(1)

by using the estimate that the summand is at most
[(

en
t

) (
te
n

) (
c
n

) 3
2

]t
(cf. (12)).

Lecture 25

Tue. 5/10/11

§1 Weierstrass Approximation Theorem

The theorem tells us we can approximate continuous real functions by polynomials.

Theorem 25.1: The set of real polynomials over [0, 1] is dense in the set of continuous
functions C[0, 1] (the topology being determined by the norm |f | = max |f |).

In other words, for all continuous real functions f : [0, 1] → R and ε > 0, there exists a
polynomial p(x) such that |p(x)− f(x)| ≤ ε for all x ∈ [0, 1].

Proof. (Bernstein) We will use the fact that the binomial distribution is tightly distributed
around its mean.

Since f is uniformly continuous, there exists δ > 0 such that if x, x′ ∈ [0, 1] and |x−x′| ≤ δ
then |f(x) − f(x′)| ≤ ε

2
. In addition f is bounded; take M such that |f(x)| ≤ M for all

x ∈ [0, 1].
Let B(n, x) be a binomial random variable with n independent trials and probability of

success x for each of them. Note

P (B(n, x) = j) =

(
n

j

)
xj(1− x)n−j

µ = E(B(n, x)) = xn

σ =
√
nx(1− x) <

√
n.

By Chebyshev’s inequality,

P (|B(n, x)− nx|) > n
2
3 ≤

(√
n

n
2
3

)
=

1

n
1
3

.

Thus there exists n such that P (|B(n, x)− nx| > n
2
3 ) < ε

4M
and 1

n
1
3
< δ. Define

Pn(x) =
n∑
i=0

(
n

i

)
xi(1− x)n−if

(
i

n

)
.
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We claim that |Pn(x)− f(x)| ≤ ε. For every x ∈ [0, 1],

|Pn(x)− f(x)| ≤
n∑
i=0

(
n

i

)
xi(1− x)n−i

∣∣∣∣f ( in
)
− f(x)

∣∣∣∣
≤

∑
i,|i−nx|≤n

2
3

(
n

i

)
xi(1− x)n−i

∣∣∣∣f ( in
)
− f(x)

∣∣∣∣
+

∑
i,|i−nx|>n

2
3

(
n

i

)
xi(1− x)n−i

(∣∣∣∣f ( in
)∣∣∣∣+ |f(x)|

)
≤ ε

2
+

ε

4M
· 2M = ε.

(To see that the first sum at most ε
2
, note that

∣∣ i
n
− x
∣∣ ≤ n−

1
3 there and 1

n
1
3
< δ.)

§2 Antichains

Definition 25.2: A family F of subsets of [n] is an antichain if no set in F is contained
in another.

Theorem 25.3: Let F be an antichain. Then∑
A∈F

1(
n
|A|

) ≤ 1.

Proof. Pick a random permutation of 1, . . . , n. Consider the family of sets Cσ = {{σ(1)}, {σ(1), σ(2)}, . . . , {σ(1), . . . , σ(n)}}.
Let X = F ∩ Cσ because for any pair of sets in Cσ, one is inside the other.

Note X =
∑

AXA where A is the indicator random variable for the event A ∈ Cσ. Since
P (A ∈ Cσ) = 1

( n
|A|)

,

1 ≥ E(X) =
∑
A∈F

E(XA) =
∑
A∈F

1(
n
|A|

) .
Corollary 25.4 (Sperner’s Theorem): Let F be an antichain. Then |F| ≤

(
n

bn2 c
)
.

Proof. Note
(
n
x

)
is maximal at x =

⌊
n
2

⌋
so the theorem gives

1 ≥
∑
A∈F

1(
n
|A|

) ≥ |F|(
n

bn2 c
) .
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§3 Discrepancy

Let Ω be a set, and let A ⊆ 2Ω be a collection of subsets of Ω. We want to color the elements
of Ω with red or blue such that all S ∈ A have roughly the same number of red and blue
elements.

Label red and blue by −1 and 1.

Definition 25.5: For a coloring χ : Ω→ {−1, 1}, let χ(S) =
∑

a∈S χ(a). Define

disc(A, x) = max
S∈A
|χ(S)|

and define the discrepancy of A to be

disc(A) := min
χ:Ω→{−1,1}

disc(A,χ).

We want to show that under certain constraints, the discrepancy is small.

Theorem 25.6: Let A be a family of n subsets of an m-element set Ω. Then

disc(A) ≤
√

2m ln 2n.

Proof. Let χ : Ω→ {−1, 1} be random. For S ⊆ Ω let XS be the indicator random variable
for the event |χ(S)| > α. If |S| = a, then by Chernoff estimate,

E(XS) = P (|χ(S)| > α) < 2e−
α2

2a ≤ 2−
α2

2m =
1

n
.

Let X =
∑

S∈AXS. Then

E(X) = E

(∑
S∈A

XS

)
=
∑
S∈A

E(XS) < n · 1

n
= 1.

Hence there exists a coloring χ such that X = 0, i.e. all sets in A have discrepancy at most
α, i.e. disc(A) ≤ α.

Lecture 26

Thu. 5/12/11

§1 Discrepancy

We improve the bound from last time.

Theorem 26.1 (Spencer): Suppose |Ω| = n and A ⊆ 2Ω, |A| = n. Then

disc(A) ≤ 11
√
n.

63



Lecture 26 Notes on Probabilistic Method

The assumption that |Ω| = n is not necessary can be dropped, i.e. |Ω| ≥ n is okay.

Proof. A random coloring will not work. Instead, we consider a partial coloring χ : Ω →
{−1, 0, 1} when χ(a) = 0 means a is uncolored.

Lemma 26.2: There exists a partial coloring χ with at most 10−9n uncolored points such
that |χ(S)| ≤ 10

√
n for every S ∈ A.

(We will then partially color the remaining points, and so on, to get a geometric series.)

Proof. Let A = {S1, . . . , Sn} and χ : Ω → {0, 1} be random. For 1 ≤ i ≤ n define bi to be

the closest integer to χ(Si)
20
√
n
. In particular bi = 0 when

−10
√
n < χ(Si) < 10

√
n.

Let pj = P (bi = j). Chernoff’s estimate gives

p0 > 1− 2e−50

p−1 = p1 < e−50

...
...

p−s = ps < e50(2s−1)2 .

We bound the entropy H(bi):

H(bi) =
∑
j∈Z

−pj log2 pj ≤ ε := 3 · 10−20.

Consider the n-tuple (b1, . . . , bn). Then

H(b1, . . . , bn) ≤
n∑
i=1

H(bi) ≤ εn.

If a random variable Z assumes no value with probability 2−t, then the entropy is large,
H(z) ≥ t. By the contrapositive there exists a n-tuple (b1, . . . , bn) such that P ((b1, . . . , bn) =
(s1, . . . , sn)) ≥ 2−εn. All 2n colorings are equally likely so there exists a set of at least 2(1−ε)n

colorings χ : Ω→ {−1, 1} all having the same value (b1, . . . , bn).
Think of the class C1 of all 2n colorings χ : Ω→ {−1, 1} as the Hamming cube {−1, 1}n.

We use the following:

Lemma 26.3 (Kleitman): If D ⊆ C and |D| ≥
∑

i≤r
(
n
i

)
with r ≤ n

2
, then D has diameter

at least 2r.

We may take r = αn as long as α < 1
2

and 2H(α) ≤ 21−ε. (Note
(
n
αn

)
= 2n(H(α)+o(1)).))

Calculation then gives we can take

α =
1

2
(1− 10−9).
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(Use the Taylor expansion H
(

1
2
− x
)
∼ 1 − 2

ln 2
x2 for x small.) The diameter of C1 is at

least n(1− 10−9). Let x1, x2 ∈ C1 be of maximal distance. Set χ = x1−x2
2

; this leaves all but
10−9n uncolored because χ1, χ2 have the same b-vector. Then

|χ(Si)| ≤ 10
√
n

for all Si ∈ A, as needed.

Lemma 26.4: Let |A| = n and |Ω| = r with r ≤ 10−9n. Then there exists a partial coloring
χ of Ω with at most 10−40 points uncolored, such that

|χ(S)| < 10
√
r

√
ln
(n
r

)
for all S ∈ A.

The proof is similar to the first lemma.
Let χ1 be a coloring of all but 10−9n of the elements, χ2 be a coloring of all remaining

elements but 10−49n, and χ3 be a coloring of all remaining elements but 10−89n, and so on.
Let χ = χ1 + χ2 + · · · . Then

|χ(S)| < |χ1(S)|+ |χ2(S)|+ · · · < 10
√
n+ 10

√
10−9n

√
ln 109 + · · · < 11

√
n.
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