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Problem 1 (6.1)

Note () equals the probability that in a random subgraph H of G obtained by picking each
edge of G with probability %, that both H and G\ H are connected, where G\ H consists of
the vertices of G and the edges of G not in H. (Just associate one color with “being in H”
and the other color with “not being in H.”)

Note “H connected” is a monotone increasing graph property and “G\H connected” is
a monotone decreasing graph property (with respect to H), because deleting an edge in H
corresponds to adding an edge in G\ H. Thus by Theorem 6.3.2 applied to the set of edges
of G, we get that

P(H connected and G\ H connected) < P(H connected) P(G\H connected)
= P(H connected)?.

The last follows from the fact that the distribution for H and G\ H is the same, since H is
equally likely to be any subgraph H, of GG, and in particular, the probability that H = H,
is the same as the probability that H = G\ Hy.

Thus Q < P2

Problem 2 (6.3)

Note for any vertex v, “v has degree at most k£ —1” is a monotone decreasing graph property.
Label the vertices vy, ..., vq,. By repeated application of 6.3.3, (basically an induction;
in the induction step noting that if P, and P, are monotone decreasing then so it P; A P),

2%k 2%
1 1
P(vy,. .., vy all have degree <k —1) > HP(U1 has degree <k —1) = (§> =
i=1

The equality come from the fact that there are 2k — 1 edges coming out of v, each chosen
independently with probability %, so the degree of v gives a binomial distribution symmetric
around % In particular, it is as likely to have degree at most £ — 1 as degree at least k,

i.e. both probabilities are %
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Problem 3 (7.2)

Lemma 3.1:
E[x(H)] > 500.

Proof. We show that given U C V', x(G[U])+x(G[U¢]) > 1000. Indeed, take proper colorings
of GIU] and G[U¢] with x(G[U]) and x(G[U¢]) different colors, such that the colors used in
U are different from any color used in U¢. This gives a proper coloring of G, since the only
edges in G neither in G[U] nor G[U¢] are those between U and U¢, which will be between
different colors. Since x(G) = 1000, there must be at least 1000 colors used.

Now summing x(G[U]) + x(G[U*¢]) > 1000 over all 2!Vl subsets U C V and dividing by
2V gives E[x(H)] > 500. O

Color G properly with 1000 colors, and let Ay, ..., Ajggg be the color classes. Note that
each A; is an independent set.

Let B; = |JI_, A;; consider the gradation By C By C -+ C Biggo=V. Let L : P(V) —» Z
be the function L(W) = x(G[W]). Let

X;(U) = E[L(W)|B; "W = B, U]

In other words, X;(U) is the expected value of the chromatic number of G[W], where W
is a random subset of V' that matches U on A,...,A;. Note Xo(U) = E[x(H)], while
X1000(U) = x(H). (Here H = G[U].)

We show L satisfies the Lipschitz condition. Suppose W, W’ differ only on B;; — B; =
Aj1. Color GIW] as follows: color the vertices in W N A§,, the same as in W' N A$,,,
and then color the vertices in W N A;;; another color (which is okay since A;y; is an
independent set). Then we have a proper coloring of G[W] with at most x(G[W']) + 1
colors. So L(W) < L(W')+ 1. The other inequality similarly holds, so |L(W)— L(W")| < 1.

Now apply Theorem 7.4.1 to X; (but stated in terms of subsets, rather than functions),
to conclude | X; 11 — X;| <1 for 0 <7 < 1000.

Let u = E[x(H)]; by the lemma p > 500. By Azuma’s inequality with m = 1000 and
A= \/Ea

P[x(H)) < 400] < P[x(H) — p < —100]
= P[Xi000 — Xo < —V10v 1000]

_ /102
= e 2
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Problem 4 (7.3)

Let ¢ = 55. Let u = u(n,e) be the least integer so that P(x(G) < u) > e. Define Z(G) to

be the maximal size of a set of vertices for which the induced graph can be u-colored, and let
Y =n— Z. Note Z (and hence Y') satisfies the vertex Lipschitz condition since if we add a
vertex, Z either stays the same or increases by 1. Let u = E[Y] and use Azuma’s inequality
on the vertex exposure martingale to get

Let A = +v/—21ne so this becomes

PY<pu—-XAn-1)<e
PY>pu—XAn—-1)<e.

Now P(Y =0) = P(Z =n) = P(x(G) < u) > ¢ so the first inequality forces pn < A\y/n — 1.
The second inequality then gives

PY >2\/n) < PY >pu+A/n—1)<e.

In other words, there is probability at least 1 — ¢ that there is a u-coloring of all but at most
2\y/n vertices. Call these set of uncolored vertices U.

Since x(G) ~ TTog;n Almost surely, there exists ¢ so that P (X(G) < l(fg"ﬂ) > 1—¢ for all

n > 1. Assuming |U| < 2\/n, applying this to G[U] we get that

l—e<P (X(G[U]) = %)

B 2 \/n
=P (X<G[UD = log(2\) + %log n)

<o)

~ logn

<P (X(G[U])

for some appropriate constant .

Given |U| < 2A\y/n, with probability at least 1 — &, G[U] can be colored with at most
fllﬁ further colors, giving a coloring of G’ with at most u + fllﬁ colors. By minimality of u,
ogn = o ogn
there is probability at least 1 — e that u colors are needed for G. Hence

dvn

logn

P(ugx(G)Su—l— )21—362.99
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