18.997 Probabilistic Method Problem Set #3

Holden Lee
3/22/11

Warning: Proof of lemma 7.2 is incorrect because there could be vertices of P that are
not vertices of the P; ;(¢).

Problem 1 (3.1, R(k,k))

Lemma 1.1:

Proof. By integral estimation,
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For k > 3, we have 1 — % < a < 1, and % = o(1). Since % < 2 = o(1) as well,
2% 25

R(k, k) = (1 - o(1))525.

Problem 2 (3.2, R(4,k))

Consider a complete graph with n vertices. Call the first color red and the second blue.
Color each edge in the graph red with probability p and blue with probability 1 — p. The
probability that a given set of 4 vertices forms a red K} is p(g) and the probability that a
given set of k vertices forms a blue K}, is (1 — p)(g)

Let X be the total number of red Kj’s and blue K}’s. By linearity of expectation, since
there are (Z) groups of 4 vertices and (Z) groups of k vertices.

E(X) = (Z)pG + <Z> (1-p)®.

There exists a coloring with at most E(X) red K4’s and blue K}’s. Pick a vertex from each
red K4 and blue K and delete it. We obtain a graph with at least n — E(X) vertices and
no red K, or blue Kj. This shows that for any n € N and any p € [0, 1],

R(4,k) >n — (Z)p6 - (Z) (1—p)®).

Assume k > 3. Now pick n = a (ﬁ)2 and p = , where a is to be chosen (depending

on k to make n an integer, but close to a constant). Using Lemma ,
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Fix d' € (O, {’/%), and choose a to be as close to a’ as possible, so that n is an integer. Since

2
(ﬁ) — 00, we have a — a' as k — oo.
_k_

Note the last term above goes to 0 as k — oo because mr 0 and (ﬁ)k — 0. Since

a converges to a’ as k — oo, for large k, a — §a4 is bounded below by some ¢ > 0. Hence

R(4,k) = Q((£)7).
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Problem 3 (3.3, Independent set in 3-uniform hypergraph)

Let G be a 3-uniform hypergraph with n vertices and m > % edges. Take a random subset
A by placing each vertex of G in A independently with probability p. Let X = |A|; then
E(X) = np. Let Y be the number of edges in the subgraph induced by A. The probability
that a given edge is in A is p?, since each of its vertices, independently, has probability p of
being in A. Since there are m edges, by linearity of expectation, E(Y') = mp3.

Now E(X —Y) = np — mp>. There exists a subset A such that X —Y > np — mp3. For
each edge in the subgraph induced by A, choose one of its vertices. Upon removing these
vertices, we get a set of at least X —Y > np — mp® vertices with no edges between them,
i.e. an independent set of size at least np — mp?.

1
Now take p = (3%) * (legal since m > %). Then we get an independent set of size at least

1 3 3
3 <n>§ (n)g 2n2
np—mp - =n|—| —m(;—) =

3m 3m 3V3ym

Problem 4 (3.4, Fven directed cycle)

We show that in fact, the statement holds when each outdegree is at least log, n—alog, log, n
where « € [0, 3).

Lemma 4.1: Let GG be a directed graph, whose vertices are colored in two colors such that
for every vertex v, there exists a vertex w such that there is an edge from v to w, and w is
colored oppositely from v. Then G has a directed even cycle.

Proof. Choose any vertex v;. Once vy is chosen, choose v;1 to be adjacent to vy along an
outgoing edge, of the opposite color as vy. At some point, a vertex will be repeated. Say

that the first repeated vertex is vi, and vy, = v;, j < k. Then vj,vj41,...,v; is a simple
cycle, since vy, is the first repeated vertex. Since the colors of vertices in the cycle alternate,
it must have even length. O

The following is Corollary 3.5.2 in the text.

Theorem 4.2:
d
_ d
m(d) = Q (2 <_lnd) ) :

In other words, there exists C' such that for every d > 2, any d-uniform hypergraph with at
most €24 (ﬁ)2 edges can be colored with two colors, so that no edge is monochromatic.

[NIES

We will only need the weaker bound

/ 1
m(d) = Q <2dd“> , for any o' € {O, 5) .

Given a directed graph G all of whose vertices have outdegree at least 6 = log,n —
alog, log, n, for each vertex v let S, be a set of vertices consisting of v and [§] — 1 vertices
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adjacent along an outgoing edge. Choose o/ so that a < o < % Take C' such that

m(d) > C24d* for d > 2. Let D be a positive constant less than 1. For large enough n,

m([4]) > €21 [5]*
> 0206
= Cn(logyn)~*(logy n — alog, log, n)*
> C'n(logy n)~*D(log, n)
= CDn(logyn)® = > n.
Consider the [d]-uniform hypergraph whose vertices are the vertices of G and whose edges
are the n sets S,. By the above calculations, (for large enough n) there exists a coloring

so that none of the S, are monochoromatic, i.e. so that each vertex leads to a vertex of a
different color. By the lemma, G' has an even cycle.

Problem 5 (4.1, P(X =0))
Let pr = P(X = k). By the Cauchy-Schwarz inequality,

() = (5 (5e)

Note the k = 0 terms for kp, and k%p; are 0.) We rewrite this as
( p p

E(X)* < (1 - P(X = 0))E(X?)
= P(X =0)E(X?) <E(X? —E(X)?
— P(X =0)E(X?) < Var(X)
Var(X)
P(X=0) <
— P05
Problem 6 (4.2)
We show the inequality with ¢ = ‘/52_2.
Lemma 6.1: Let aq,...,a; be any real numbers, and 1, ..., &, independent random vari-

ables taking the values —1 and 1 each with probability % Let X = gia1 + -+ + epay.
Then

Var(X) =a +---+a
and

P(X[<1)>1—(af+---+a}).

Proof. Let X; = g;a;. Note Var(X;) = E((g;a;)*) = a?. Since the X; are independent, we
have
Var(X) = Var(X;) + - -+ + Var(Xy) = a} + - -+ + aj.
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Clearly, E(X;) = 0 so E(X) = 0. By Chebyshev’s inequality with A\ = ——-—— and

Vit +ad
Va3 + -+ ai, we get

g =
1
P(IX] > 1) = P(X —E(X)| > Ao) < 55 = ai + - +aj.
Since P(|X| <1) > 1— P(]X| > 1), this proves the second part. O

Let A = /5 — 2. Note % = % and ¢ = % Consider two cases.
1. There exists a; with a? > \. Without loss of generality, a? > A. Then by the lemma,
P(legag + -+ +epa] <1)>1— (a5 +-+-+a2) =ai >\

Since |ai| < 1, given that |eqas + - -+ + epag| < 1, if £1 is such that £;a; has opposite
sign from esas + - - - + €rag, then we also have | X| < 1. Thus

P(|X| < 1) > P(|€QCL2+ +€kak| < 1) >

DN | —
DO >~

2. There does not exist a; with a? > \. Let k be the greatest index so that

<1+)\

ai+as+---+a; < 5

(Note k > 1since af < A < H2.) Let A = a}+---+a}. By the maximality assumption,
al+---+al+ai,, > 2 Since al,; < A, we conclude A > 152, Thus by the lemma,

P(|61a1+..~—|—5kak|S1)21—(@%—}-@34_..._1_@2):1_14'
P(legs1ar41 + - - + €nan| < 1)21_(ai+1+...+ai):14'

By symmetry,

P(gk—l—lak—i—l + -+ Enln € [07 ]-]) - P(gk-i-lak—‘,—l + -+ Enly € [_17 0]) Z

)= (1F2) () =1,
P(|X| < 1) > P(slal + -t Erag € [O 1])P(6k+1ak+1 + -+ enay € [—1,0])
+ P(e1ay + -+ -+ egag € [—1,0))P(epyrap41 + - - + €nayn € [0, 1))

(g) + P(e1ar + -+ + egag € [-1,0)) (é)
)

o]

Now, noting A € [152, 2] implies A(1 — A

> P(ejay + -+ + exray, € [0,1]

1)
= P(leja; + -+ +epag| < 1) (
A
2

> (1—A) (é) 21_8A2:

as needed.
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Problem 7 (4.3)

We need the following estimate. The proof is similar to Chebyshev’s inequality.

Lemma 7.1: Let ay,...,a, be vectors in R?, and ¢,..., &, be independently chosen to be
+1 with probability % Then

g

Proof. First we calculate E <||ZZ:1 ekak||2>. Let ar = (xg, yr). Now

n
E Eray
k=1

D i llall?
> R) < — Rz

2

E = E((51$1 + -+ 5nxn)2 + (51y1 + -+ Enyn>2)

n
E Erag
k=1

Expanding, noting that E(e;e;2;2;) = E(e;e;v:y;) = 0 for i # j (since €;e; has equal proba-
bility of being +1), the expected value equals

E(efa})+ -+ E(e2al) + E(yp) + -+ E(eys) = af+-+ad+yi+ -+ = >l
k=1

Z R) =P ngak
k=1
E (115 svanl?)
<

By Markov’s inequality,

g

2
> R?

n
E ErQg
k=1

< J22
e Ml
= 2 .

O

Lemma 7.2: Let ay,...,a, be vectors in R?, all of length at most r. Then there exist

€1,...,6n € {—1,1} so that
lerar + -+ + gnan < V2r.

Proof. For ¢ = (ey,...,&,) € {—1,1}" and ¢ # j, let P;;(c) be the (possibly degenerate)
parallelogram bounded by the 4 vertices v & a; £ a;, where v = Zk¢i7j;1§k§n g;a;. Let
P = U1§i<j§n7€€{7171}n P ;(e). Note that if ()1Q2Q3Q4 is one of these parallelograms, then
we have (02 = ()1 + 2a; for some i, and similarly for the other adjacent pairs of vertices.
We claim that P contains the origin. First we show that P is convex. Let () be a vertex
on the boundary of P, and QQ; and Q@ be edges of P, with 1 # @2 (i.e. QQ1, QY2
are edges of some P; ;(€).) As mentioned, @1 = @ £ 2a; for some i and Q)3 = @) % 2aq;
for some j, for i # j. Suppose the directed angle ZQ1QQ; is in the range [0°,180°]. Let
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Q' = Q =£ 2a; £ 2a;, where the two signs match the signs in ¢); and @2, respectively. Then
@Q1QQ-Q) is one of the parallelograms, in particular, P contains the angle ZQ1QQ5. This
shows that P has no reflex angle on the boundary. P has a well-defined outer boundary
that traces a convex polygon, and has no “holes” (because holes would cause reflex angles
as well). Hence P is convex. Since P is clearly symmetric around the origin, it must contain
the origin.

Hence we can take a parallelogram P; ;(e) containing the origin. Suppose by way of
contradiction that all its vertices Pi, Py, P, P, are at a distance greater than v/2r from
the origin O. One of the angles ZP,OP,, Z/P,OP;, Z/P;0OP,, ZP,OP; is at least 90°, say
WLOG P,OP,. Then by Pythagorean’s inequality |Pi P[> > |OP.|? + |OR|> > 2(v/2r)?
so |PPy| > 2r. But |PyP;| = 2a; for some i, and a; > r, contradiction. Thus one of
Py, Py, P;, Py is at most a distance of v/2r from O, proving the lemma. m

Back to the problem, let iy = 0, let iy be the largest integer 50 that [Jaq||*+- -+ [la;, ||* <

let iy be the largest integer so that ||a;,41]|>+- - +|[lai, || < 55, and so on. (Note ;11 > i;
[

20’

because [|a;]|* < 100 for all 4.) Suppose this divides the a; into ¢ groups. For 0 < j <t —1,
. . 1 . .

by the maximality assumption on i;41, [la;41[*> + -+ + |lai,.. [|* + lai, 41> > 55: since

i, +1]1* < 155, we conclude ||a; 41 |* + -+ - + |la;,., |* > 55. Thus we’ve divided the a; into

t groups, and in all of them except the last, the sum of the squares of the absolute values is

in the interval (5, 55]. This shows ¢ < 25.

By Lemma [7.1]
’L]+1 Z]+1 8
2
P> e >_ <18 ) fla)? < %0
k=i;+1 k=ij+1
SO
Gj+1 1
P — | > —.
D> exax| < \/_8 =10
k=ij+1

Thus the probability that sz i1 EkakH < o= foreach 0 < j <1 is at least e 2 -

Let v; = ,j*zl L1Eka. Let S be the set of € = (51, .., &n) such that [jv;|| < = for all j;
call v = )", epay the vector associated to . We say two vectors ¢, &’ are equ1valent if

(gij-‘rl) L 7€’ij+1) - j:(g'lij—l-l? cee 78;]'4,_1)

for each j. This divides S into equivalence classes, each containing 2¢ elements. Note
that the vectors associated to the 2! elements in the equivalence class of € are in the form
wovo + * + - + wy_1v,_1 where w; = +1. Since |Jv;|| < — by Lemma there exists a choice

of wy, . ..,w;_1 so that [|wovg+ -+ w101 < \/ifs = 5 (in fact, there exist two choices, by

symmetry). Hence in each equivalence class C of S, at least 2 of the 2° elements of C have
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associated vectors with absolute value at most % Thus

‘
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