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Problem 1 (1.1)

(A)
Consider a complete graph with n vertices. Call the first color red and the second blue.
Color each edge in the graph red with probability p and blue with probability 1 − p. The

probability that a given set of k vertices forms a red Kk is p(
k
2) and the probability that a

given set of t vertices forms a blue Kt is (1 − p)(
t
2). There are

(
n
k

)
groups of k vertices and(

n
t

)
groups of t vertices. Hence by the union bound the probability that there is a red Kk or

blue Kt is

P (there is a red Kk or Kt) ≤
(
n

k

)
p(

k
2) +

(
n

t

)
(1− p)(

t
2) < 1.

Hence there exists a coloring of Kn such that there is no red Kk and no blue Kt, giving
r(k, t) > n.

(B)

Suppose t ≥ 2 and n ≥ ct3/2

(ln t)3/2
, where c is a constant to be chosen. Let

p =
ln t

t− 1
=

t
2

ln t(
t
2

) .
Then (

n

4

)
p6 +

(
n

t

)
(1− p)(

t
2) ≤

(
n

4

)
p6 +

(
n

t

)
e−p(

t
2)

≤ n4

24

(
ln t

t− 1

)6

+
nt

t!
t−t/2

≤ c4

24

t6

(ln t)6

(
ln t

t− 1

)6

+
ctt3t/2

(ln t)3t/2
1

t!
t−t/2

∼ c4

24
+

ctt3t/2

(ln t)3t/2
et

tt
√

2πt
t−t/2

∼ c4

24
+

(
ce

(ln t)3/2

)t
1√
2πt

as t→∞.
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The latter term goes to 0 as t → ∞, and the left term is constant. Thus choosing c > 0 so

that c4 < 24, we find that
(
n
4

)
p6+

(
n
t

)
(1−p)(

t
2) < 1 for large n, and hence that r(4, n) ≥ ct3/2

(ln t)3/2

for sufficiently large n, as needed.

Problem 2 (1.2)

Color each vertex of H with one of the four colors, independently with probability 1
4
. Given

an edge in H, the probability that none of its n incident vertices are colored with color i is
3n

4n
(for fixed i = 1, 2, 3, or 4). Hence the probability that its vertices are colored with at most

three colors is less than 4 · 3n
4n

. (Strict inequality holds because we overcount the probability
in the cases where they are colored in at most 2 colors.) The probability that some edge has
its vertices colored with at most three colors is

P < 4 · 3n

4n
· |E| ≤ 4 · 3n

4n
· 4n−1

3n
≤ 1.

Hence there exists a coloring such that in every edge all four colors are represented.

Problem 3 (1.4)

Fix p ∈ [0, 1]. Pick randomly and independently each vertex with probability p. Let X be
the set of picked vertices. Let Y be the set in vertices in V − X with no neighbors in X,
and let X ′ = X ∪Y . Let Z be the set of vertices in V −X ′ all of whose neighbors are in X ′.
Let A = X ′ ∪ Z.

We show that A,B = V −A works—i.e. every vertex in B is adjacent to some vertex of
A and some vertex of B.

A vertex in B cannot have neighbors in Z because the vertices in Z have only vertices
in X ′ as neighbors. A vertex in B cannot only have neighbors in X ′ because then it would
be in Z instead. Hence a vertex in B cannot only have neighbors in A.

A vertex with only neighbors in B a fortiori only has neighbors in V −X, so must be in
Y , and hence is not in B. This proves our claim.

The probability that a vertex is in Y is (since there is probability 1 − p that a given
vertex is in V −X; we care about the vertex and its neighbors)

P (v ∈ Y ) = (1− p)deg(v)+1 ≤ (1− p)δ+1.

Now we estimate the probability that a vertex is in Z. Now v ∈ Z means that v ∈ B −X
and v is only adjacent to vertices in X ′ = X ∪ Y . Take any vertex w adjacent to v. Now
w ∈ X with probability p and w ∈ Y with probability (1− p)deg(w)+1 ≤ (1− p)δ+1 as above.
Hence

P (v ∈ Z) ≤ p+ (1− p)δ+1.
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Hence by linearity of expectation, for any vertex v,

E(|A|) = E(|X|) + E(|Y |) + E(|Z|)
= n(P (v ∈ X) + P (v ∈ Y ) + P (v ∈ Z))

≤ n(p+ (1− p)δ+1 + (p+ (1− p)δ+1))

= 2n(p+ (1− p)δ+1)

≤ 2n(p+ e−p(δ+1)).

Putting in p = ln(δ+1)
δ+1

, we get

E(|A|) ≤ 2n
ln(δ + 1) + 1

δ + 1
= O

(
ln δ

δ

)
.

Problem 4 (1.6)

Lemma 4.1: Let G be a tournament with n vertices. Let Sv = {v} ∪ {w|v dominates w}.
There exists a vertex v such that |Sv| > n

2
.

Proof. If we sum the outdegree of each vertex, we count all the edges once:∑
v vertex

out(v) =
n(n− 1)

2
.

Hence there exists v such that out(v) ≥ n−1
2

, and |Sv| = out(v) + 1 ≥ n+1
2

.

Suppose G has less than n = 1
2
· k2k vertices. We show that G has a dominating set of k

vertices. Suppose by way of contradiction that it does not.
Let V be the set of vertices. We pick v1 so that |Sv1| > n

2
. Now given v1, . . . , vi, (i < k−1),

let Wi = V −
⋃i
j=1 Svj . Given that

m := |Wi| <
n

2i
,

we choose vi+1 inductively as follows. Consider the induced subgraph with vertex set Wi. It
has m vertices, so by the lemma we can choose vi+1 among these vertices so that |Svi+1

∩Wi| >
m
2

. Then

|Wi+1| = |Wi − Svi+1
| < m

2
<

n

2i+1
.

Hence we can choose v1, . . . , vk so that

|Wk−1| <
n

2k−1
= k.

Since Wk−1 has less than k vertices, by assumption there exists a vertex vk such that vk
dominates Wk−1. Then {v1, . . . , vk} is a dominating set of k vertices (since

⋃k
j=1 Svj = V ), a

contradiction.
Hence a tournament with no dominating k-set contains at least 1

2
k2k vertices.
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Problem 5 (1.8)

Let W be a random infinite binary string, where each digit is equal to 0 or 1 with (inde-
pendent) probability 1

2
. For a binary string S, let l(S) denote the length of S. Then the

probability that W starts with S is 1
2l(S) . Now, the fact that no two member of F is a prefix

of another one means that the events “W starts with S” and “W starts with T ,” for distinct
S, T ∈ F , are disjoint. Hence the probability that W starts with some string in F is

P (W starts with some S ∈ F ) =
∑
S∈F

P (W starts with S ∈ F )

=
∑
S∈F

1

2l(S)

=
∞∑
i=1

∑
S∈F, l(S)=i

1

2i

=
∞∑
i=1

Ni

2i
.

Since this is a probability, it is at most 1, as needed.

Problem 6 (1.10)

Fix l with 1 ≤ l ≤ n. Take a permutation of the rows at random, with each permutation
having 1

n!
probability of being chosen. Fix a column C; take a subset S of numbers from that

column with l elements. The probability that those numbers are in order down the column
in the permuted matrix is 1

l!
since all orderings of those numbers are equally likely. There

are
(
n
l

)
subsets of l numbers, so

P (C has a increasing sequence of length l) ≤
(
n

l

)
1

l!
.

There are n columns, so

P (Some column has a increasing sequence of length l) ≤
(
n

l

)
n

l!
.

If this is less than 1, then there exists a permutation with no column containing an increasing
sequence of length l.

18.997 Probabilistic Method PS # 1



Problem 6 5

Let l = dc
√
ne where c > e. Note, using Stirling’s formula for n→∞,(
n

l

)
n

l!
=

n!n

l!2(n− l)!

= Θ

 √
2πn

(
n
e

)n
n2

2πc
√
n
(
c2n
e2

)c√n ·√2π(n− c
√
n)
(
n−c
√
n

e

)n−c√n


= Θ

(
nn−c

√
n+2

(n− c
√
n)n−c

√
n+ 1

2

ec
√
n

c1+2c
√
n

)

= Θ

[( n

n− c
√
n

)√n−c
· e

c

c2c

]√n
n3/2



= Θ


 ecn

3/2√
n

c2c
(

1− c√
n

)√n−c

√
n
 .

Note in the second line we used (n− l)! = (n− l + 1)!/(n− l + 1), which is asymptotically
at least Stirling’s formula for n− c

√
n, divided by n.

Now note

lim
n→∞

(
1− c√

n

)√n−c
= lim

x→∞

(
1− c

x

)x (
1− c

x

)−c
= e−c

and

lim
n→∞

n
3/2√

n = lim
x→∞

x
3
x = elimx→∞

3 ln x
x = e0 = 1.

Hence

lim
n→∞

ecn
3/2√

n

c2c
(

1− c√
n

)√n−c =
(e
c

)2c
< 1.

Thus for c > e,
(
n
l

)
n
l!
→ 0 as n→∞. We can find L so that

(
n
l

)
n
l!
< 1 whenever n > L, so

P (Some column has a increasing sequence of length l =
⌈
c
√
n
⌉
) < 1 (1)

for n > L. Now choose a larger value c′ instead of c as necessary so that this holds for all n,
for example, take c′ = min(c,

√
L + 1) (so that for n ≤ L, the probability above is trivially

0). Then there must exist a permutation so that no column has an increasing sequence of
length l ≥ c′

√
n.
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