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Problem 1 (6.1)

Note Q equals the probability that in a random subgraph H of G obtained by picking each
edge of G with probability 1

2
, that both H and G\H are connected, where G\H consists of

the vertices of G and the edges of G not in H. (Just associate one color with “being in H”
and the other color with “not being in H.”)

Note “H connected” is a monotone increasing graph property and “G\H connected” is
a monotone decreasing graph property (with respect to H), because deleting an edge in H
corresponds to adding an edge in G\H. Thus by Theorem 6.3.2 applied to the set of edges
of G, we get that

P (H connected and G\H connected) ≤ P (H connected)P (G\H connected)

= P (H connected)2.

The last follows from the fact that the distribution for H and G\H is the same, since H is
equally likely to be any subgraph H0 of G, and in particular, the probability that H = H0

is the same as the probability that H = G\H0.
Thus Q ≤ P 2.

Problem 2 (6.3)

Note for any vertex v, “v has degree at most k−1” is a monotone decreasing graph property.
Label the vertices v1, . . . , v2k. By repeated application of 6.3.3, (basically an induction;

in the induction step noting that if P1 and P2 are monotone decreasing then so it P1 ∧ P2),

P (v1, . . . , v2k all have degree ≤ k − 1) ≥
2k∏
i=1

P (v1 has degree ≤ k − 1) =

(
1

2

)2k

=
1

4k
.

The equality come from the fact that there are 2k − 1 edges coming out of v, each chosen
independently with probability 1

2
, so the degree of v gives a binomial distribution symmetric

around 2k−1
2

. In particular, it is as likely to have degree at most k − 1 as degree at least k,
i.e. both probabilities are 1

2
.
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Problem 3 (7.2)

Lemma 3.1:
E[χ(H)] ≥ 500.

Proof. We show that given U ⊆ V , χ(G[U ])+χ(G[U c]) ≥ 1000. Indeed, take proper colorings
of G[U ] and G[U c] with χ(G[U ]) and χ(G[U c]) different colors, such that the colors used in
U are different from any color used in U c. This gives a proper coloring of G, since the only
edges in G neither in G[U ] nor G[U c] are those between U and U c, which will be between
different colors. Since χ(G) = 1000, there must be at least 1000 colors used.

Now summing χ(G[U ]) + χ(G[U c]) ≥ 1000 over all 2|V | subsets U ⊆ V and dividing by
2|V |+1 gives E[χ(H)] ≥ 500.

Color G properly with 1000 colors, and let A1, . . . , A1000 be the color classes. Note that
each Ai is an independent set.

Let Bj =
⋃j

i=1Aj; consider the gradation B0 ⊂ B1 ⊂ · · · ⊂ B1000 = V . Let L : P(V )→ Z
be the function L(W ) = χ(G[W ]). Let

Xj(U) = E[L(W )|Bj ∩W = Bj ∩ U ].

In other words, Xj(U) is the expected value of the chromatic number of G[W ], where W
is a random subset of V that matches U on A1, . . . , Aj. Note X0(U) = E[χ(H)], while
X1000(U) = χ(H). (Here H = G[U ].)

We show L satisfies the Lipschitz condition. Suppose W,W ′ differ only on Bj+1 − Bj =
Aj+1. Color G[W ] as follows: color the vertices in W ∩ Ac

j+1 the same as in W ′ ∩ Ac
j+1,

and then color the vertices in W ∩ Aj+1 another color (which is okay since Aj+1 is an
independent set). Then we have a proper coloring of G[W ] with at most χ(G[W ′]) + 1
colors. So L(W ) ≤ L(W ′) + 1. The other inequality similarly holds, so |L(W )−L(W ′)| ≤ 1.

Now apply Theorem 7.4.1 to Xi (but stated in terms of subsets, rather than functions),
to conclude |Xi+1 −Xi| ≤ 1 for 0 ≤ i < 1000.

Let µ = E[χ(H)]; by the lemma µ ≥ 500. By Azuma’s inequality with m = 1000 and
λ =
√

10,

P [χ(H)) ≤ 400] ≤ P [χ(H)− µ ≤ −100]

= P [X1000 −X0 < −
√

10
√

1000]

= e−
√

10
2

2

= e−5 <
1

100
.
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Problem 4 (7.3)

Let ε = 1
300

. Let u = u(n, ε) be the least integer so that P (χ(G) ≤ u) > ε. Define Z(G) to
be the maximal size of a set of vertices for which the induced graph can be u-colored, and let
Y = n− Z. Note Z (and hence Y ) satisfies the vertex Lipschitz condition since if we add a
vertex, Z either stays the same or increases by 1. Let µ = E[Y ] and use Azuma’s inequality
on the vertex exposure martingale to get

P (Y ≤ µ− λ
√
n− 1) < e−

λ2

2

P (Y ≥ µ− λ
√
n− 1) < e−

λ2

2 .

Let λ =
√
−2 ln ε so this becomes

P (Y ≤ µ− λ
√
n− 1) < ε

P (Y ≥ µ− λ
√
n− 1) < ε.

Now P (Y = 0) = P (Z = n) = P (χ(G) ≤ u) > ε so the first inequality forces µ ≤ λ
√
n− 1.

The second inequality then gives

P (Y ≥ 2λ
√
n) ≤ P (Y ≥ µ+ λ

√
n− 1) < ε.

In other words, there is probability at least 1− ε that there is a u-coloring of all but at most
2λ
√
n vertices. Call these set of uncolored vertices U .

Since χ(G) ∼ n
2 log2 n

almost surely, there exists c so that P
(
χ(G) ≤ cn

logn

)
≥ 1− ε for all

n > 1. Assuming |U | ≤ 2λ
√
n, applying this to G[U ] we get that

1− ε ≤ P

(
χ(G[U ]) ≤ c(2λ

√
n)

log(2λ
√
n)

)
= P

(
χ(G[U ]) ≤ c2λ

√
n

log(2λ) + 1
2

log n

)
≤ P

(
χ(G[U ]) ≤ c′

√
n

log n

)
for some appropriate constant c′.

Given |U | ≤ 2λ
√
n, with probability at least 1 − ε, G[U ] can be colored with at most

c′
√
n

logn
further colors, giving a coloring of G with at most u+ c′

√
n

logn
colors. By minimality of u,

there is probability at least 1− ε that u colors are needed for G. Hence

P

(
u ≤ χ(G) ≤ u+

c′
√
n

log n

)
≥ 1− 3ε = .99
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