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Problem 1 (2.1, Hypergraph with no monochromatic edges)

Independently color each edge with one of the four colors with probability 1
4
. Given an edge

e, the probability that it is monochromatic is

P (e monochromatic) =
1

4n−1

since the probability that all its vertices are a given color is
(
1
4

)n
and there are 4 choices for

the color. Letting Xe be the indicator function for e being monochromatic and X be the
number of monochromatic edges, we have by linearity of expectation

E(X) =
∑
e∈E

E(Xe) =
∑
e∈E

P (e monochromatic) ≤ |E| 1

4n−1 = 1.

Next note that if all vertices are colored the same color, X = 4n−1 ≥ 2 > E(X). Hence there
exists a coloring so that X < E(X), i.e. X = 0, i.e. there is no monochromatic edge.

Problem 2 (2.2, Subset avoiding an equation)

We show the problem holds with c = 1
7
.

Step 1: Consider the case where A ⊆ Z\{0}.
Take p > 2 a prime so that p > 2 maxa∈A |a| and p is in the form 7k + 2. Then no two

elements of A are equal modulo p (since they are between −p
2

and p
2
). Let A′ be A considered

as a subset of Z/pZ.
Let I =

(
3
7
p, 4

7
p
)

as a subset of Z/pZ. We claim there exists m so that

|mA′ ∩ I| > 1

7
n.

Note that I consists of the k + 1 integers 3k + 1, . . . , 4k + 1. Choose the number m at
random among 1, . . . , p − 1, each with probability 1

p−1 . Since p is prime, for a ∈ A′, ma

ranges through all nonzero residues modulo p as m ranges through 1, . . . , p− 1. (Remember
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that a 6= 0.) The probability that ma ∈ I is hence k+1
7k+1

> 1
7
. Let Xa be the indicator

function for ma ∈ I, and X = |mA′ ∩ I|. Then by linearity of expectation

E(X) =
∑
a∈A′

E(Xa) =
∑
a∈A′

P (ma ∈ I) >
n

7
.

Hence there exists m so that mA′∩I > 1
7
n. Let B = {a ∈ A|ma mod p ∈ I}. If b1, b2, b3, b4 ∈

B and b1 + 2b2 = 2b3 + 2b4 then this equation holds modulo p and multiplying by m gives

mb1 + 2mb2 ≡ 2mb3 + 2mb4 (mod p).

However, mb1,mb2,mb3,mb4 mod p are all in I. Thus the left hand side is in 3I =
(
2
7
p, 5

7
p
)

while the right hand side is in 4I =
(
5
7
p, p
)
∪
[
0, 2

7
p
)
. These are disjoint sets in Z/pZ, con-

tradiction. So B is the desired set.

Step 2: Approximate reals with integers.

Theorem 2.1 (Dirichlet): Let α1, . . . , αn be real numbers and ε > 0. There exists a positive
integer N and integers mk so that |Nαk −mk| < ε. Moreover, N can be chosen arbitrarily
large.

Proof. Choose a positive integer r so that 1
r
< ε. Consider the n-tuple SN := ({Nα1}, . . . , {Nαn}).

They all fall in one of the rectangles[
t1
r
,
t1 + 1

r

)
× · · · ×

[
tn
r
,
tn + 1

r

)
where ti = 0, 1, . . . or r − 1. Hence by the Box Principle, there exist M and M ′ so that SM

and SM ′ fall in the same rectangle. Without loss of generality M > M ′. Then we can take
N = M −M ′, mk = bMαkc − bM ′αkc and find that |Nαk −mk| < 1

r
< ε.

To see we can choose N arbitrarily large, let N0 ∈ N be given, Find N ′ > 0 and m′k so
that |N ′αk −m′k| < ε

N0
. Then let N = N0αk ≥ N0 and mk = N0m

′
k.

Now given A = {a1, . . . , an} ⊆ R\{0}, let ε = 1
7

in the lemma and choose N large enough
so that N mina∈A |a| > 1 and N mina,b∈A, a 6=b |a − b| > 1; then we will have mk 6= 0 in the
lemma and mi 6= mj for i 6= j. We may replace A with NA as scaling doesn’t change whether
b1 + 2b2 = 2b3 + 2b4 holds, so we can assume |ak −mk| < 1

7
.

Now apply Step 1 to {m1, . . . ,mn} to find B′ = {mi1 , . . . ,mij} so that |B′| > n
7

and so
that

b1 + 2b2 6= 2b3 + 2b4 (1)

for any b1, b2, b3, b4 ∈ B′. Since this is an inequality in integers, the two sides must differ by
at least 1. Now take B = {ai1 , . . . , ain}. Replacing the bi in (1) with their corresponding
elements in B, we get that the new LHS differs from the old LHS by less than 3

7
, and the

new RHS differs from the old RHS by less than 4
7
. Thus equality still cannot hold, and B is

the desired set.
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Problem 3 (2.5, No monochromatic copy of H)

Let G be the graph with n vertices and t edges containing no copy of H. We show that
k copies of G suffice to cover Kn. Labeling the vertices of G and Kn with 1, . . . , n, each
permutation σ of {1, . . . , n} gives a way of embedding G into Kn. Call the imbedded graph
σ(G). For e an edge in G, let σ(e) denote the corresponding edge in σ(G).

Take k independent random permutations σ1, . . . , σk, each permutation chosen with prob-
ability 1

n!
. Given an edge e ∈ Kn and an index i,

P (e ∈ σ(G)) =
t(
n
2

)
since there are t edges in G and

(
n
2

)
edges in Kn, and for e′ ∈ G, σ(e′) has equal probability

of being any edge in Kn, and σ(e′) 6= σ(e′′) for e′ 6= e′′. Then using the the independence of
the σi and linearity of expectation,

P (e 6∈ σi(G)) = 1− t(
n
2

)
P (e 6∈ σi(G) for any i, 1 ≤ i ≤ k) =

(
1− t(

n
2

))k

E(number of edges of Kn not in any σi(G)) =
∑
e∈Kn

P (e 6∈ σi(G) for any i, 1 ≤ i ≤ k)

≤ |E(Kn)|P (e 6∈ σi(G) for any i, 1 ≤ i ≤ k)

≤
(
n

2

)(
1− t(

n
2

))k

.

Using the estimate 1− x < e−x for x 6= 0,

E(number of edges not in any σi(G)) ≤
(
n

2

)
e
− tk

(n
2)

<

(
n

2

)
e
−n2 lnn

(n
2)

<

(
n

2

)
n−2

< 1.

Hence there exists σ1, . . . , σk so that every edge of Kn is in one of the σi(G). Let Ei be the
set of edges in σi(G) not in σj(G) for j < i. Then the Ei form a partition of the edges of
Kn. Color Ei with color i. Since Ei is contained in σi(G), it does not contain a copy of H.
The resulting coloring does not give rise to a monochromatic copy of H.
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Problem 4 (2.7, Sperner’s Lemma)

Note X ≤ 1 always, since if i, j ∈ {i : {σ(1), . . . , σ(i)} ∈ F} and i < j, then

{σ(1), . . . , σ(i)} ⊂ {σ(1), . . . , σ(j)}

would be an inclusion of sets contained in F . Hence

E(X) ≤ 1. (2)

On the other hand, for each set A ∈ F , let XA be the indicator function for the event that

{σ(1), . . . , σ(|A|)} = A.

Then X =
∑

A∈F XA so by linearity of expectation,

E(X) =
∑
A∈F

E(XA)

=
∑
A∈F

P ({σ(1), . . . , σ(|A|)} = A)

=
∑
A∈F

1(
n
|A|

)
since there are

(
n
|A|

)
subsets of size |A| and {σ(1), . . . , σ(|A|)} is equally likely to be any of

those. But the maximum of
(
n
k

)
is attained when k =

⌊
n
2

⌋
. Hence

E(X) ≥ |F| 1(
n

bn2 c
) . (3)

Putting (2) and (3) together give

|F| ≤
(
n⌊
n
2

⌋).
Problem 5 (2.9, List coloring of bipartite graph)

Let A and B be the two classes in the bipartite graph. For each color that appears in some
list, either cross it out from all vertices in A, or cross it out from all vertices in B, with
probability 1

2
. For a vertex v, let S ′(v) be the list of colors remaining after this operation.

Note that

P (S ′(v) = φ) =

(
1

2

)|S(v)|
≤
(

1

2

)log2 n

≤ 1

n

because each color in S(v) has probability 1
2

of being crossed out from the list. Let Xv be
the indicator function for S ′(v) = φ and X be the number of v such that S ′(v) = φ. By
linearity of expectation,

E(X) =
∑
v∈V

E(Xv) =
∑
v∈V

P (S ′(v) = φ) ≤ |V | 1
n

= 1.
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However, if n > 2, then without loss of generality A has more than 1 vertex. Crossing
out each color from all vertices in A, we have that S ′(v) = φ for all v ∈ A, and hence
X > 1 ≥ E(X) in this case. Therefore there must exist X so that X < E(X), i.e. X = 0,
i.e. there exists a method of deletion so that every vertex still has a nonempty list.

Now color each vertex v with any color from S ′(v). For every color, it can only appear
in B or only appear in A, since it was either crossed out from all lists in A or all lists in B.
Since all edges are between A and B, this is a proper coloring.
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