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Problem 1 (4.4)

We write E(X|P ) to denote the expected value of X given that P is true.

Lemma 1.1: Let λ′ = E(X|X ≥ λ) and σ′2 = P (X < λ)E(X|X < λ)2+P (X ≥ λ)E(X|X ≥
λ)2. Then

λ ≤ λ′

σ2 ≥ σ′2.

Proof. The first statement is obvious. For the second, note that for any random variable Y ,
we have E(Y 2) ≥ E(Y )2 since Var(Y ) = E(Y 2)− E(Y )2 ≥ 0. Hence

σ2 = E(X2) = P (X < λ)E(X2|X < λ) + P (X ≥ λ)E(X2|X ≥ λ)

≥ P (X < λ)E(X|X < λ)2 + P (X ≥ λ)E(X|X ≥ λ)2 = σ′2.

Letting p = P (X ≥ λ), note that P (X < λ) = 1− p and

P (X < λ)E(X|X < λ) + P (X ≥ λ)E(X|X ≥ λ) = E(X) = 0

we get that E(X|X < λ) = − p
1−pλ

′. Hence σ′2 = (1 − p)
(

p
1−pλ

′
)2

+ pλ′2. Then by the

lemma,

p

(
1 +

(
λ

σ

)2
)
≤ p

(
1 +

(
λ′

σ′

)2
)

= p

1 +
λ′2

(1− p)
(

p
1−pλ

′
)2

+ pλ′2


= p

(
1 +

1− p
p

)
= 1.

Hence p ≤ (1 + (λ
σ
)2)−1 = σ2

σ2+λ2
, as needed.
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Problem 2 (4.5)

We use the same lemma as in the last pset.

Lemma 2.1: Let a1, . . . , an be vectors in R2, and ε1, . . . , εn be independently chosen to be
±1 with probability 1

2
. Then

P

(∥∥∥∥∥
n∑
k=1

εkak

∥∥∥∥∥ ≥ R

)
≤
∑n

k=1 ‖ak‖2

R2
.

Proof. First we calculate E
(
‖
∑n

k=1 εkak‖
2
)

. Let ak = (xk, yk). Now

E

∥∥∥∥∥
n∑
k=1

εkak

∥∥∥∥∥
2
 = E((ε1x1 + · · ·+ εnxn)2 + (ε1y1 + · · ·+ εnyn)2)

Expanding, noting that E(εiεjxixj) = E(εiεjyiyj) = 0 for i 6= j (since εiεj has equal proba-
bility of being ±1), the expected value equals

E(ε21x
2
1) + · · ·+E(ε2nx

2
n) +E(ε21y

2
1) + · · ·+E(ε2ny

2
n) = x21 + · · ·+x2n + y21 + · · ·+ y2n =

n∑
k=1

‖ak‖2.

By Markov’s inequality,

P

(∥∥∥∥∥
n∑
k=1

εkak

∥∥∥∥∥ ≥ R

)
= P

∥∥∥∥∥
n∑
k=1

εkak

∥∥∥∥∥
2

≥ R2


≤

E
(
‖
∑n

k=1 εkak‖
2
)

R2

=

∑n
k=1 ‖ak‖2

R2
.

Corollary 2.2: Let a1, . . . , an be vectors in R2, and ε1, . . . , εn be independently chosen to
be 0 or 1 with probability 1

2
. Let a = a1+···+an

2
. Then

P

(∥∥∥∥∥
(

n∑
k=1

εkak

)
− a

∥∥∥∥∥ ≥ R

)
≤
∑n

k=1 ‖ak‖2

4R2
.

Proof. Note (
n∑
k=1

εkak

)
− a =

1

2

n∑
k=1

ε′kak
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where the variables ε′k := 2εk − 1 are −1 or 1 with probability 1. By Lemma 2.1,

P

(∥∥∥∥∥
(

n∑
k=1

εkak

)
− a

∥∥∥∥∥ ≥ R

)
=

(∥∥∥∥∥
n∑
k=1

ε′kak

∥∥∥∥∥ ≥ 2R

)

≤
∑n

k=1 ‖ak‖2

4R2
.

Let c = 100. Letting ak = vk and εk be as in the corollary, and noting that ‖vk‖2 =

x2k + y2k ≤ 2
(

2n/2

c
√
n

)2
= 2n+1

c2n
,

P

(∥∥∥∥∥
(

n∑
k=1

εkvk

)
− a

∥∥∥∥∥ < R

)
≥ 1−

∑n
k=1 ‖vk‖2

4R2

≥ 1− 2n+1

4c2R2
.

Each choice of (ε1, . . . , εn) corresponds to choosing a subset of v1, . . . , vk to sum up, so the
total number s of subsets I with

∥∥(∑
i∈I ai

)
− a
∥∥ < R satisfies

s ≥ 2n
(

1− 2n+1

4c2R2

)
= 2n − 22n−1

c2R2
. (1)

Next note the number l of distinct lattice points p in S = {p : ‖p − a‖ < R} is at most
π(R +

√
2)2. Indeed, for each lattice point p = (x, y) in S associate with it the square

Sp = [x, x+ 1)× [y, y + 1). These squares are non-overlapping and contained completely in
{p : ‖p − a‖ < R +

√
2}, by the triangle inequality. The area of this region is π(R +

√
2)2,

so there are at most this many squares (each square has area 1). Assuming R ≥ 1, we have
(R+
√
2)2

R2 < 9 so
l < 9πR2 when R ≥ 1. (2)

We find R so that

9πR2 < 2n − 22n−1

c2R2
(3)

⇐⇒ 9πR4 − 2nR2 +
22n−1

c2
< 0.

Since the problem is trivially true for n ≤ 10 (as then xi, yi <
25

100
so equal 0), we may assume

n > 10. Let R =
√

2n−1

9π
; note R > 1. Now

9πR4 − 2nR2 +
22n−1

c2
=

22n−2

9π
− 22n−1

9π
+

22n−1

c2

= 22n−2
(
− 1

9π
+

2

c2

)
< 0
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since c = 100. Hence (3) holds. Combining with (1) and (2) gives s > l, i.e. there are more
subsets that give sums in S than lattice points in S. Thus there must exist two distinct sets
I ′ and J ′ so that ∑

i∈I′
vi =

∑
j∈J ′

vj.

Note I := I ′\I ′ ∩ J ′ and J := J ′\I ′ ∩ J ′ are disjoint. Subtracting
∑

i∈I′∩J ′ vi from the above
gives ∑

i∈I

vi =
∑
j∈J

vj

as needed.

Problem 3 (5.3)

First delete colors from each S(v) until they are all of size 10d. For each vertex, color it
randomly with a color from S(v), each color being chosen with probability 1

10d
and colors of

distinct vertices being independent. Let

T = {(e, c)|edge e = vw, color c ∈ S(v) ∩ S(w)}.

For (e, c) ∈ T , let Ae,c denote the event that both v and w are colored with c. Note

1. The event that the random coloring of G is proper is exactly the event
∧

(e,c)∈T Ae,c.

2. P (Ae,c) = 1
100d2

since v and w each have (independent) probability 1
10d

of being colored
with c.

3. Each Ae,c is mutually independent of all but 20d2 − 1 of the other events: Ae,c is
mutually independent of all the Ae′,c′ except those where e′ and e share a vertex.
Given that e′ = vw′ and e = vw, the number of possible (e′, c′) ∈ T is at most 10d2,
since there are 10d colors in S(v), and given c′ ∈ S(v) there are at most d neighboring
vertices w′ such that c′ ∈ S(w′). By symmetry, given that e′ = v′w then number of
possible (e′, c′) is at also most 10d2. We subtract 1 because we don’t want to count
(e, c).

By the symmetric case of the Lovász Local Lemma with p = 1
100d2

and d′ = 20d2− 1, noting

ep(d′ + 1) = e · 1

100d2
· 20d2 =

e

5
< 1,

we get that P
(∧

(e,c)∈T Ae,c

)
> 0. I.e., by item 1, there exists a proper list coloring.
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Problem 4 (5.4)

Lemma 4.1: Given a cyclic graph G with 2n vertices and n disjoint pairs of vertices
V1, . . . , Vn, we can color the graph with 2 colors such that

1. No Vi is monochromatic.

2. No three consecutive vertices in G are monochromatic.

Proof. Label the vertices of G in order: 1, 2, . . . , 2n. Consider the graph G′ whose vertices
are 1, 2, . . . , 2n and whose edges are the pairs Vi plus the pairs (1, 2), (3, 4), . . . , (2n− 1, 2n).
Call these edges of the first and second kind, respectively. Note that the edges of the first
kind are all disjoint, and likewise for edges of the second kind. Given a cycle in G′, its edges
must alternate between edges of the first and second kinds, so it must be an even cycle. G′

has no odd cycles, so is bipartite, meaning that we can color G so that neither the pairs Vi,
nor the pairs (2k − 1, 2k), are monochromatic. The latter condition gives item 2 above.

Returning to the problem, we show in fact that we can color G with 4 colors (i.e. partition
it into 4 sets) such that

1. Each color class contains exactly one vertex of each Vi.

2. No color class contains two consecutive vertices in G.

Each color class then satisfies the conditions of the problem.
First, arbitrarily split each Vi into two pairs, Vi,1∪Vi,2. Apply the lemma to get a coloring

where no Vi,j, and no triplet of consecutive vertices, is monochromatic. Two vertices of Vi
will be colored in each color, say red and blue. Let Ri be the red vertices of Vi and Bi be
the blue vertices of Vi.

Label the vertices of G with 1, . . . , 4n around the cycle. Let G′ be a graph with the same
vertices but with edges Ri and Bi; and with edges connecting adjacent vertices in G of the
same color. Call these edges of the first and second kind, respectively. Note that the edges
of the first kind are disjoint, and the edges of the second kind are disjoint since no three
consecutive vertices in G have the same color. Thus again every cycle in G′ is even, and G′

is bipartite. Call the two classes in a bipartition “light” and “dark.” So now each vertex is
assigned one of 4 colors, light red, dark red, light blue, and dark blue.

Consider Vi. It has two red vertices and two blue vertices. The red vertices are neighbor-
ing in G′ and the blue vertices are neighboring in G′, so they are assigned different shades,
and Vi has all vertices differently colored. Any adjacent vertices of the same color in the
first coloring are adjacent in G′ so assigned different shades. Thus the coloring satisfies the
required conditions.
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