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Problem 1 (9.1)

We first show the following.

Claim 1.1: There exists a c > 1 such that the following holds: For every n ≥ 1, there exists
a 3-regular bipartite graph with color classes A,B each containing n vertices, such that for
every k ≤ n

2
, every group of k vertices in either A or B is connected to at least ck vertices

in B or A, respectively.

Consider three independent random matchings between the vertices of A and B, with
each matching equally likely to be chosen. Let G be the bipartite graph with these edges.
Given a set S of k vertices in A and a set T of bckc ≤ n vertices in B, the probability that
S is only connected to vertices in T in a random matching is(bckc

k

)(
n
k

) ,

since any k-element set of B is equally likely to be the set of neighbors of A, and
(bckc

k

)
of

these sets lie in T . Hence the probability that S is only connected to vertices in T in G is((bckc
k

)(
n
k

) )3

.

By the union bound the probability that some k-subset of A has all neighbors inside some
bckc-subset of B is at most((bckc

k

)(
n
k

) )3

·
(
n

k

)(
n

bckc

)
=

(bckc
k

)3( n
bckc

)(
n
k

)2 .

Thus letting p be the probability that for some k ≤ n
2
, there exists a k-element subset of A

with at most ck neighbors in B, we get

p ≤
bn2 c∑
k=1

(bckc
k

)3( n
bckc

)(
n
k

)2 .

We bound this sum in two steps.
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Step 1: For sufficiently large n, sufficiently small c > 1,

∑
1≤k≤n

6

(bckc
k

)3( n
bckc

)(
n
k

)2 <
1

4
.

Using the approximation (n
k

)k
≤
(
n

k

)
≤
(en
k

)k
,

and letting d = bckc
k

, for c close enough to 1,(bckc
k

)3( n
bckc

)(
n
k

)2 =

(
dk

(d−1)k

)3( n
dk

)(
n
k

)2
≤
(

ed
d−1

)3(d−1)k ( en
dk

)dk(
n
k

)2k
≤

(
d2d−3e4d−3(d− 1)−3(d−1)

(
k

n

)2−d
)k

≤

(
c2c−3e4c−3(c− 1)−3(c−1)

(
k

n

)2−c
)

︸ ︷︷ ︸
b(c,k,n)

k

(since (c − 1)−(c−1) is decreasing for c > 1 close to 1). We have limc→1+ b(c, k, n) = ek
n

. So

for c close enough to 1 and k ≤ n
6
, b ≤ 1

2
. Then bk ≤

(
1
2

)k
. Hence

∑
1≤k≤n

6

(bckc
k

)3( n
bckc

)(
n
k

)2 ≤
∑

1≤k≤4

(bckc
k

)3( n
bckc

)(
n
k

)2 + e3
∑

5≤k≤n
6

(
1

2

)k

=
∑

1≤k≤4

(bckc
k

)3( n
bckc

)(
n
k

)2 +
e

24
.

It is clear that the first term goes to 0 as n→∞, so for sufficiently large n and c sufficiently
close to 1, this is at most 1

4
.

Step 2: For sufficiently large n, sufficiently small c > 1,

∑
n
6
<k≤n

2

(bckc
k

)3( n
bckc

)(
n
k

)2 <
1

4
.

We use the formula(
n

k

)
= 2n(− k

n
log2( k

n)−(1− k
n) log2(1− k

n)+o(1)) =

(
k

n

)−k (
1− k

n

)−(n−k)
2no(1), 0 < k < n.
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(Note the o(1) can be bounded independently of k, n.) Then letting d = bckc
k

and r = k
n
,(bckc

k

)3( n
bckc

)(
n
k

)2 =

(
dk
k

)3( n
dk

)(
n
k

)2
=

(
1
d

)−3rn (
1− 1

d

)−3(d−1)rn
(dr)−drn(1− dr)−n(1−dr)

r−2nr(1− r)−2n(1−r)

=

((
dd−3

(
1− 1

d

)3d−3
)−r

rr(2−d)(1− r)2(1−r)(1− dr)−(1−dr)
)n

.

Note dd−3
(
1− 1

d

)3d−3 → 1 as d → 1+. Note d can be assumed arbitrarily close to c, by
letting n be sufficiently large. As r < 1, this means we for sufficiently large n and c close to

1,
(
dd−3

(
1− 1

d

)3d−3)−r
can be made as close to 1 as needed. For the rest of the expression

rr(2−d)(1− r)2(1−r)(1−dr)−(1−dr), note that it is continuous in d and r ∈ [1
6
, 1
2
], so as d→ 1+,

it converges uniformly to the function rr(1 − r)1−r on r ∈ [1
6
, 1
2
]. This is clearly bounded

away from 1, less than 1, for r in this interval. Therefore there exists q < 1 so that for n

sufficiently large and c sufficiently close to 1,
(bckc

k )
3
( n
bckc)

(n
k)

2 ≤ qn. Then the desired sum is at

most
(
n
2
− n

6
+ 1
)
qn, which is less than 1

4
for sufficiently large n.

Taking n sufficiently large to work for steps 1 and 2, we have p < 1
2
, but by symmetry p

also equals the probability that for some k ≤ n
2
, there exists a k-element subset of B with at

most ck neighbors in A, and the probability of either one of these events happening is less
than 1. This proves the claim 1.1 for large n, say n > N .

For n ≤ N , take any three matchings of the bipartite graph so that they form a connected
graph. (In one matching match the ith vertex to the ith vertex; in another match the ith
with (i + 1)th (modulo n).) For every group of k ≤ n

2
vertices in A or B, we claim its

set of neighbors has at least k + 1 elements. Since the graph is 3-regular, the number e of
edges between A and N(A) is 3|A|, and is also at most 3|N(A)|. Hence |N(A)| ≥ |A|, with
equality only if there are no edges from N(A) to outside A. But this is impossible as we

chose a connected graph. Then the constant
N
2
+1
N
2

works in this case, and we can take the

minimum of the constants for the n < N and n ≥ N cases.

Problem 2 (9.2)

Theorem 2.1 (Corollary 9.2.5): Given G = (V,E) a (n, d, λ)-graph, for every two sets of
vertices B and C of G, where |B| = bn and |C| = cn, we have

|e(B,C)− cbdn| ≤ λ
√
bcn.

If equality holds, then |NB(v)| = bd for every v ∈ V \C and |NC(v)| = cd for every v ∈ V \B.
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Proof. This is Corollary 9.2.5. The second statement holds from symmetry and the fact that
one of the inequalities used in the proof is∑

v∈C

(|NB(v)| − bd)2 ≤
∑
v∈V

(|NB(v)| − bd)2.

For a color y, let By denote the set of vertices not adjacent to any vertex of color y.
Suppose by way of contradiction that no vertex of G has a neighbor of each of the k colors.
Then every vertex is in some By. Take z to be the color such that |Bz| is largest. Since there
are n vertices and k colors, |Bz| ≥ n

k
. Let B be a subset of Bz vertices with n

k
elements, and

C be the set of vertices of color z. We have

e(B,C) = 0.

By assumption, |C| = n
k
. Hence by the theorem above,∣∣∣∣e(B,C)− 1

k2
dn

∣∣∣∣ ≤ λ
1

k
n

e(B,C) ≥ 1

k2
dn− λ1

k
n =

n

k

(
d

k
− λ
)
≥ 0,

where we used the assumption kλ ≤ d. Equality must hold everwhere above, so by the
theorem, NC(v) = d

k
for every v 6∈ V \B. In particular, every vertex outside of B has a

neighbor of color z. Hence |Bz| = |B| = n
k
; since Bz was assumed largest among the By and⋃

By = V , we conclude |By| = n
k

for each y. By the argument above applied to each By, we
get if a vertex v is in Bz, then it is adjacent to exactly d

k
vertices of each color y 6= z, but

not adjacent to any element of color z. Thus v has degree (k − 1) d
k
, contradicting the fact

that G is d-regular.

Problem 3 (Ramsey numbers)

(i)
We use the following (proved in class):

Theorem 3.1: There exists a constant c depending on H such that if H = (A ∪B,E) is a

bipartite graph such that all vertices in B have degree at most r, then ex(n,H) ≤ cn2− 1
r .

We’re given that H is bipartite with maximum degree at most a lnn for some a. Choose
c as above, so ex(N,H) ≤ cN2− 1

a lnn . Suppose

cN2− 1
a lnn <

1

2

(
N

2

)
. (1)

Then no matter how KN is colored with two colors, one of the colors contains at least 1
2

(
N
2

)
edges. By (1) and the theorem applied to the subgraph of that color, there is a copy of H
in that color.
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Thus it suffices to show that there is N = nO(1) such that (1) holds for all n ≥ 2. (For
n = 1, trivially r(H) = 1.) Put in N = nk and rewrite 1 as follows:

cN2− 1
a lnn <

N(N − 1)

4

⇐⇒ cnk(2− 1
a lnn) <

nk(nk − 1)

4

⇐⇒ 4cn2k− k
a lnn + nk < n2k

⇐⇒ 4cn−
k

a lnn + n−k < 1.

Note

lim
n→∞

n
1

lnn = e
limn→∞ ln

(
n

1
lnn

)
= elimn→∞

1
lnn

ln(n) = e,

so if k is fixed, then

lim
n→∞

4cn−
k

a lnn + n−k = 4ce−
k
a .

Choose k′ ∈ N such that 4ce−
k′
a < 1. Then there exists L so that 4cn−

k
a lnn + n−k < 1 for all

n ≥ L. Now if n ≥ 2 is fixed, 4cn−
k

a lnn + n−k is decreasing in k and

lim
k→∞

4cn−
k

a lnn + n−k = 0.

Thus there exists k ≥ k′ such that 4cn−
k

a lnn +n−k < 1 for all n < L. For n ≥ L we also have

4cn−
k

a lnn + n−k ≤ 4cn−
k′

a lnn + n−k
′
< 1. Then N = nk satisfies (1) for all n, as needed.

(ii)
SupposeH has n vertices and average degree f(n) log2 n where f(n) = ω(1), i.e. limn→∞ f(n) =

∞. Then H has nf(n) log2 n
2

edges. Label the vertices of H from 1 to n.
Color each edge of KN red or blue with probability 1

2
. Given an ordered set of n vertices

in KN , the probability that the imbedding of H into those n vertices, following the order, is

monochromatic is 2
(
1
2

)nf(n) log2 n
2 : there are 2 colors to choose from, and each of the nf(n) log2 n

2

imbedded edges has 1
2

chance of being that color.
Since there are Nn = N(N − 1) · · · (N −n+ 1) ordered sets of n vertices, the probability

that there is some monochromatic copy of H in KN is at most

2

(
1

2

)nf(n) log2 n
2

Nn ≤ 2n−
nf(n)

2 Nn.

If N ≤ nk, then the RHS is at most

2n−
nf(n)

2
+kn = 2nn(k− f(n)

2 ).

Since f(n) → ∞, this is less than 1 for sufficiently large n. Thus if N ≤ nk, then for
sufficiently large n there exists a coloring of KN with no monochromatic copy of H, showing
r(H) = nω(1).
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