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Problem 1 (9.1)

We first show the following.

Claim 1.1: There exists a ¢ > 1 such that the following holds: For every n > 1, there exists
a 3-regular bipartite graph with color classes A, B each containing n vertices, such that for
every k < 7, every group of k vertices in either A or B is connected to at least ck vertices
in B or A, respectively.

Consider three independent random matchings between the vertices of A and B, with
each matching equally likely to be chosen. Let GG be the bipartite graph with these edges.
Given a set S of k vertices in A and a set T of |ck| < n vertices in B, the probability that
S is only connected to vertices in 7" in a random matching is

ck
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since any k-element set of B is equally likely to be the set of neighbors of A, and ( LC;J) of
these sets lie in T'. Hence the probability that S is only connected to vertices in T" in G is
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By the union bound the probability that some k-subset of A has all neighbors inside some
|ck |-subset of B is at most

4

Thus letting p be the probability that for some k < %, there exists a k-element subset of A
with at most ck neighbors in B, we get
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We bound this sum in two steps.
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Step 1: For sufficiently large n, sufficiently small ¢ > 1,
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since (¢ — 1)~V is decreasing for ¢ > 1 close to 1). We have lim,_,1+ b(c, k,n) = . So
(since ( 8 »

for ¢ close enough to 1 and k < 2, b < . Then V¥ < (%)k Hence
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It is clear that the first term goes to 0 as n — oo, so for sufficiently large n and ¢ sufficiently
close to 1, this is at most %.

Step 2: For sufficiently large n, sufficiently small ¢ > 1,
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We use the formula

—k —(n—k)
(Z):gn<:1og2<1:><1:z>log2<1:>+o<n>:(ﬁ) (1_5) o) 0 <k <.
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Note the o(1) can be bounded independently of k,n.) Then letting d = Lk and r = Ly
k n
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Note d?—3 (1 — é — 1l as d — 17. Note d can be assumed arbitrarily close to ¢, by

letting n be sufficiently large. As r < 1, this means we for sufficiently large n and ¢ close to
1, (dd*S (1 — é)‘gd_g) can be made as close to 1 as needed. For the rest of the expression

=4 (1 —7)21=7)(1 — dr)~(=9)  note that it is continuous in d and r € [6, sl soasd— 17,
it converges uniformly to the functlon r"(1—7r)""" on r € [1,4]. This is clearly bounded
away from 1, less than 1, for r in this interval. Therefore there exists ¢ < 1 so that for n
(5" (5)
c. S qn
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most (— -5t 1) q", which is less than for sufficiently large n.

sufficiently large and ¢ sufficiently close to 1, . Then the desired sum is at

Taking n sufficiently large to work for steps 1 and 2, we have p < , but by symmetry p
also equals the probability that for some k < 7, there exists a k- element subset of B with at
most ck neighbors in A, and the probability of either one of these events happening is less
than 1. This proves the claim 1.1} for large n, say n > N.

For n < N, take any three matchings of the bipartite graph so that they form a connected

graph. (In one matching match the ith vertex to the ith vertex; in another match the ith

with (¢ + 1)th (modulo n).) For every group of £ < % vertices in A or B, we claim its

set of neighbors has at least k + 1 elements. Since the graph is 3-regular, the number e of
edges between A and N(A) is 3|A|, and is also at most 3|N(A)|. Hence |[N(A)| > |A|, with

equality only if there are no edges from N(A) to outside A. But this is impossible as we
N

7
minimum of the constants for the n < N and n > N cases.

Problem 2 (9.2)

Theorem 2.1 (Corollary 9.2.5): Given G = (V, E) a (n,d, \)-graph, for every two sets of
vertices B and C' of G, where |B| = bn and |C| = ¢n, we have

le(B,C) — cbdn| < M\Wben.

If equality holds, then |[Ng(v)| = bd for every v € V\C and | N (v)| = cd for every v € V\B.
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Proof. This is Corollary 9.2.5. The second statement holds from symmetry and the fact that
one of the inequalities used in the proof is

> (INs(v)| = bd)* < ) (INs(v)| - bd)*.

vel VeV

]

For a color y, let B, denote the set of vertices not adjacent to any vertex of color y.
Suppose by way of contradiction that no vertex of G has a neighbor of each of the k colors.
Then every vertex is in some B,,. Take z to be the color such that | B,| is largest. Since there
are n vertices and k colors, |B,| > 7. Let B be a subset of B, vertices with 7 elements, and
C be the set of vertices of color z. We have

e(B,C)=0.

By assumption, |C| = . Hence by the theorem above,

1
< A-n

1
e(B,C) — —dn ?

k2

e(B,C) > %dn—)\%n: % (g —)\> >0,
where we used the assumption kA < d. Equality must hold everwhere above, so by the
theorem, N¢(v) = % for every v ¢ V\B. In particular, every vertex outside of B has a
neighbor of color z. Hence |B.| = |B| = }; since B, was assumed largest among the B, and
U B, =V, we conclude |B,| = 7 for each y. By the argument above applied to each B,, we
get if a vertex v is in B,, then it is adjacent to exactly % vertices of each color y # z, but
not adjacent to any element of color z. Thus v has degree (k — 1)%, contradicting the fact
that G is d-regular.

Problem 3 (Ramsey numbers)
(i)
We use the following (proved in class):

Theorem 3.1: There exists a constant ¢ depending on H such that if H = (AU B, E) is a
bipartite graph such that all vertices in B have degree at most r, then ex(n, H) < en? v

We're given that H is bipartite with maximum degree at most a Inn for some a. Choose
1
c as above, so ex(N, H) < ¢cN?~aw=. Suppose

1/N
N2=atm < - . 1
NP 2<2) W)

Then no matter how K is colored with two colors, one of the colors contains at least %(g )
edges. By and the theorem applied to the subgraph of that color, there is a copy of H
in that color.
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Thus it suffices to show that there is N = n°® such that (1)) holds for all n > 2. (For
n =1, trivially r(H) = 1.) Put in N = n* and rewrite [1] as follows:
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Choose k' € N such that dce™ = < 1.k Then there exists L so that 4en~atan +nF <1 for all
n > L. Now if n > 2 is fixed, 4cn~amn + n~* is decreasing in k and

) _ k. _
lim 4cn " atn +n % = 0.
k—o0

Thus there exists k > k' such that den~winw +n* < 1foralln < L. For n > L we also have
den~wmw +nk < den~aw +n~% < 1. Then N = n* satisfies for all n, as needed.

(i)
Suppose H has n vertices and average degree f(n)log, n where f(n) = w(1), i.e. lim, , f(n) =
oo. Then H has w edges. Label the vertices of H from 1 to n.

Color each edge of Ky red or blue with probability % Given an ordered set of n vertices
in Ky, the probability that the imbedding of H into those n vertices, following the order, is

nf(n)logg n
monochromatic is 2 (%) 2 there are 2 colors to choose from, and each of the
imbedded edges has % chance of being that color.
Since there are N* = N(N —1)--- (N —n+1) ordered sets of n vertices, the probability

that there is some monochromatic copy of H in Ky is at most

nf(n)logy n
2

1 nf(n)2log2n
2 <§) N2 < on " N,
If N < nF, then the RHS is at most

2n~

Since f(n) — oo, this is less than 1 for sufficiently large n. Thus if N < n*, then for
sufficiently large n there exists a coloring of Ky with no monochromatic copy of H, showing
r(H) = ne®),
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