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 Linear Algebra 
 

1 Vector Spaces 
1-1 Vector Spaces 

 
A vector space (or linear space) V over a field F is a set on which the operations addition 

(+) and scalar multiplication, are defined so that for all         and all      , 

0.     and    are unique elements in V. Closure 

1.         Commutativity of Addition 

2.                 Associativity of Addition 

3. There exists     such that for every          . Existence of Additive 
Identity (Zero Vector) 

4. There exists an element –   such that         . Existence of Additive 
Inverse 

5.      Multiplicative Identity 

6.             Associativity of Scalar 
Multiplication 

7.              Left Distributive Property 

8.              Right Distributive Property 

 
Elements of F, V are scalars, vectors, respectively. F can be        , etc. 
 
Examples: 

   n-tuples with entries from F 

   sequences with entries from F 

        or      mxn matrices with entries from F 

       functions from set S to F 

             polynomials with coefficients from F 

          continuous functions on              
 

Cancellation Law for Vector Addition: If         and        , then    . 
Corollary: 0 and -x are unique. 
 

For all        , 

      

      

                   
 

1-2 Subspaces 
 
A subset W of V over F is a subspace of V if W is a vector space over F with the operations 
of addition and scalar multiplication defined on V. 
 

    is a subspace of V if and only if 

1.       whenever        . 
2.      whenever        . 

A subspace must contain 0. 



 
Any intersection of subspaces of V is a subspace of V. 
 
If S1, S2 are nonempty subsets of V, their sum is                      . 
V is the direct sum of W1 and W2 (       ) if W1 and W2 are subspaces of V such 
that           and        . Then each element in V can be written uniquely as 

      where            .       are complementary. 
 
              is the smallest subspace of V containing W1 and W2, i.e. any subspace 

containing W1 and W2 contains      . 
 
For a subspace W of V,               is the coset of W containing v. 

           iff        . 

 The collection of cosets               is called the quotient (factor) space 
of V modulo W. It is a vector space with the operations 

o                         

o             
 

1-3 Linear Combinations and Dependence 
 
A vector     is a linear combination of vectors of     if there exist a finite number of 

vectors             and scalars             such that  
             . 

v is a linear combination of           . 
 
The span of S, span(S), is the set consisting of all linear combinations of the vectors in S. 

By definition,            . S generates (spans) V if span(S)=V. 
 
The span of S is the smallest subspace containing S, i.e. any subspace of V containing S 
contains span(S). 
 
A subset     is linearly (in)dependent if there (do not) exist a finite number of distinct 

vectors             and scalars          , not all 0, such that 

             . 
 
Let S be a linearly independent subset of V. For             is linearly dependent iff 
         . 
 

1-4 Bases and Dimension 
 
A (ordered) basis β for V is a (ordered) linearly independent subset of V that generates V. 

Ex.                                      is the standard ordered basis for   . 
 

A subset β of V is a basis for V iff each     can be uniquely expressed as a linear 
combination of vectors of β. 
 
Any finite spanning set S for V can be reduced to a basis for V (i.e. some subset of S is a 
basis). 
 
Replacement Theorem: (Steinitz) Suppose V is generated by a set G with n vectors, and let 

L be a linearly independent subset of V with m vectors. Then     and there exists a 



subset H of G containing     vectors such that     generates V. 
Pf. Induct on m. Use induction hypothesis for         ; remove a    and replace by     . 
 
Corollaries: 

 If V has a finite basis, every basis for V contains the same number of vectors. The 
unique number of vectors in each basis is the dimension of V (dim(V)). 

 Suppose dim(V)=n. Any finite generating set/ linearly independent subset contains 
≥n/≤n elements, can be reduced/ extended to a basis, and if the set contains n 
elements, it is a basis. 

 
Subsets of V, dim(V)=n 

 
Let W be a subspace of a finite-dimensional vector space V. Then dim(W)≤dim(V). If 
dim(W)=dim(V), then W=V. 
 
                                       
 
                        
The dimension of V/W is called the codimension of V in W. 
 

1-5 Infinite-Dimensional Vector Spaces 
 
Let   be a family of sets. A member M of   is maximal with respect to set inclusion if M is 

contained in no member of   other than M. (  is partially ordered by  .) 
A collection of sets   is a chain (nest, tower) if for each A, B in  , either     or    . (  

is totally ordered by  .) 
 

Maximal Principle: [equivalent to Axiom of Choice] If for each chain    , there exists a 

member of   containing each member of  , then   contains a maximal member. 
 
A maximal linearly independent subset of     is a subset B of S satisfying 

(a) B is linearly independent. 
(b) The only linearly independent subset of S containing B is B. 

Any basis is a maximal linearly independent subset, and a maximal linearly independent 

Basis (n elements)

Generating 
Sets (≥n 

elements)

Linearly 
Independent 

Sets (≤n 
elements)



subset of a generating set is a basis for V. 
 
Let S be a linearly independent subset of V. There exists a maximal linearly independent 
subset (basis) of V that contains S. Hence, every vector space has a basis. 
Pf.   = linearly independent subsets of V. For a chain  , take the union of sets in  , and 
apply the Maximal Principle. 
 
Every basis for a vector space has the same cardinality. 
 

Suppose        , S1 is linearly independent and S2 generates V. Then there exists a 
basis such that        . 
 

Let β be a basis for V, and S a linearly independent subset of V. There exists      so 

     is a basis for V. 
 

1-6 Modules 
 

A left/right R-module   /   over the ring R is an abelian group (M,+) with addition and 

scalar multiplication (      or      ) defined so that for all       and      , 

 Left Right 

1. Distributive                           

2. Distributive                           

3. Associative                         
4. Identity           

 
Modules are generalizations of vector spaces. All results for vector spaces hold except 
ones depending on division (existence of inverse in R). Again, a basis is a linearly 
independent set that generates the module. Note that if elements are linearly independent, 
it is not necessary that one element is a linear combination of the others, and bases do not 
always exist. 
 
A free module with n generators has a basis with n elements. V is finitely generated if it 
contains a finite subset spanning V. The rank is the size of the smallest generating set. 
 
Every basis for V (if it exists) contains the same number of elements. 
 

1-7 Algebras 
 
A linear algebra over a field F is a vector space   over F with multiplication of vectors 

defined so that for all            , 

1. Associative             

2. Distributive                           

3.                    
If there is an element     so that        , then 1 is the identity element.   is 

commutative if      . 
Polynomials made from vectors (with multiplication defined as above), linear 

transformations, and     matrices (see Chapters 2-3) all form linear algebras. 
 

  



2 Matrices 
 

2-1 Matrices 
 
A     matrix has m rows and n columns arranged filled with entries from a field F (or ring 
R).            denotes the entry in the ith column and jth row of A. Addition and scalar 

multiplication is defined component-wise: 
                

            

The     matrix of all zeros is denoted    or just O. 
 

2-2 Matrix Multiplication and Inverses 
 
Matrix product: 

Let A be a     and B be a     matrix. The product AB is the     matrix with entries 

              

 

   

             

Interpretation of the product AB: 
1. Row picture: Each row of A multiplies the whole matrix B. 
2. Column picture: A is multiplied by each column of B. Each column of AB is a linear 

combination of the columns of A, with the coefficients of the linear combination being 
the entries in the column of B. 

3. Row-column picture: (AB)ij is the dot product of row I of A and column j of B. 
4. Column-row picture: Corresponding columns of A multiply corresponding rows of B 

and add to AB. 
Block multiplication: Matrices can be divided into a rectangular grid of smaller matrices, or 
blocks. If the cuts between columns of A match the cuts between rows of B, then you can 
multiply the matrices by replacing the entries in the product formula with blocks (entry i,j is 
replaced with block i,j, blocks being labeled the same way as entries). 
 
The identity matrix In is a nxn square matrix with ones down the diagonal, i.e. 

            
        
        

  

 

A is invertible if there exists a matrix A-1 such that            . The inverse is unique, 
and for square matrices, any inverse on one side is also an inverse on the other side. 
 
Properties of Matrix Multiplication (A is mxn): 

1.              Left distributive 

2.              Right distributive 

3.           Left/ right identity 

4.             Associative 

5.                    

6.               (A, B invertible)  

     : Not commutative 
Note that any 2 polynomials of the same matrix commute. 
 

A nxn matrix A is either a zero divisor (there exist nonzero matrices B, C such that    
    ) or it is invertible. 



 
The Kronecker (tensor) product of pxq matrix A and rxs matrix B is 

     

         

   
         

 . If v and w are column vectors with q, s elements, 

                    . Kronecker products give nice eigenvalue relations- for 
example the eigenvalues are the products of those of A and B. [AMM 107-6, 6/2000] 
 

2-3 Other Operations, Classification 
 

The transpose of a mxn matrix A, At, is defined by           . 

The adjoint or Hermitian of a matrix A is its conjugate transpose: 

          
Name Definition Properties 

Symmetric       

Self-adjoint/ Hermitian           is real for any complex z. 
Skew-symmetric        

Skew-self-adjoint/ Skew-Hermitian        

Upper triangular                

Lower triangular                

Diagonal                

 
Properties of Transpose/ Adjoint 

1.                       (For more matrices, reverse the order.) 
2.               

3.                     ,                      
4.     is symmetric. 

 
The trace of a     matrix A is the sum of its diagonal entries: 

          

 

   

 

The trace is a linear operator. 
 
The direct sum     of     and     matrices A and B is the             

(augmented) matrix C given by    
  
  

 , 

     

               

                        

       

  

 
  



3 Linear Transformations 
 

3-1 Linear Transformations 
 
For vector spaces V and W over F, a function       is a linear transformation 

(homomorphism) if for all         and      , 
(a)                  
(b)             
 
It suffices to verify                   . 
       is automatic. 

       

 

   

          

 

   

 

 
Ex. Rotation, reflection, projection, rescaling, derivative, definite integral 
Identity Iv and zero transformation T0 
 
An endomorphism (or linear operator) is a linear transformation from V into itself. 
 
T is invertible if it has an inverse T-1 satisfying                . If T is invertible, V 
and W have the same dimension (possibly infinite). 
Vector spaces V and W are isomorphic if there exists a invertible linear transformation (an 
isomorphism, or automorphism if V=W)      . If V and W are finite-dimensional, they 

are isomorphic iff dim(V)=dim(W). V is isomorphic to        . 
 
The space of all linear transformations                 from V to W is a vector space 
over F. The inverse of a linear transformation and the composite of two linear 
transformations are both linear transformations. 
 
The null space or kernel is the set of all vectors x in V such that T(x)=0. 

                  
The range or image is the subset of W consisting of all images of vectors in V. 

                
Both are subspaces. nullity(T) and rank(T) denote the dimensions of N(T) and R(T), 
respectively. 
 
If               is a basis for V, then                                . 
 
Dimension Theorem: If V is finite-dimensional, nullity(T)+rank(T)=dim(V). 
Pf. Extend a basis for N(T) to a basis for V by adding            . Show                   
is a basis for R(T) by using linearity and linear independence. 
 
T is one-to-one iff N(T)={0}. 
 
If V and W have equal finite dimension, the following are equivalent: 
(a) T is one-to-one. 
(b) T is onto. 
(c) rank(T)=dim(V) 
(a) and (b) imply T is invertible. 
 



A linear transformation is uniquely determined by its action on a basis, i.e., if   
            is a basis for V and            , there exists a unique linear 

transformation       such that                  . 
 
A subspace W of V is T-invariant if        for every    . TW denotes the restriction of 
T on W. 
 

3-2 Matrix Representation of Linear Transformation 
 
Matrix Representation: 

Let               be an ordered basis for V and               be an ordered basis 
for W. For    , define           so that 

       

 

   

 

The coordinate vector of x relative to β is 

            

  

  

 
  

  

Note ϕβ is an isomorphism from V to Fn. The ith coordinate is         . 

Suppose       is a linear transformation satisfying 

                      

 

   

  

The matrix representation of T in β and γ is       
    

     with entries as defined 

above. (i.e. load the coordinate representation of       into the jth column of A.) 

 
Properties of Linear Transformations (Composition) 

1.                  Left distributive 

2.                  Right distributive 

3.           Left/ right identity 

4.             Associative (holds for any functions) 

5.                    

6.               (T, U invertible)  

 
Linear transformations [over finite-dimensional vector spaces] can be viewed as left-
multiplication by matrices, so linear transformations under composition and their 
corresponding matrices under multiplication follow the same laws. This is a 
motivating factor for the definition of matrix multiplication. Facts about matrices, such 
as associativity of matrix multiplication, can be proved can be proved using linear 
transformations, or vice versa. 
 
Note: From now on, definitions applying to matrices can also apply to the linear 
transformations they are associated with, and vice versa. 
 

The left-multiplication transformation          is defined by          (A is a mxn 
matrix). 
 
Relationships between linear transformations and their matrices: 

1. To find the image of a vector     under T, multiply the matrix corresponding to T 



on the left:             
      i.e.          where       

 
. 

2. Let V, W be finite-dimensional vector spaces with bases β, γ. The function 

                 defined by          
 
 is an isomorphism. So, for linear 

transformations        , 

a.       
      

      
 
 

b.      
       

 
 for all scalars a. 

c.        has dimension mn. 

3. For vector spaces V, W, Z with bases α, β, γ and linear transformations       

     ,      
      

     
 
. 

4. T is invertible iff     
 
 is invertible. Then       

 
     

 
    . 

 

3-3 Change of Coordinates 
 
Let β and γ be two ordered bases for finite-dimensional vector space V. The change of 

coordinate matrix (from β-coordinates to γ-coordinates) is        
 
. Write vector j of β in 

terms of the vectors of γ, take the coefficients and load them in the jth column of Q. (This is 
so (0,…1,…0) gets transformed into the jth column.) 

1.     changes γ-coordinates into β-coordinates. 
2.               

 
Two nxn matrices are similar if there exists an invertible matrix Q such that        . 
Similarity is an equivalence relation. Similar matrices are manifestations of the same linear 
transformation in different bases. 
 

3-4 Dual Spaces 
 
A linear functional is a linear transformation from V to a field of scalars F. The dual space 

is the vector space of all linear functionals on V:          . V** is the double dual. 
 
If V has ordered basis              , then                (coordinate functions—the 
dual basis) is an ordered basis for V*, and for any     , 

          

 

   

 

 
To find the coordinate representations of the vectors of the dual basis in terms of the 
standard coordinate functions: 

1. Load the coordinate representations of the vectors in β into the columns of W. 

2. The desired representations are the rows of    . 
3. The two bases are biorthogonal. For an orthonormal basis (see section 5-5), the 

coordinate representations of the basis and dual bases are the same. 
 

Let V, W have ordered bases β, γ. For a linear transformation      , define its 
transpose (or dual)          by         . Tt is a linear transformation satisfying 

      
  

     
 
  

 

. 

 
Define         by            (input is a function, output is the value of the function at a 

fixed point), and         by        . (The input is a function; the output is a function 



evaluated at a fixed point.) If V is finite-dimensional, ψ is an isomorphism. Additionally, 
every ordered basis for V* is the dual basis for some basis for V. 
 
The annihilator of a subset S of V is a subspace of   : 

                              
 

  



4 Systems of Linear Equations 
 

4-1 Systems of Linear Equations 
 
The system of equations  

 
                

 
               

  

can be written in matrix form as Ax=b, where    

       

   
       

  and    
  

 
  

 . The 

augmented matrix is       (the entries of b placed to the right of A). 
The system is consistent if it has solution(s). It is singular if it has zero or infinitely many 
solutions. If b=0, the system is homogeneous. 
 

1. Row picture: Each equation gives a line/ plane/ hyperplane. They meet at the 
solution set. 

2. Column picture: The columns of A combine (with the coefficients       ) to produce 
b. 

 

4-2 Elimination 
 
There are three types of elementary row/ column operations: 

(1) Interchanging 2 rows/ columns 
(2) Multiplying any row/ column by a nonzero scalar 
(3) Adding any multiple of a row/ column to another row/ column 

An elementary matrix is the matrix obtained by performing an elementary operation on In. 
Any two matrices related by elementary operations are (row/column-)equivalent. 
 
Performing an elementary row/ column operation is the same as multiplying by the 
corresponding elementary matrix on the left/ right. The inverse of an elementary matrix 
is an elementary matrix of the same type. When an elementary row operation is performed 

on an augmented matrix or the equation     , the solution set to the corresponding 
system of equations does not change. 
 
Gaussian elimination- Reduce a system of equations (line up the variables, the equations 
are the rows), a matrix, or an augmented matrix by using elementary row operations. 
Forward pass 

1. Start with the first row. 
2. Excluding all rows before the current row (row j), in the leftmost nonzero column 

(column k), make the entry in the current row nonzero by switching rows as 
necessary. (Type 1 operation) The pivot di is the first nonzero in the current row, the 
row that does the elimination. [Optional: divide the current row by the pivot to make 
the entry 1. (2)] 

3. Make all numbers below the pivot zero. To make the entry aik in the ith row 0, 

subtract row j times the multiplier             from row i. This corresponds to 

multiplication by a type 3 elementary matrix    . 
4. Move on to the next row, and repeat until only zero rows remain (or rows are 

exhausted). 
Backward pass (Back-substitution) 

5. Work upward, beginning with the last nonzero row, and add multiples of each row to 



the rows above to create zeros in the pivot column. When working with equations, 
this is essentially substituting the value of the variable into earlier equations. 

6. Repeat for each preceding row except the first. 
 
A free variable is any variable corresponding to a column without a pivot. Free variables 
can be arbitrary, leading to infinitely many solutions. Express the solution in terms of free 
variables. 
If elimination produces a contradiction (in A|b, a row with only the last entry a nonzero, 
corresponding to 0=a), there is no solution. 
 
Gaussian elimination produces the reduced row echelon form of the matrix: (Forward/ 
backward pass accomplished 1, (2), 3/ 4.) 

1. Any row containing a nonzero entry precedes any zero row. 
2. The first nonzero entry in each row is 1. 
3. It occurs in a column to the right of the first nonzero entry in the preceding row. 
4. The first nonzero entry in each row is the only nonzero entry in its column. 

The reduced row echelon of a matrix is unique. 

 

4-3 Factorization 
 
Elimination = Factorization 
 
Performing Gaussian elimination on a matrix A is equivalent to multiplying A by a sequence 
of elementary row matrices. 
 
If no row exchanges are made,          , so A can be factored in the form 

       
        

where L is a lower triangular matrix with 1’s on the diagonal and U is an upper triangular 

matrix (note the factors are in opposite order). Note     and    
   differ only in the sign of 

entry (i,j), and the multipliers go directly into the entries of L. U can be factored into a 
diagonal matrix D containing the pivots and U’ an upper triangular matrix with 1’s on the 
diagonal: 

       
The first factorization corresponds to the forward pass, the second corresponds to 

completing the back substitution. If A is symmetric,      . 
 

Using     ,            can be split into two triangular systems: 
1. Solve      for c. 

2. Solve      for x. 
 
A permutation matrix P has the rows of I in any order; it switches rows. 
If row exchanges are required, doing row exchanges 

1. in advance gives      . 
2. after elimination gives         . 

 

4-4 The Complete Solution to Ax=b, the Four Subspaces 
 
The rank of a matrix A is the rank of the linear transformation LA, and the number of pivots 
after elimination. 
 



Properties: 
1. Multiplying by invertible matrices does not change the rank of a matrix, so 

elementary row and column matrices are rank-preserving. 
2. rank(At)=rank(A) 
3. Ax=b is consistent iff rank(A)=rank(A|b). 
4. Rank inequalities 

Linear transformations T, U Matrices A, B 

rank(TU) ≤ min(rank(T), rank(U)) rank(AB) ≤ min(rank(A), rank(B)) 

 
Four Fundamental Subspaces of A 

1. The row space C(AT) is the subspace generated by rows of A, i.e. it consists of all 
linear combinations of rows of A. 

a. Eliminate to find the nonzero rows. These rows are a basis for the row space. 
2. The column space C(A) is the subspace generated by columns of A. 

a. Eliminate to find the pivot columns. These columns of A (the original matrix) 
are a basis for the column space. The free columns are combinations of 
earlier columns, with the entries of F the coefficients. (See below) 

b. This gives a technique for extending a linearly independent set to a basis: Put 
the vectors in the set, then the vectors in a basis down the columns of A. 

3. The nullspace N(A) consists of all solutions to     . 
a. Finding the Nullspace (after elimination) 

i. Repeat for each free variable x: Set x=1 and all other free variables to 
0, and solve the resultant system. This gives a special solution for each 
free variable. 

ii. The special solutions found in (1) generate the nullspace. 
b. Alternatively, the nullspace matrix (containing the special solutions in its 

columns) is    
  
 

  when the row reduced echelon form is    
  
  

 . If 

columns are switched in R, corresponding rows are switched in N. 

4. The left nullspace N(AT) consists of all solutions to       or      . 
 
Fundamental Theorem of Linear Algebra (Part 1): 

Dimensions of the Four Subspaces: A is mxn, rank(A)=r (If the field is complex, replace    
by   .) 



 
The relationships between the dimensions can be shown using pivots or the dimension 
theorem. 
 
The Complete Solution to Ax=b 

1. Find the nullspace N, i.e. solve Ax=0. 
2. Find any particular solution xp to Ax=b (there may be no solution). Set free variables 

to 0. 
3. The solution set is     ; i.e. all solutions are in the form      , where    is in the 

nullspace and    is a particular solution. 

 

4-5 Inverse Matrices 
 
A is invertible iff it is square (nxn) and any one of the following is true: 

1.   has rank n, i.e.   has n pivots. 
2.      has exactly 1 solution. 
3. Its columns/ rows are a basis for   . 

 
Gauss-Jordan Elimination: If A is an invertible nxn matrix, it is possible to transform (A|In) 
into (In|A

-1) by elementary row operations. Follow the same steps as in Gaussian 
elimination, but on (A|In). If A is not invertible, then such transformation leads to a row 
whose first n entries are zeros. 
 

  

Row space       

•       

• Dimension r 

Nullspace      

•          

• Dimension n-r 

Column space      

•      

• Dimension r 

Left nullspace       

•           

• Dimension m-r 

              

              

Row rank = column rank 



5 Inner Product Spaces 
 

5-1 Inner Products 
 
An inner product on a vector space V over F (  or  ) is a function that assigns each 

ordered pair         a scalar      , such that for all         and    , 

1.                      
2.               (The inner product is linear in its first component.)1 

3.                    (Hermitian) 
4.         for    . (Positive) 

V is called an inner product space, also an Euclidean/ unitary space if F is  /  . 
The inner product is conjugate linear in the second component: 

1.                      
2.                

If             for all     then    . 
 
The standard inner product (dot product) of             and             is 

               
 

 

   

 

The standard inner product for the space of continuous complex functions H on        is 

      
 

  
               

  

 

   

 

A norm of a vector space is a real-valued function     satisfying 
1.               

2.      , equality iff    . 
3. Triangle Inequality:               

The distance between two vectors x, y is      . 
 

In an inner product space, the norm (length) of a vector is           . 
 

Cauchy-Schwarz Inequality:                
 

5-2 Orthogonality 
 
Two vectors are orthogonal (perpendicular) when their inner product is 0. A subset S is 
orthogonal if any two distinct vectors in S are orthogonal, orthonormal if additionally all 

vectors have length 1. Subspaces V and W are orthogonal if each     is orthogonal to 
each    . The orthogonal complement   (V perp) of V is the subspace containing all 

vectors orthogonal to V. (Warning:       holds when V is finite-dimensional, not 
necessarily when V is infinite-dimensional.) When an orthonormal basis is chosen, every 
inner product on finite-dimensional V is similar to the standard inner product. The 
conditions effectively determine what the inner product has to be. 
 

Pythagorean Theorem: If x and y are orthogonal,                 . 
 

                                                 
1
 In some books (like Algebra, by Artin) the inner product is linear in the second component and conjugate linear in the 

first. The standard inner product is sum of       instead. 



Fundamental Theorem of Linear Algebra (Part 2): 
The nullspace is the orthogonal complement of the row space. 
The left nullspace is the orthogonal complement of the column space. 
 

5-3 Projections 
 
Take 1: Matrix and geometric viewpoint 
The [orthogonal] projection of   onto   is 

  
     

    
  

   

   
  

   

    
  

  

The last two expressions are for (row) vectors in   , using the dot product. (Note: this 

shows that                 for 2 and 3 dimensions.) 

Let   be a finite orthogonal basis. A vector y is the sum of its projections onto the vectors of 
S: 

   
     

    
 

   

 

Pf. Write y as a linear combination and take the inner product of y with a vector in the basis; 
use orthogonality to cancel all but one term. 
As a corollary, any orthogonal subset is linearly independent. 
 

To find the projection of   onto a finite-dimensional subspace W, first find an orthonormal 
basis for W (see section 5-5),  . The projection is 

          
   

 

and the error is      .   is perpendicular to  , and   is the vector in W so that       is 
minimal. (Proof uses Pythagorean theorem) 
Bessel’s Inequality: (β a basis for a subspace) 

 
      

            , equality iff    
     

         

 

If             is an orthonormal basis, then for any linear transformation T,       
  

 

          . 

 
Alternatively: 
Let W be a subspace of    generated by the linearly independent set         . Solving 

                     , the projection of   onto W is 
                         

 

  

where P is the projection matrix. In the special case that the set is orthonormal,      
             

 

  

 

A matrix P is a projection matrix iff     . 
 
Take 2: Linear transformation viewpoint 
If         then the projection on W1 along W2 is defined by 

                                  
T is an orthogonal projection if            and           . A linear operator T is an 

orthogonal projection iff        . 



5-4 Minimal Solutions and Least Squares Approximations 
 
When      is consistent, the minimal solution is the one with least absolute value. 

1. There exists exactly one minimal solution s, and        . 
2. s is the only solution to      in      :                          . 

 
The least squares solution    makes           as small as possible. (Generally, 

     is inconsistent.) Project b onto the column space of A. 
 
To find the real function in the form              

 
    for fixed functions    that is closest to 

the points                   i.e. such that the error      
  

               
  

    is least, 

let A be the matrix with           ,    

  

 
  

 . Then      is equivalent to the system 

        . Now find the projection of   onto the columns of  , by multiplying by    and 

solving          . Here, p is the values estimated by the best-fit curve and e gives the 
errors in the estimates. 
 
Ex. Linear functions       : 

   
   
  

   

 .The equation           becomes  
    

      
   

 
 

   
   

     
 . 

A has orthogonal columns when      . To produce orthogonal columns, shift the times by 

letting             
       

 
. Then     is diagonal and   

   

 
   

      

   
 . The least 

squares line is            . 
 

 
  

      

Row space       

•       

• Dimension r 

Nullspace      

•          

• Dimension n-r 

Column space      

•      

• Dimension r 

Left nullspace       

•           

• Dimension m-r 

   

   

        
                            

 

      

     

      

  

  

  

Least squares solution 

Minimal solution to       

       

      

       



5-5 Orthogonal Bases 
 
Gram-Schmidt Orthogonalization Process: 

Let            be a linearly independent subset of V. Define             by       
and 

       
      

   
  

  

   

   

 

Then S’ is an orthogonal set having the same span as S. To make S’ orthonormal, divide 

every vector by its length. (It may be easier to subtract the projections of    on    for all 
    at step  , like in elimination.) 
 

Ex. Legendre polynomials 
 

  
  

 

 
   

 

 
          are an orthonormal basis for      

(integration from -1 to 1). 
 
Factorization A=QR 

From       , Gram-Schmidt constructs orthonormal vectors       . Then 
     

                

  
     

   

   
   

   
   

   
   

  
  

  
   

   

  

Note R is upper triangular. 
 

Suppose            is an orthonormal set in n-dimensional inner product space V. Then 
(a) S can be extended to an orthonormal basis          for V. 

(b) If W=span(S),               is an orthonormal basis for   . 

(c) Hence,        and                       . 
 

5-6 Adjoints and Orthogonal Matrices 
 
Let V be a finite-dimensional inner product space over F, and let       be a linear 
transformation. The unique vector     such that            for all     is given by 

                 

 

   

 

 

Let       be a linear transformation, and β and γ be bases for inner product spaces V, 

W. Define the adjoint of T to be the linear transformation        such that      
 

 

    
 
   . (See section 2.3) Then    is the unique (linear) function such that           

           for all         and    . 
 
A linear operator T on V is an isometry if            for all    . If V is finite-
dimensional, T is orthogonal for V real and unitary for V complex. The corresponding 
matrix representations, as well as properties of T, are described below. 
 
 
 
 



 Commutative property Inverse property Symmetry property 

Real Normal 

        

Orthogonal 

      
Symmetric 

     

Complex Normal 

        

Unitary 

      
Self-adjoint/ Hermitian 

     

Linear 
Transformation 

                  
           

              
         

(             

              

A real matrix   has orthonormal columns iff      . If   is square it is called an 
orthogonal matrix, and its inverse is its transpose. 

A complex matrix   has orthonormal columns iff      . If   is square it is a unitary 
matrix, and its inverse is its adjoint. 

If   has orthonormal columns it leaves lengths unchanged (         for every x) and 

preserves dot products (            . 

    is invertible iff A has linearly independent columns. More generally,     has the same 
rank as A. 
 

5-7 Geometry of Orthogonal Operators 
 
A rigid motion is a function       satisfying                   for all      . If V 
is finite-dimensional   is also called an isometry. Each rigid motion is the composition of a 
translation and an orthogonal operator. 
 
A (orthogonal) linear operator is a 

1. rotation (around   ) if there exists a 2-dimensional subspace     and an 

orthonormal basis           for W, and   such that 

   
  

  
    

        
         

  
  

  
 . 

and        for     . 
2. reflection (about   ) if W is a one-dimensional subspace of V such that         

for all     and        for all     . 
 
Structural Theorem for Orthogonal Operators: 

1. Let T be an orthogonal operator on finite-dimensional real inner product space V. 
There exists a collection of pairwise orthogonal T-invariant subspaces           of 
V of dimension 1 or 2 such that          . Each    

 is a rotation or 

reflection; the number of reflections is even/ odd when         /          . It is 
possible to choose the subspaces so there is 0 or 1 reflection. 

2. If A is orthogonal there exists orthogonal Q such that 

      

 
 
 
 
 
 
  

   
   

 
    

 
 
 
 
 

 where p, q are the dimensions of N(T-I), N(T+I) 

and     
         
        

 . 

Euler’s Theorem: Every orthonormal 3x3 matrix represents a rotation.  
 
Alternate method to factor QR: 

Q is a product of reflection matrices        and plane rotation matrices (Givens rotation) 



in the form (1s on diagonal. Shown are rows/ columns i, j). 

    

 
 
 
 
 
 

       

 

        

              

  
 
 
 
 

 

Multiply by     to produce 0 in the (i,j) position, as in elimination. 

                 
   

       
 

  

where the factors are reversed in the second product. 
  



6 Determinants 
 

6-1 Characterization 
 
The determinant (denoted     or        ) is a function from the set of square matrices to 
the field F, satisfying the following conditions: 

1. The determinant of the nxn identity matrix is 1, i.e.         . 
2. If two rows of A are equal, then         , i.e. the determinant is alternating. 
3. The determinant is a linear function of each row separately, i.e. it is n-linear. That is, 

if            are rows with n elements, 

   

 

 
 
 
 

  

 
    

    
    

 
   

 
 
 
 

    

 

 
 
 
 

  

 
    

 
    

 
   

 
 
 
 

       

 

 
 
 
 

  

 
    

 
    

 
   

 
 
 
 

 

These properties completely characterize the determinant. 
4. Adding a multiple of one row to another row leaves        unchanged. 

5. The determinant changes sign when two rows are exchanged. 

6. A matrix with a row of zeros has         . 
7. If A is triangular then                   is the product of diagonal entries. 
8. A is singular iff         . 
9.                       
10.    has the same determinant as A. Therefore the preceding properties are true if 

―row‖ is replaced by ―column‖. 
 

6-2 Calculation 
 

1. The Big Formula: Use n-linearity and expand everything. 

                                    

    

 

where the sum is over all    permutations of {1,…n} and         
               
               

 . 

2. Cofactor Expansion: Recursive, useful with many zeros, perhaps with induction. 
(Row) 

              

 

   

                    

 

   

 

(Column) 

              

 

   

                    

 

   

 

 where     is A with the ith row and jth column removed. 

3. Pivots: 

If the pivots are            and      , (P a permutation matrix, L is lower 
triangular, U is upper triangular) 
                       where det(P)=1/ -1 if P corresponds to an even/ odd 
permutation. 

a. Let    denote the matrix consisting of the first k rows and columns of A. If 



there are no row exchanges in elimination, 

   
       

         
 

4. By Blocks: 

a.  
  
  

         

b.  
  
  

   
  
        

               

 
Tips and Tricks 
Vandermonde determinant (look at when the determinant is 0, gives factors of polynomial) 

 

  
    

  
   

  
  

     
   

  
   

   

          
   

 

Circulant Matrix (find eigenvectors, determinant is product of eigenvalues) 

 

    

      

     

     

  
    

  
   

      
   
  

  

  

   

   

   

   

 

 

   
   

  
  

  
  

  
   

                         

   

 

   

 

                                                    
 

 
 

 

    
   

 

    
  

For a real matrix A, 

                         

If A has eigenvalues        , then 
                        

In particular, if M has rank 1, 

                 
 

6-3 Properties and Applications 
 
Cramer’s Rule: 

If A is a nxn matrix and          then      has the unique solution given by 

   
        

       
       

Where    is A with the ith column replaced by b. 
 
Inverses: 
Let C be the cofactor matrix of A. Then 

    
  

       
 

 
The cross product of              and              is 

     
   
      

      

  

a vector perpendicular to u and v (direction determined by the right-hand rule) with length 



            . 
 
Geometry: 
The area of a parallelogram with vertices sides                 is  

    

    
 . (Oriented areas 

satisfy the same properties as determinants.) 
The area of a parallelepiped with sides             ,             , and              

is          

      

      

      

  

The Jacobian used to change coordinate systems in integrals is  
 

  

  

  

  

  

  
  

  

  

  

  

  
  

  

  

  

  

  

 
 . 

 
  



7 Eigenvalues and Eigenvectors, Diagonalization 
 

7-1 Eigenvalues and Eigenvectors 

 
Let T be a linear operator (or matrix) on V. A nonzero vector     is an (right) eigenvector 
of T if there exists a scalar  , called the eigenvalue, such that        . The eigenspace 

of λ is the set of all eigenvectors corresponding to λ:                 . 
 
The characteristic polynomial of a matrix A is           . The zeros of the polynomial are 

the eigenvalues of A. For each eigenvalue solve       to find linearly independent 
eigenvalues that span the eigenspace. 
 

Multiplicity of an eigenvalue λ: 
1. Algebraic (    )- the multiplicity of the root λ in the characteristic polynomial of A. 

2. Geometric (     )- the dimension of the eigenspace of λ.                  . 

                                 . 

 
For real matrices, complex eigenvalues come in conjugate pairs. 
 
The product of the eigenvalues (counted by algebraic multiplicity) equals        . 
The sum of the eigenvalues equals the trace of A. 
 
An eigenvalue of 0 implies that A is singular. 
 
Spectral Mapping Theorem: 

Let A be a nxn matrix with eigenvalues         (not necessarily distinct, counted according 
to algebraic multiplicity), and P be a polynomial. Then the eigenvalues of      are 

             . 
 
Gerschgorin’s Disk Theorem: 
Every eigenvalue of A is strictly in a circle in the complex plane centered at some diagonal 

entry     with radius              (because                     . 

 
Perron-Frobenius Theorem: 
Any square matrix with positive entries has a unique eigenvector with positive entries (up to 
multiplication by a positive factor), and the corresponding eigenvalue has multiplicity one 
and has strictly greater absolute value than any other eigenvalue. 
Generalization: Holds for any irreducible matrix with nonnegative entries, i.e. there is no 
reordering of rows and columns that makes it block upper triangular. 
 

A left eigenvalue of A satisfies        instead. Biorthogonality says that any right 
eigenvector of A associated with λ is orthogonal to all left eigenvectors of A associated with 
eigenvalues other than λ. 
 

7-2 Invariant and T-Cyclic Subspaces 
 
The subspace                                    is the T-cyclic subspace 
generated by x. W is the smallest T-invariant subspace containing x. 

1. If W is a T-invariant subspace, the characteristic polynomial of TW divides that of T. 

2. If k=dim(W) then                       is a basis for W, called the T-cyclic basis 



generated by x. If     
     

      with     , the characteristic polynomial of TW is 

         
  

   . 

3.  If           , each    is a T-invariant subspace, and the characteristic 

polynomial of    
 is      , then the characteristic polynomial of T is       

 
   . 

 
Cayley-Hamilton Theorem: 
A satisfies its own characteristic equation: if      is the characteristic polynomial of A, then 

      . 
Pf. See http://holdenlee.wordpress.com/2010/06/01/cayley-hamilton-theorem/  

 

7-3 Triangulation 
 
A matrix is triangulable if it is similar to an upper triangular matrix. 
(Schur) A matrix is triangulable iff the characteristic polynomial splits over F. A real/ 
complex matrix A is orthogonally/ unitarily equivalent to a real/ complex upper triangular 

matrix. (i.e.        , Q is orthogonal/ unitary) 
Pf. T=LA has an eigenvalue iff T* has. Induct on dimension n. Choose an eigenvector z of 

T*, and apply the induction hypothesis to the T-invariant subspace         . 

 

7-4 Diagonalization 
 
T is diagonalizable if there exists an ordered basis   for V such that      is diagonal. A is 

diagonalizable if there exists an invertible matrix S such that         is a diagonal matrix. 
 
Let         be the eigenvalues of A. Let    be a linearly independent subset of    

 for 

     . Then     is linearly independent. (Loosely, eigenvectors corresponding to 
different eigenvalues are linearly independent.) 
 
T is diagonalizable iff both of the following are true: 

1. The characteristic polynomial of T splits (into linear factors). 
2. For each eigenvalue, the algebraic and geometric multiplicities are equal. Hence 

there are n linearly independent eigenvectors 
T is diagonalizable iff V is the direct sum of eigenspaces of T. 
 

To diagonalize A, put the   linearly independent eigenvectors into the columns of A. Put the 
corresponding eigenvalues into the diagonal entries of  . Then 

                 
For a linear transformation, this corresponds to 

         
         

 
 

 
Simultaneous Triangulation and Diagonalization 
Commuting matrices share eigenvectors, i.e. given that A and B can be diagonalized, there 

exists a matrix S that is an eigenvector matrix for both of them iff      . Regardless, AB 
and BA have the same set of eigenvalues, with the same multiplicities. 

More generally, let   be a commuting family of triangulable/ diagonalizable linear operators 
on V. There exists an ordered basis for V such that every operator in   is simultaneously 
represented by a triangular/ diagonal matrix in that basis. 
 

7-5 Normal Matrices 

http://holdenlee.wordpress.com/2010/06/01/cayley-hamilton-theorem/


(For review see 5-6) 
A nxn [real] symmetric matrix: 

1. Has only real eigenvalues. 

2. Has eigenvalues that can be chosen to be orthonormal. (          ) (See 
below.) 

3. Has n linearly independent eigenvectors so can be diagonalized. 
4. The number of positive/ negative eigenvalues equals the number of positive/ 

negative pivots. 
 
For real/ complex finite-dimensional inner product spaces, T is symmetric/ normal iff there 
exists an orthonormal basis for V consisting of eigenvectors of T. 
 
Spectral Theorem (Linear Transformations) 
Suppose T is a normal linear operator (         on a finite-dimensional real/ complex 

inner product space V with distinct eigenvalues         (its spectrum). Let    be the 
eigenspace of T corresponding to    and    the orthogonal projection of   on   . 

1. T is diagonalizable and          . 
2.    is orthogonal to the direct sum of    with    . 

3. There is an orthonormal basis of eigenvectors. 

4. Resolution of the identity operator:           

5. Spectral decomposition:               
Pf. The triangular matrix in the proof of Schur’s Theorem is actually diagonal. 

1. If       then        . 

2. W is T-invariant iff    is   -invariant. 
3. Take a eigenvector v; let          . From (1) v is an eigenvector of   ; from (2) 

    is T-invariant. 

4. Write       . Use induction hypothesis on   . 
 
(Matrices) 
Let A be a normal matrix (        . Then A is diagonalizable with an orthonormal basis 
of eigenvectors: 

       
where   is diagonal and U in unitary. 
 

Type of Matrix Condition Factorization 

Hermitian (Self-adjoint)              

U unitary,   real diagonal 
Real eigenvalues (because 

               ) 

Unitary               

U unitary,   diagonal 
Eigenvalues have absolute 
value 1 

Symmetric (real)              

Q orthogonal,   real 
diagonal 
Real eigenvalues 

Orthogonal (real)               

Q unitary,   diagonal 
Eigenvalues have absolute 
value 1 

 



7-6 Positive Definite Matrices and Operators 
 
A real matrix A is positive (semi)definite if        (      ) for every nonzero vector x. 
A linear operator T on a finite-dimensional inner product space is positive (semi)definite if T 

is self-adjoint and            (          ) for all    . 
 
The following are equivalent: 

1. A is positive definite. 
2. All eigenvalues are positive. 
3. All upper left determinants are positive. 
4. All pivots are positive. 

 
Every positive definite matrix factors into 

            
with positive pivots in D. The Cholesky factorization is 

            
 
 

 

7-7 Singular Value Decomposition 
 
Every     matrix A has a singular value decomposition in the form 

                   

where U and V are unitary matrices and    
  

 
  

  is diagonal. The singular values 

             for              are positive and are in decreasing order, with zeros at 
the end (not considered singular values). 

If A corresponds to the linear transformation      , then this says there are orthonormal 
bases             and             such that 

       
             

        
  

Letting       be the standard ordered bases for V, W, 

         
  
      

  
     

     
 
 
 

Orthogonal elements in the basis are sent to orthogonal elements; the singular values give 
the factors the lengths are multiplied by. 
 
To find the SVD: 

1. Diagonalize    , choosing orthonormal eigenvectors. The eigenvalues are the 
squares of the singular values and the eigenvector matrix is V. 

            
  

 

 
  

 

     

2. Similarly, 

          
If V and the singular values have already been found, the columns of U are just the 
images of         under left multiplication by A:       , unless this gives 0. 

3. If A is a mxn matrix: 
a. The first r columns of V generate the row space of A. 
b. The last n-r columns generate the nullspace of A. 
c. The first r columns of U generate the column space of A. 
d. The last m-r columns of U generate the left nullspace of A. 



 
The pseudoinverse of a matrix A is the matrix    such that for       ,     is the vector 

x in the row space such that     , and for        ,      . For a linear 

transformation, replace      with      and       with      . In other words, 

1.     is the projection matrix onto the column space of A. 
2.     is the projection matrix onto the row space of A. 

 
Finding the pseudoinverse: 

           

  
  

 
  

      

 

The shortest least squares solution to      is       . 
See Section 5-4 for a picture. 
 
The polar decomposition of a complex (real) matrix A is 

     
where Q is unitary (orthogonal) and H is semi-positive definite Hermitian (symmetric). Use 
the SVD: 

              
If A is invertible, Q is positive definite and the decomposition is unique. 
 

 Summary 
 

Type of matrix Eigenvalues Eigenvectors (can be chosen…) 

Real symmetric Real 

Orthogonal 
Orthogonal Absolute value 1 

Skew-symmetric (Pure) Imaginary 

Self-adjoint Real 

Positive definite Positive 

  
  



8 Canonical Forms 
 
A canonical form is a standard way of presenting and grouping linear transformations or 
matrices. Matrices sharing the same canonical form are similar; each canonical form 
determines an equivalence class. 
Similar matrices share… 

 Eigenvalues 

 Trace and determinant 

 Rank 

 Number of independent eigenvectors 

 Jordan/ Rational canonical form 
 

8-1 Decomposition Theorems 
 
A minimal polynomial of T is the (unique) monic polynomial      of least positive degree 
such that        . If         then          ; in particular,      divides the characteristic 
polynomial of T. 
 
Let W be an invariant subspace for T and let    . The T-conductor (―T-stuffer‖) of x into 

W is the set         which consists of all polynomials g over F such that            . (It 
may also refer to the monic polynomial of least degree satisfying the condition.) 
If      , T is called the T-annihilator of x, i.e. it is the (unique) monic polynomial      of 

least degree for which          . The T-conductor/ annihilator divides any other 
polynomial with the same property. 

The T-annihilator      is the minimal polynomial of TW, where W is the T-cyclic subspace 
generated by x. The characteristic polynomial and minimal polynomial of TW are equal or 
negatives. 
 
Let L be a linear operator on V, and W a subspace of V. W is T-admissible if 

1. W is invariant under T. 
2. If        , there exists     such that                . 

 
Let T be a linear operator on finite-dimensional V. 
Primary Decomposition Theorem (leads to Jordan form): 
Suppose the minimal polynomial of T is  

        
  

 

   

 

where    are distinct irreducible monic polynomials and    are positive integers. Let    be 
the null space of         (a generalized eigenspace). Then  

1.          . 

2. Each    is invariant under T. 

3. The minimal polynomial of    
 is   

  . 

Pf. Let    
 

 
 

  
. These polynomial have gcd 1, so we can find    so that      

 
     . 

              is the projection onto   . So the direct sum of the eigenspaces is the vector 
space V. 



 
Cyclic Decomposition Theorem (leads to rational canonical form):2 
Let T be a linear operator on finite-dimensional V and    (often taken to be    ) a proper T-

admissible subspace of V. There exist nonzero        with (unique) T-annihilators 
       , called invariant factors such that 

1.                        
2.         for      . 

Pf. 

1. There exist nonzero vectors         in V such that 

a.                        
b. If       and                         then    has maximum 

degree among all T-conductors into     . 
2. Let            . If                                  then        for 

some    and            for some      . (Stronger form of condition that each    
is T-admissible.) 

3. Existence: Let                    .                  implies 
                         and                        . 

4. Uniqueness: Induct. Show    is unique. If    is unique, operate      on both sides of 
2 decompositions of V to show that           and vice versa. 

 

8-2 Jordan Canonical Form 
 
     is a Jordan canonical form of T if 

      

   
   

  
  

  
  

  
   

  

where each    is a Jordan block in the form 

 
 
 
 
 
  
  

   
   

  
  
  

   
   
    

 
 
 
 

 

with λ an eigenvalue. 
 
Nonzero     is a generalized eigenvector corresponding to λ if              for 
some p. The generalized eigenspace consists of all generalized eigenvectors 

corresponding to λ: 
                                                  

 

If   is the smallest positive integer so that             , 
                           } 

is a cycle of generalized eigenvectors corresponding to λ. Every such cycle is linearly 
independent. 
 
Existence 

   (the    in the Primary Decomposition Theorem) has an ordered basis consisting of a 
union of disjoint cycles of generalized eigenvectors corresponding to λ. Thus every linear 
transformation (or matrix) on a finite-dimensional vector space, whose characteristic 

                                                 
2
 This is a terribly ugly way to prove the rational canonical form. A nicer approach is with the structure theorem for 

modules. See Abstract Algebra notes, section 5-2. 



polynomial splits, has a Jordan canonical form. V is the direct sum of the generalized 
eigenspaces of T. 
 
Uniqueness and Structure 
The Jordan canonical form is unique (when cycles are listed in order of decreasing length) 
up to ordering of eigenvalues. 
Suppose    is a basis for    

. Let    be the restriction of   to    
. Suppose    is a disjoint 

union of cycles of generalized eigenvectors         
 with lengths         

. The dot 

diagram for    contains one dot for each vector in   , and 
1. has    columns, one for each cycle. 
2. The jth column consists of    dots that correspond to the vectors of   , starting with 

the initial vector. 
The dot diagram of    is unique: The number of dots in the first r rows equals            

    
  , or if    is the number of dots in the jth row,                

                 
  . 

In particular, the number of cycles is the geometric multiplicity of   . 
The Jordan canonical form is determined by the eigenvalues and            λ   

   for 
every eigenvalue   . 
 
So now we know… 

Supposing      splits, let         be the distinct eigenvalues of T, and let    be the order of 

the largest Jordan block corresponding to   . The minimal polynomial of T is 

            
  

 

   

 

T is diagonalizable iff all exponents are 1. 
 

8-3 Rational Canonical Form 
 
Let T be a linear operator on finite-dimensional V with characteristic polynomial 

                  
  

 

   

 

where the factors       are distinct irreducible monic polynomials and    are positive 
integers. Define 

   
                                                

Note this is a generalization of the generalized eigenspace. 
 

The companion matrix of the monic polynomial                    
       is 

     

 
 
 
 
 
  
  
  

     

     

     

  
  

   
        

 
 
 
 

 because the characteristic polynomial of c(p) is          . 

 
Every linear operator T on finite-dimensional V has a rational canonical form (Frobenius 
normal form) even if the characteristic polynomial does not split. 

      

   
   

  
  

  
  

 
   

  



where each    is the companion matrix of an invariant factor   . 
 
Uniqueness and Structure: 

The rational canonical form is unique under the condition         for each      . 
The rational canonical form is determined by the prime factorization of f(t) and 

                for every positive integer r. 
 
Generalized Cayley-Hamilton Theorem: 
Suppose the characteristic polynomial of T is  

        
  

 

   

 

where    are distinct irreducible monic polynomials and    are positive integers. Then the 
minimal polynomial of T is 

        
  

 

   

 

where    
                

       
. 

 

8-4 Calculation of Invariant Factors 
 
For a matrix over the polynomials F[x], elementary row/ column operations include: 

(1) Interchanging 2 rows/ columns 
(2) Multiplying any row/ column by a nonzero scalar 
(3) Adding any polynomial multiple of a row/ column to another row/ column 

However, note arbitrary division by polynomials is illegal in F[x]. 
 
For such a (mxn) polynomial F[x], the following are equivalent: 

1. P is invertible. 
2. The determinant of P is a nonzero scalar. 
3. P is row-equivalent to the mxm identity matrix. 
4. P is a product of elementary matrices. 

 
A     matrix is in Smith normal form if 

1. Every entry not on the diagonal is 0. 
2. On the main diagonal of N, there appear polynomials        such that           

           . 
 

Every matrix is equivalent to a unique matrix N in normal form. For a     matrix A, follow 
this algorithm to find it: 

1. Make the first column  

 
 
 
 

 . 

a. Choose the nonzero entry   in the first column that has the least degree. 
b. For each other nonzero entry  , use polynomial division to write       , 

where   is the remainder upon division. Subtract   times the row with   from 

the row with  . 
c. Repeat a and b until there is (at most) one nonzero entry. Switch the first row 

with that row if necessary. 

2. Put the first row in the form        by following the steps above but 



exchanging the words ―rows‖ and ―columns‖. 
3. Repeat 1 and 2 until the first entry   is the only nonzero entry in its row and column. 

(This process terminates because the least degree decreases at each step.) 
4. If   does not divide every entry of A, find the first column with an entry not divisible 

by g and add it to column 1, and repeat 1-4; the degree of ―g‖ will decrease. Else, go 
to the next step. 

5. Repeat 1-4 with the             matrix obtained by removing the first row and 
column. 

 
Uniqueness: 

Let       be the gcd of the determinants of all     submatrices of M (       ). 
Equivalent matrices have all these values equal. The polynomials in the normal form are 

   
     

       
. 

 

Let A be a     matrix, and         be its invariant factors. The matrix      is equivalent 
to the     diagonal matrix with diagonal entries              . Use the above algorithm. 
 

 Summary 

 

Diagonalization
-Diagonal form has only entries on 

diagonal
-Condition: All eigenvalues have 
same algebraic and geometric 

multiplicity- n linearly independent 
eigenvectors

-Determined by eigenvalues
-V is the direct sum of eigenspaces 

Eλ.
-All irreducible factors in minimal 

polynomial have exponent 1.
-T=λ1P1+...+λkPk, where Pi are 
projections onto eigenspaces.

-I=P1+...+Pk

Rational Canonical Form
-Companion matrices on 

diagonal, each polynomial 
(invariant factor) is multiple of 

the next.
-No condition

-Determined by prime 
factorization and nullity(p(T)r)

-Exponent of irreducible 
factor in minimal polynomial 

is nullity(f(T)a)/deg(f)
-Cyclic decomposition 

theorem

Jordan Canonical Form
-Jordan blocks on diagonal
-Characteristic polynomial 

splits
-Determined by eigenvalues 

and nullity [(T-λI)r]
-V is the direct sum of 

generalized eigenspaces Kλ.
-Exponent of linear term in 
minimal polynomial is order 

of largest Jordan block.
-Primary decomposition 

theorem



8-5 Semi-Simple and Nilpotent Operators 
 
A linear operator N is nilpotent if there is a positive integer r such that      . 

The characteristic and minimal polynomials are in the form   . 
 
A linear operator is semi-simple if every T-invariant subspace has a complementary T-
invariant subspace. 
A linear operator (on finite-dimensional V over F) is semi-simple iff the minimal polynomial 
has no repeated irreducible factors. If F is algebraically closed, T is semi-simple iff T is 
diagonalizable. 
 
Let F be a subfield of the complex numbers. Every linear operator T can be uniquely 
decomposed into a semi-simple operator S and a nilpotent operator N such that 

1.       
2.       

N and S are both polynomials in T. 
 
Every linear operator whose minimal (or characteristic) polynomial splits can be uniquely 
decomposed into a diagonalizable operator D and a nilpotent operator N such that 

1.       

2.       
N and D are both polynomials in T. If    are the projections in the Primary Decomposition 

Theorem (Section 8.1) then        
 
                

 
   . 

 
  



9 Applications of Diagonalization, Sequences 
 

9-1 Powers and Exponentiation 
 
Diagonalization helps compute matrix powers: 

                   

To find    , write x as a combination of the eigenvectors (Note S is a change of base 
formula that finds the coordinates          ) 

       

 

   

 

Then 

         
   

 

   

 

 
If diagonalization is not possible, use the Jordan form: 

                   

Use the following to take powers of a     Jordan block   

 
 
 
 
 
  
  

   
   

  
  
  

   
   
    

 
 
 
 

: 

   

 
 
 
 
 
 
 
    

 

 
     

   

  
 

   
          

 

   
         

  
 

   
         

  
  
  

   

    
 

 
     

     
 
 
 
 
 
 
 

 

For a matrix in Jordan canonical form, use this formula for each block. 
 
The spectral radius is the largest absolute value of the eigenvalues. If it is less than 1, the 
matrix powers converge to 0, and it determines the rate of convergence. 
 
The matrix exponential is defined as        

     
     

  

 

   

 

 

              
    

 
    

     

Thus the eigenvalues of     are    . For a Jordan block, 

    

 
 
 
 
 
       

    
               

               

  
  
  

   
        

      
 
 
 
 

 

For nilpotent A,          
              for some functions of t          . Letting 

          
          we have    

  

        for             for every eigenvalue λ. 



Use the system of n equations to solve for the coefficients. 

If AB=BA,               . 

When A is skew-symmetric,     is orthogonal. 
 

9-2 Markov Matrices 
 
Let    be a column vector where the ith entry represents the probability that at the kth step 
the system is at state i. Let A be the transition matrix, that is,     contains the probability 

that a system in state j at any given time will be at state i the next step. Then 

        

where    contains the initial probabilities or proportions. 
 
The Markov matrix A satisfies: 

1. Every entry is nonnegative. 
2. Every column adds to 1. 

A contains an eigenvalue of 1, and all other distinct eigenvalues have smaller absolute 
value. 
If all entries of A are positive, then the eigenvalue 1 has only multiplicity 1. The eigenvector 

corresponding to 1 is the steady state- approached by the probability vectors    and 
describing the probability that a long time late the system will be at each state. 
 

9-3 Recursive Sequences 
 
System of linear recursions: 
To find the solution to the recurrence with n variables 

 

                        

 
                       

  

let     

    

 
     

  and use        . 

 
Pell’s Equation: 

If D is a positive integer that is not a perfect square, then all positive solutions to        
  are in the form       with 

    
   
  

  

where    
     

    
  and         is the fundamental solution, that is, the solution where 

     is minimal. 
 
Homographic recurrence: 

A homographic function is in the form       
 

 
    defined by      

    

    
,    .    

 
  
  

  is the corresponding matrix. Define the sequence         by               . 

Then    
       

       
 where     

 
  

    

    
 . 

 
Linear recursions: 
A sequence of complex numbers satisfies a linear recursion of order k if 

                         



Solve the characteristic equation       
          . If the roots are         with 

multiplicities       , then           
           

   where    is a polynomial of degree at 

most   . Determine the polynomials from solving a system involving the first k terms of the 

sequence. (Note the general solution is a k-dimensional subset of   .) 

 
  



10 Linear Forms 
 

10-1 Multilinear Forms 
 
A function L from                

 

, where V is a module over R, to R is 

1. Multilinear (n-linear) if it is linear in each component separately: 

                                                     
2. Alternating if              whenever       with    . 

 

The collection of all multilinear functions on    is denoted by      , and the collection of all 
alternating multilinear functions is      . 
 
If L and M are multilinear functions on      , respectively, the tensor product of L and M 

is the function on      defined by 
                    

where          . The tensor product is linear in each component and is associative. 
 
For a permutation σ define                              and the linear transformation 

    
           by 

            
 

    

 
If V is a free module of rank n,       is a free R-module of rank   , with basis       

                  where           is a basis for   . 

When     , and L is a r-linear form in      , 

                                       
          

 

where A is the rxn matrix with rows        . 

      is a free R-module of rank   
 
 , with basis the same as before, but         are 

combinations of         (            . 
 
Where the Determinant fits in: 

1.                          , the    standard coordinate functions. 

2. If T is a linear operator on      and        , 
                                  

The determinant of T is the same as the determinant of any matrix representation of 
T. 

3. The special alternating form                  (           ) is the determinant 

of the rxr matrix A defined by        
    , also written as 

         

            
, where           

is the standard dual basis. 
 

10-2 Exterior Products 
 
Let G be the group of all permutations which permute         and           within 
themselves. For alternating r and s-linear forms L and M, define                by 

                   . For a coset   , define            . The exterior product of L 
and M is 



          

        

 

Then 

1.                  ; in particular     
 

    
          if R is a field of 

characteristic 0. 
2.                 
3.               

 
Laplace Expansions: 

Define                
       

   
       

   and                

          

   
          

   where 

                  and      . Then            , giving 

                    
      

      
               

   
               

  

               

 

     
                 

   
                 

   

 
For a free R-module V of rank n, the Grassman ring over    is defined by 

                   
and has dimension   . (The direct sum is treated like a Cartesian product.) 
 

10-3 Bilinear Forms 
 
A function         is a bilinear form on V if H is linear in each variable when the other 
is held fixed: 

1.                              
2.                              

The bilinear form is symmetric (a scalar product) if               for all       and 
skew-symmetric if               .  
The set of all bilinear forms on V, denoted by     , is a vector space. An real inner product 
space is a symmetric bilinear form. 
 
A function       is a quadratic form if there exists a symmetric bilinear form H such that 
           . If F is not of characteristic 2, 

       
                

 
 

 
Let             be an ordered basis for V. The matrix         with              is 

the matrix representation of H with respect to  . 
1.    is an isomorphism. 

2. Thus      has dimension   . 
3. If              is a basis for    then                     is a basis for     . 

4.    is (skew-)symmetric iff H is. 

5. A is the unique matrix satisfying            
      . 

 

Square matrix B is congruent to A if there exists an invertible matrix   such that       . 



Congruence is a equivalence relation. For 2 bases    ,       and       are congruent; 

conversely, congruent matrices are 2 representations of the same bilinear form. 
 

Define                         and                        .The rank of H is 

                 . For n-dimensional V, the following are equivalent: 
1. rank(H)=n 

2. For    , there exists y such that         . 
3. For    , there exists y such that         . 

Any H satisfying 2 and 3 is nondegenerate. The radical (or null space) of H, Rad(H), is the 

kernel of    or   , in other words, it is the set of vectors orthogonal to all other vectors. 
Nondegenerate Nullspace is    . 
 

10-4 Theorems on Bilinear Forms and Diagonalization 
 
A bilinear form H on finite-dimensional V is diagonalizable if there is a basis β such that 

      is diagonal. 

If F does not have characteristic 2, then a bilinear form is symmetric iff it is diagonalizable. If 
V is a real inner product space, the basis can be chosen to be orthonormal. 

             

where Q is the change-of-coordinate matrix changing standard  -coordinates into  -
coordinates and        . Diagonalize the same way as before, choosing Q to be 

orthonormal so       . 
 
A vector v is isotropic if          (orthogonal to itself). A subspace W is isotropic if the 
restriction of H to W is 0. A subspace is maximally isotropic if it has greatest dimension 
among all isotropic subspaces. Orthogonality, projections, and adjoints for scalar products 
are defined the same way as orthogonality for inner products: v and w are orthogonal if 
        , and                      . 

1. If            then the restriction of H to W, HW, is nondegenerate. 

2. If H is nondegenerate on subspace    ,       . 
3. If H is nondegenerate, there exists an orthogonal basis for V. 

 
Sylvester’s Law of Inertia: 
Let H be a symmetric form on finite-dimensional real V. Then the number of positive 
diagonal entries (the index p of H) and negative diagonal entries in any diagonal 
representation of H is the same. The signature is the number of positive entries and the 
number of negative entries. The rank, index, and signature are all invariants of the bilinear 
form. 

1. Two real symmetric nxn matrices are congruent iff they have the same invariants. 
2. A symmetric nxn matrix is congruent to 

     
    

      
   

  

3. For nondegenerate H: 

a. The maximal subspace W such that    is positive/ negative definite is p/ n-p. 
b. The maximal isotropic subspace W has dimension            

 
If    is the adjoint of linear transformation f, and    is the dual (transpose), then      
    . 
 



Let H be a skew-symmetric form on n-dimensional V over a subfield of  . Then r=rank(H) is 
even and there exists   such that       is the direct sum of the             zero 

matrix and 
 

 
 copies of  

  
   

 . 

 

10-5 Sesqui-linear Forms 
 
A sesqui-linear form f on   or   is 

Linear in the first component                          
Conjugate-linear in the second component                           

The form is Hermitian if                       . A sesqui-linear form f is Hermitian if        is real 
for all x. [Note: Some books reverse x and y for sesqui-linear forms and inner products.] 
 
The matrix representation A of f in basis           is given by             . (Note the 

reversal.) Then            
      . 

 
If V is a finite-dimensional inner product space, there exists a unique linear operator T f on V 
such that                 . This map      is an isomorphism from the vector space of 

sesqui-linear forms onto       .   is Hermitian iff    is self-adjoint. 

 
f on   or   is positive/ nonnegative if it is Hermitian and          for    /         . A 
positive form is simply an inner product. f is positive if its matrix representation is 
positive definite. 
 
Principal Axis Theorem: (from the Spectral Theorem) 
For every Hermitian form f on finite-dimensional V, there exists an orthonormal basis in 
which f has a real diagonal matrix representation. 
 

 Summary 



 
10-6 Application of Bilinear and Quadratic Forms: Conics, Quadrics and Extrema 

 
An equation in 2/ 3 variables of degree 2 determines a conic/ quadric. 

1. Group all the terms of degree 2 on one side, and represent them in the form 

         

  

 
  

  where n=2/ 3 and A is a symmetric     matrix. If the coefficient 

of   
  is     then        . If the coefficient of          is     then         

   

 
. 

Diagonalize        and write the terms as                

  

 
  

  . The axes 

the conic/ quadric are oriented along are given by the eigenvectors. 
2. Write the linear terms with respect to the new coordinates, and complete the square 

in each variable. 
 

Name of Quadric Equation 

Ellipsoid      
      

       
    

1-sheeted hyperboloid      
      

      
    

2-sheeted hyperboloid      
      

      
    

Elliptic paraboloid      
      

     

Linear Transfromation L

-V→W

- Matrix representation Aij=fi(T(vj))

-Evaluation: [T(v)]β=[T]β[v]β

- Change of basis: [T]γ =Q-1[T]βQ, 
Q changes γ to β-coordinates

- Representations in different 
bases are similar/ equivalent

Sesqui-linear/ Hermitian 
Form f

-VxV→C

-Matrix representation 
Aij=f(vj,vi)

-Evaluation: [y]β*A[x]β

- Change of basis 
ψγ(H)=P*ψβ(H)P

Bilinear Form H

-VxV→F

- Matrix representation 
Aij=H(vi,vj)

-Evaluation: [x]β
TA[y]β

- Change of basis 
ψγ(H)=QTψβ(H)Q

- Representations in 
different bases are 

congruent.

-Diagonalizable iff 
symmetric.



Hyperbolic paraboloid      
      

     

Elliptic cone      
      

       
    

 
 
The Hessian matrix      of      is defined by 

    
      

          
 

 
Second Derivative Test: 
Let            be a real-valued function for which all third-order partial derivatives exist and 

are continuous. Let             be a critical point (i.e. 
  

   
   for all i). 

(a) If all eigenvalues of      are positive, f has a local minimum at p. 
(b) If all eigenvalues are negative, f has a local maximum at p. 
(c) If      has at least one positive and one negative eigenvalue, p is a saddle point. 
(d) If              (an eigenvalue is 0) and      does not have both positive and 

negative eigenvalues, the test fails. 
 

  



11 Numerical Linear Algebra 
 

11-1 Elimination and Factorization in Practice 
 
Partial pivoting- For the kth pivot, choose the largest number in row k or below in that 
column. Exchange that row with row k. Small pivots create large roundoff error because they 
must be multiplied by large numbers. 
 
A band matrix A with half-bandwidth w has       when        . 

 

Operation counts (A is     and invertible) (Multiply-subtract counted as one operation) 

Process Count (   Reason 

Forward elimination 
(A→U), A=LU 
factorization 

 

 
   

     . When there are k rows left, for all k-
1 rows below, multiply-subtract k times. 

Forward elimination on 
band matrix with half-
bandwidth w 

 

 
      

        
when w small 

      . There are no more than w-1 
nonzeros below any pivot. 

Forward elimination, 
right side (b) 

 

 
   

  . When there are k rows left, multiply-
subtract for all entries below the current one. 

Back-substitution  

 
   

  . For row k, divide by pivot and substitute 
into previous k-1 rows. 

Factorization into QR 
(Gram-Schmidt) 

 

 
   

    . When there are k columns left, divide 

the  th vector by its norm, find the projection 

of all remaining columns onto it (   ) then 

subtract (   ).  

    (Gauss-Jordan 
elimination) 

    

 
   for A=LU,  

 

 
       

 

 
   for right 

side- no work is required on the kth column on 

the right side until row k,   
 

 
    back 

substitution 

 
Note: For parallel computing, working with matrices (more concise) may be more efficient. 
 

11-2 Norms and Condition Numbers 
 
The norm of a matrix is the maximum magnification of a vector x by A: 

       
   

    

   
 

For a symmetric matrix,     is the absolute value of the eigenvalue with largest absolute 
value. 
 
Finding the norm: 

        
   

     

    
    

   

      

   
                           

                                                                                                       
 
The condition number of A is 

                   



When A is symmetric,   
       

      
. Anyway,    

                         

                          
. 

The condition number shows the sensitivity of a system      to error. Problem error is 
inaccuracy in   or   due to measurement/ roundoff. Let    be the solution error and       
be the problem errors. 

1. When the problem error is in b, 
 

 

    

   
 

    

   
  

    

   
 

2. When the problem error is in A, 
    

      
  

    

   
 

 

11-3 Iterative Methods 
 
For systems: 
General approach: 

1. Split A into S-T.              

2. Compute the sequence             
Requirements: 

1. (2) should be easy to solve for     , so the preconditioner S should be diagonal or 
triangular. 

2. The error should converge to 0 quickly: 

                    

Thus the largest eigenvalue of      should have absolute value less than 1. 
 
Useful for large sparse matrices, with a wide band. 
 

Method S Remarks 

Jacobi’s method Diagonal part of A  

Gauss-Siedel method Lower triangular part of A About twice as fast: Often 

       is the square of the 

       for Jacobi. 

Successive overrelaxation S has diagonal of original A, 
but below, entries are those of 

  . 

Combination of Jacobi and 

Gauss-Siedel. Choose ω to 
minimize spectral radius. 

Incomplete LU method Approximate L times 
approximate U 

Set small nonzero in L, U to 
0. 

 
Conjugate Gradients for positive definite A: 

Set                                          . 

 Formula Description 

1. 
   

    
     

    
      

 
Step length      to    
 

2.                Approximate solution 
 

3.                 New residual       
 

4. 
   

  
   

    
     

 
Improvement 

5.              Next search direction 



 
Computing eigenvalues 

1. (Inverse) power methods: Keep multiplying a vector u by A. Typically, u approaches 
the direction of the eigenvector corresponding to the largest eigenvalue. Convergence 

is quicker when  
  

  
  is small, where       are eigenvalues with largest, second largest 

absolute values. For the smallest eigenvalue, apply the method with     (but solve 

         rather than compute the inverse). 

2. QR Method: Factor     , reverse R and Q (eigenvalues don’t change), multiply 
them to get   , and repeat. Diagonal entries approach the eigenvalues. When the last 
diagonal entry is accurate, remove the last row and column and continue. 
Modifications: 

a. Factor        into     .              . Choose c near an unknown 
eigenvalue. 

b. (Hessenberg) Obtain off-diagonal entries first by changing A to a similar matrix. 
Zeros in lower-left corner stay. 

 
  



12 Applications 
 

12-1 Fourier Series (Analysis) 
 

Use the orthonormal system 
 

   
 
    

  
 
    

  
 
     

  
   to express a function in        as a Fourier 

series: 
                                        

Use projections (Section 5.3) to find the coefficients. (Multiply by the function you’re trying to 

find the coefficient for, and integrate from 0 to   ; orthogonality makes all but one term 0.) 
The orthonormal system is closed, meaning that f is actually equal to the Fourier series. 
Fourier coefficients offer a way to show the isomorphism between Hilbert spaces (complete, 
separable, infinite-dimensional Euclidean spaces). 
 

The exponential Fourier series uses the orthonormal system                instead. This 

applies to functions in       . 

 
12-2 Fast Fourier Transform 

 

Let    
   

 . The Fast Fourier Transform takes as input the coefficients    of          and 

outputs the value of the function          
     

    at        . The matrix for F satisfies 

        when the rows and columns are indexed from 0. Then 

         

  

 
    

     

  

 
    

   
    

 
      

  

 

The inverse of F is 
 

 
   

 

 
  . The inverse Fourier transform gives the coefficients from the 

functional values. To calculate a Fourier transform quickly when     , break 

    
  
 

  
 

  
 

   
 

  
  

 

  
 

                        

Dn/2 is the diagonal matrix with (n/2)th roots of unity. The last matrix has n/2 columns with 1’s 
in even locations (in increasing order starting from 0) and the next n/2 rows in odd locations. 
Then break up the middle matrix using the same idea, but now there’s two copies. Repeating 

to   , the operation count is 
 

 
   

 

 
      . The net effect of the permutation matrices is that 

the numbers are ordered based on the number formed from their digits reversed. 
 



 
http://cnx.org/content/m12107/latest/ 

 

Set   
 

 
 . The first and last m components of       are combinations of the half-size 

transforms         and          , i.e. for      , 

 
     

    
     

       
    

     
  

 

12-3 Differential Equations 
 
The set of solutions to a homogeneous linear differential equation with constant coefficients 

    
   

 

   

   

is a n-dimensional subspace of   . The functions       (  a root of the auxiliary polynomial 
    

  
     ,        where m is the multiplicity of the root) are linearly independent and 

satisfy the equation. Hence they form a basis for a solution space. 
 

The general solution to the system of n linear differential equations       is any sum of 
solutions of the form 

                                               

where the x are the end vectors of distinct cycles that make up a Jordan canonical basis for A, 
  is the eigenvalue corresponding to x, p is the order of the Jordan block, and      is a 
polynomial of degree less than p. 
 

12-4 Combinatorics and Graph Theory 
 
Graphs and applications to electric circuits 
The incidence matrix A of a directed graph has a row for every edge and a column for every 

node. If edge i points away from/ toward node j, then          , respectively. Suppose the 

graph is connected, and has n nodes and m edges. Each node is labeled with a number 
(voltage), and multiplying by A gives the vector of edge labels showing the difference between 

http://cnx.org/content/m12107/latest/


the nodes they connect (potential differences/ flow). 
1. The row space has dimension n-1. Take any n-1 rows corresponding to a spanning 

tree of the graph to get a basis for the row space. Rows are dependent when edges 
form a loop. 

2. The column space has dimension n-1. The vectors in the column space are exactly the 
labeling of edges such that the numbers add to zero around every loop (when moving 
in the reverse direction as the edges, multiply by -1). This corresponds to all attainable 
sets of potential differences (Voltage law). 

3. The nullspace has dimension 1 and contains multiples of (1,…,1)
T
. Potential 

differences are 0. 
4. The left nullspace has dimension m-n+1. There are m-n+1 independent loops in the 

graph. The vectors in the left nullspace are those where the flow in equals the flow out 
at each node (Current law). To find a basis, find m-n+1 independent loops; for each 
loop choose a direction, and label the edge 1 if it goes around the loop in that direction 
and -1 otherwise. 

Let C be the diagonal matrix assigning a conductance (inverse of resistance) to each edge. 

Ohm’s law says       . The voltages at the nodes satisfy 

        
where f tells the source from outside (ex. battery). 
 
Another useful incidence matrix is where A has a row and column for each vertex, and       

if vertices i and j are connected by an edge, and 0 otherwise. (For directed graphs, use -1/ 1.) 

 
Sets 
The incident matrix A for a family of subsets           containing elements           has 

     
          

          

 . Exploring     and using properties of ranks, determinants, linear 

dependency, etc. may give conclusions about the sets. Working in the field    on problems 
dealing with parity may help. 
 

12-5 Engineering 
 
Discrete case: Springs 

            

Vector/ Equation Description Matrix 

  Movements of the n masses  

     Kinematic equation: Elongations 
of the m springs 

A gives the elongations of the 
springs. 

     Constitutive law: Tensions 
(internal forces) in the m springs 

C is a diagonal matrix that 
applies Hooke’s Law for each 
spring, giving the forces. 

      Static/ balance equation: External 
forces on n masses 

Internal forces balance 
external forces on masses. 

 
There are four possibilities for A: 

Case Description Matrix A Equations 

Fixed-
fixed 

There are n+1 springs; each mass has 
2 springs coming out of it and the top 
and bottom are fixed in place. 

 

 
   

 
  

  

      
         
   
        



Fixed-
free 

There are n springs; one end is fixed 
and the other is not. (Here we assume 
the top end is fixed.) 

 

 
   

 
   

  

      
         

   
           

Free-
free 

No springs at either end. n-1 springs. 
 
   

  
   

  
         
   
             

Circular The nth spring is connected to the first 
one. n springs.  

 
   

  

 
   

  

         
         
   
           

Each spring is stretched or compressed by the difference in displacements. 
 
Facts about K: 

1. K is tridiagonal except for the circular case: only nonzero entries are on diagonal or one 
entry above or below. 

2. K is symmetric. 
3. K is positive definite for the fixed-fixed and fixed-free case. 

4.     has all positive entries for the fixed-fixed and fixed-free case. 
       in the fixed-fixed and fixed-free case give the movements from the forces. 
 
For the singular case: 

1. The nullspace of K is  
 
 
 
 , if the whole system moves by the same amount the forces 

stay the same. 
2. To solve     , the forces must add up to 0 (equilibrium). 

 
Continuous case: Elastic bar 

        becomes the differential equation 

 
 

  
     

  

  
       

The discrete case can be used to approximate the continuous case. When going from the 

continuous to discrete case, multiply by   . 
 

12-6 Physics: Special Theory of Relativity 
 

For each event p occurring at  
 
 
 
  at time t read on clock C relative to S, assign the space-time 

coordinates relative to C and S  

 
 
 
 

 . Suppose S and S’ have parallel axes and S’ moves at 

constant velocity v relative to S in the +x direction, and they coincide when their clocks C and 

C’ read 0. The unit of length is the light second. Define    

 
 
 
 

   

  
  

  
  

 , where the two sets of 

coordinates represent the same event with respect to S and S’ 
 
Axioms: 



1. The speed of light is 1 when measured in either coordinate system. 
2. Tv is an isomorphism. 

3.    

 
 
 
 

   

  
  

  
  

  implies          . 

4.    

 
  

  

 

   

  
  

  
  

     

 
  

  

 

   

   
   

   
   

  implies              . 

5. The origin of S moves in the negative x’-axis of S’ at velocity –v as measured from S’. 
 
These axioms complete characterize the Lorentz transformation Tv, whose representation in 
the standard bases is 

      

 
 
 
 
 
 

 

     
 

  

 
  

     

  
  

 
 

     
 

  

 
 

      
 
 
 
 
 

 

1. If a light flash at time 0 at the origin is observed at  
 
 
 
  is observed at time t, then 

             . 

2. Time contraction:           

3. Length contraction:           
 

12-7 Computer Graphics 
 

3-D computer graphics use homogeneous coordinates:  

 
 
 
 

  represents the point  
 

 
 
 

 
 
 

 
  (the 

point at infinity if c=0). 

The transformation… is like multiplying (on the left side) by… 

Translation by            

 

  
  

  
  

  
    

  
   

  

Scaling by a, b, c in x, y, and z directions 

 

  
  

  
  

  
  

  
  

  

Rotation around z-axis (similar for others) by θ  

 

         
        

  
  

  
  

  
  

  

Projection onto plane through (0,0,0) 
perpendicular to unit vector n 

         
  

  

Projection onto plane passing through Q, 
perpendicular to unit vector n 

      where T is the translation taking 
Q to the origin, and P is as above 



Reflection through plane through (0,0,0) 
perpendicular to unit vector n 

        
  

  

The matrix representation for an affine transformation is 

 
 
 
 
                  

                  

                  
          

 
 
 

 

 

12-8 Linear Programming 
 

Linear programming searches for a nonnegative vector x satisfying      that minimizes (or 

maximizes) the cost    . The dual problem is to maximize     subject to      . The 
extremum must occur at a corner. A corner is a vector  with positive entries that satisfies the 
m equations      with at most m positive components. 
 
Duality Theorem: 

If either problem has a best solution then so does the other. Then the minimum cost       

equals the maximum income     . 
 
Simplex Method: 

1. First find a corner. If one can’t easily be found, create m new variables, start with their 
sum as the cost, and follow the remaining steps until they are all zero, then revert to 
the original problem. 

2. Move to another corner that lowers the cost. Repeat for each zero component: Change 

it from 0 to 1, find how the nonzero components would adjust to satisfy     , then 

compute the change in the total cost    . Let the entering variable be the one that 
causes the most negative change (per single unit). Reduce the entering variable until 
the first positive component hits 0. 

3. When every other ―adjacent‖ corner has higher cost, the current corner is the optimal x. 
 

12-9 Economics 
 
A consumption matrix A has the amount of product j needed to produce product i in entry 

(i,j). Then      where v/ u are the input/ output column vectors containing the amount of 
product i in entry i. 
If the column vector y contains the demands for each product, then for the economy to meet 
the demands, there must exist a vector p with nonnegative entries satisfying 

  
     

    
           

   
      

                     

if the inverse exists. 
 

If the largest eigenvalue… then        … 

is greater than 1 has negative entries 

is equal to 1 fails to exist 

is less than 1 has only nonnegative entries 

 
If the spectral radius of A is less than 1, then the following expansion is valid: 
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Notes 
 

I tried to make the notes as complete yet concise and understandable as possible by 

combining information from 3 books on linear algebra, as well as put in a few problem-solving tips. 

Strang’s book offers a very intuitive view of many linear algebra concepts; for example the diagram 

on ―Orthogonality of the Four Subspaces‖ is copied from the book. The other two books offer a more 

rigorous and theoretical development; in particular, Hoffman and Kunze’s book is quite complete. 

I prefer to focus on vector spaces and linear transformations as the building blocks of linear 

algebra, but one can start with matrices as well. These offer two different viewpoints which I try to 

convey: Rank, canonical forms, etc. can be described in terms of both. Big ideas are emphasized and 

I try to summarize the major proofs as I understand them, as well as provide nice summary diagrams. 

A first (nontheoretical) course on linear algebra may only include about half of the material in 

the notes. Often in a section I put the theoretical and intuitive results side by side; just use the version 

you prefer. I organized it roughly so later chapters depend on earlier ones, but there are exceptions. 

The last section is applications and a miscellany of stuff that doesn’t fit well in the other sections. 

Basic knowledge of fields and rings is required. 

Since this was made in Word, some of the math formatting is not perfect. Oh well. 

Feel free to share this; I hope you find it useful! 

Please report all errors and suggestions by posting on my blog or emailing me at 

holdenlee1@yahoo.com. (I’m only a student learning this stuff myself so you can expect errors.) 

Thanks! 
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