| Algebra | Math                                                                                                                                               | n Notes • Study Guide                                                                                                                                                  |                        |                                                   |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------|
|         | Liı                                                                                                                                                | near Algebra                                                                                                                                                           |                        |                                                   |
|         |                                                                                                                                                    |                                                                                                                                                                        |                        |                                                   |
| 1       | Veo                                                                                                                                                | ctor Spaces                                                                                                                                                            |                        |                                                   |
| 1-1     | Vec                                                                                                                                                | tor Spaces                                                                                                                                                             |                        |                                                   |
|         |                                                                                                                                                    |                                                                                                                                                                        | <b>—</b> .             |                                                   |
|         | A VE                                                                                                                                               | ector space (or linear space) V over a field                                                                                                                           | IF is a set on w       | Vhich the operations addition                     |
|         | $(-)^{2}$                                                                                                                                          | x + y and $ax$ are unique elements in V.                                                                                                                               | x, y, z                |                                                   |
|         | 1.                                                                                                                                                 | x + y = y + x                                                                                                                                                          |                        | Commutativity of Addition                         |
|         | 2.                                                                                                                                                 | (x + y) + z = x + (y + z)                                                                                                                                              |                        | Associativity of Addition                         |
|         | 3.                                                                                                                                                 | There exists $0 \in V$ such that for every $x \in V$                                                                                                                   | $\equiv V, x + 0 = x.$ | Existence of Additive                             |
|         |                                                                                                                                                    |                                                                                                                                                                        |                        | Identity (Zero Vector)                            |
|         | 4.                                                                                                                                                 | There exists an element – $x$ such that $x$ +                                                                                                                          | -(-x)=0.               | Existence of Additive                             |
|         | 5.                                                                                                                                                 | 1x = x                                                                                                                                                                 |                        | Multiplicative Identity                           |
|         | 6.                                                                                                                                                 | (ab)x = a(bx)                                                                                                                                                          |                        | Associativity of Scalar                           |
|         |                                                                                                                                                    |                                                                                                                                                                        |                        | Multiplication                                    |
|         | 7.                                                                                                                                                 | a(x+y) = ax + ay                                                                                                                                                       |                        | Left Distributive Property                        |
|         | 8.                                                                                                                                                 | (a+b)x = ax + bx                                                                                                                                                       |                        | Right Distributive Property                       |
|         | Elements of F, V are <b>scalars</b> , <b>vectors</b> , respectively. F can be $\mathbb{R}$ , $\mathbb{C}$ , $\mathbb{Z}/p$ , etc. <i>Examples:</i> |                                                                                                                                                                        |                        |                                                   |
|         | $F^n$                                                                                                                                              |                                                                                                                                                                        | n-tuples with e        | entries from F                                    |
|         | $F^{\infty}$                                                                                                                                       |                                                                                                                                                                        | sequences wit          | h entries from F                                  |
|         | $M_m$                                                                                                                                              | $(F)$ or $F^{m \wedge n}$                                                                                                                                              | mxn matrices           | with entries from F                               |
|         |                                                                                                                                                    | E(r)                                                                                                                                                                   | nolynomials w          | ith coefficients from E                           |
|         | P(F) of $F[x]$ polynomials                                                                                                                         |                                                                                                                                                                        | continuous fur         | $a_{\text{nctions on } [a, b]} (-\infty, \infty)$ |
|         |                                                                                                                                                    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                |                        |                                                   |
|         | <u>Can</u><br>Coro                                                                                                                                 | cellation Law for Vector Addition: If $x, y, z \in$ blary: 0 and -x are unique.                                                                                        | = V and x + z =        | y + z, then $x = y$ .                             |
|         | For                                                                                                                                                | all $x \in V$ , $a \in F$ .                                                                                                                                            |                        |                                                   |
|         | •                                                                                                                                                  | 0x = 0                                                                                                                                                                 |                        |                                                   |
|         | •                                                                                                                                                  | x0 = 0                                                                                                                                                                 |                        |                                                   |
|         | •                                                                                                                                                  | (-a)x = -(ax) = a(-x)                                                                                                                                                  |                        |                                                   |
| 1-2     | Sub                                                                                                                                                | ospaces                                                                                                                                                                |                        |                                                   |
|         | A                                                                                                                                                  |                                                                                                                                                                        | V io o vootor or       |                                                   |
|         | of ac                                                                                                                                              | ddition and scalar multiplication defined on                                                                                                                           | V is a vector sp<br>V. | ace over F with the operations                    |
|         | <i>W</i> ⊆<br>1<br>2<br>A su                                                                                                                       | <i>X</i> V is a subspace of V if and only if<br>. $x + y \in W$ whenever $x \in W, y \in W$ .<br>2. $cx \in W$ whenever $c \in F, x \in W$ .<br>bspace must contain 0. |                        |                                                   |

|     | Any intersection of subspaces of V is a subspace of V.                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | If S <sub>1</sub> , S <sub>2</sub> are nonempty subsets of V, their sum is $S_1 + S_2 = \{x + y   x \in S_1, y \in S_2\}$ .<br>V is the <b>direct sum</b> of W <sub>1</sub> and W <sub>2</sub> ( $V = W_1 \oplus W_2$ ) if W <sub>1</sub> and W <sub>2</sub> are subspaces of V such that $W_1 \cap W_2 = \{0\}$ and $W_1 + W_2 = V$ . Then each element in V can be written uniquely as $w_1 + w_2$ where $w_1 \in W_1, w_2 \in W_2$ . $W_1, W_2$ are <b>complementary</b> . |
|     | $W_1 + W_2$ ( $W_1 \wedge W_2$ ) is the smallest subspace of V containing W <sub>1</sub> and W <sub>2</sub> , i.e. any subspace containing W <sub>1</sub> and W <sub>2</sub> contains $W_1 + W_2$ .                                                                                                                                                                                                                                                                           |
|     | <ul> <li>For a subspace W of V, v + W = {v + w w ∈ W} is the coset of W containing v.</li> <li>v<sub>1</sub> + W = v<sub>2</sub> + W iff v<sub>1</sub> - v<sub>2</sub> ∈ W.</li> <li>The collection of cosets V/W = {v + W v ∈ V} is called the quotient (factor) space of V modulo W. It is a vector space with the operations <ul> <li>(v<sub>1</sub> + W) + (v<sub>2</sub> + W) = (v<sub>1</sub> + v<sub>2</sub>) + W</li> <li>a(v + W) = av + W</li> </ul> </li> </ul>    |
| 1-3 | Linear Combinations and Dependence                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | A vector $v \in V$ is a <b>linear combination</b> of vectors of $S \subseteq V$ if there exist a finite number of vectors $u_1, u_2,, u_n \in S$ and scalars $a_1, a_2,, a_n \in F$ such that $v = a_1u_1 + \cdots + a_nu_n$ .<br>v is a linear combination of $u_1, u_2,, u_n$ .                                                                                                                                                                                             |
|     | The <b>span</b> of S, span(S), is the set consisting of all linear combinations of the vectors in S.<br>By definition, span( $\phi$ ) = {0}. S <b>generates</b> (spans) V if span(S)=V.                                                                                                                                                                                                                                                                                       |
|     | The span of S is the smallest subspace containing S, i.e. any subspace of V containing S contains span(S).                                                                                                                                                                                                                                                                                                                                                                    |
|     | A subset $S \subseteq V$ is <b>linearly (in)dependent</b> if there (do not) exist a finite number of distinct vectors $u_1, u_2,, u_n \in S$ and scalars $a_1, a_2,, a_n$ , not all 0, such that $a_1u_1 + \cdots + a_nu_n = 0$ .                                                                                                                                                                                                                                             |
|     | Let S be a linearly independent subset of V. For $v \in S - V, S \cup \{v\}$ is linearly dependent iff $v \in \text{span}(S)$ .                                                                                                                                                                                                                                                                                                                                               |
| 1-4 | Bases and Dimension                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | A (ordered) <b>basis</b> $\beta$ for V is a (ordered) linearly independent subset of V that generates V.<br><i>Ex.</i> $e_1 = (1,0,, 0), e_2 = (0,1,, 0),, e_n = (0,0,, 1)$ is the standard ordered basis for $F^n$ .                                                                                                                                                                                                                                                         |
|     | A subset $\beta$ of V is a basis for V iff each $v \in V$ can be uniquely expressed as a linear combination of vectors of $\beta$ .                                                                                                                                                                                                                                                                                                                                           |
|     | Any finite spanning set S for V can be reduced to a basis for V (i.e. some subset of S is a basis).                                                                                                                                                                                                                                                                                                                                                                           |
|     | Replacement Theorem: (Steinitz) Suppose V is generated by a set G with n vectors, and let L be a linearly independent subset of V with m vectors. Then $m < n$ and there exists a                                                                                                                                                                                                                                                                                             |



|     | subset of a generating set is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | basis for V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                       |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|
|     | Let S be a linearly independent subset of V. There exists a maximal linearly independent subset (basis) of V that contains S. Hence, <i>every vector space has a basis</i> .<br><u><i>Pf.</i></u> $\mathcal{F}$ = linearly independent subsets of V. For a chain $\mathcal{C}$ , take the union of sets in $\mathcal{C}$ , and apply the Maximal Principle.                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                       |  |
|     | Every basis for a vector space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | has the same cardinality.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                       |  |
|     | Suppose $S_1 \subseteq S_2 \subseteq V$ , $S_1$ is line basis such that $S_1 \subseteq \beta \subseteq S_2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | early independent and $S_2$ gene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rates V. Then there exists a                                                                                                          |  |
|     | Let $\beta$ be a basis for V, and S a $S \cup S_1$ is a basis for V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | linearly independent subset of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V. There exists $S_1 \subseteq \beta$ so                                                                                              |  |
| 1-6 | Modules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                       |  |
|     | A left/right R-module $_RM/M_R$ of scalar multiplication ( $R \times M \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | over the ring R is an abelian grown of $M 	imes R \to M$ defined so the theorem of the set of the se | bup (M,+) with addition and hat for all $r, s \in R$ and $x, y \in M$ ,                                                               |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Right                                                                                                                                 |  |
|     | 1. Distributive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r(x+y) = rx + ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (x+y)r = xr + yr                                                                                                                      |  |
|     | 2. Distributive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (r+s)x = rx + sx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x(r+s) = xr + xs                                                                                                                      |  |
|     | 3. Associative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r(sx) = (rs)x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (xr)s = x(rs)                                                                                                                         |  |
|     | 4. Identity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1x = x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x1 = x                                                                                                                                |  |
|     | <ul> <li>Modules are generalizations of vector spaces. All results for vector spaces hold except ones depending on division (existence of inverse in R). Again, a basis is a linearly independent set that generates the module. Note that if elements are linearly independent, it is not necessary that one element is a linear combination of the others, and bases do not always exist.</li> <li>A free module with n generators has a basis with n elements. V is finitely generated if it contains a finite subset spanning V. The rank is the size of the smallest generating set.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                       |  |
|     | Every basis for V (if it exists) c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ontains the same number of el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ements.                                                                                                                               |  |
| 1-7 | Algebras                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                       |  |
|     | A <b>linear algebra</b> over a field F<br>defined so that for all $x, y, z \in \mathbb{R}$<br>1. Associative<br>2. Distributive<br>3.<br>If there is an element $1 \in \mathcal{A}$ so<br>commutative if $xy = yx$ .<br>Polynomials made from vector<br>transformations, and $n \times n$ mat                                                                                                                                                                                                                                                                                                        | is a vector space $\mathcal{A}$ over F with<br>$\mathcal{A}, c \in F$ ,<br>x(yz) = (xy)z<br>x(y+z) = xy + xz, (x+y)z =<br>c(xy) = (cx)y = x(cy)<br>to that $1x = x1 = x$ , then 1 is the<br>s (with multiplication defined as<br>trices (see Chapters 2-3) all for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | th multiplication of vectors<br>$ \frac{xz + yz}{z} $ e identity element. $\mathcal{A}$ is<br>s above), linear<br>rm linear algebras. |  |

| 2   | Matrices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2-1 | Matrices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                  |  |
|     | A $m \times n$ matrix has m rows and n column<br>R). $A_{ij} = A(i, j)$ denotes the entry in the <i>i</i> t<br>multiplication is defined component-wise:<br>(A + i)<br>( <i>c</i><br>The $n \times n$ matrix of all zeros is denoted <i>O</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | is arranged filled with entries from a field F (or ring<br>h column and <i>j</i> th row of A. Addition and scalar<br>$B_{ij} = A_{ij} + B_{ij}$<br>$A_{ij} = cA_{ij}$<br><sub>n</sub> or just O. |  |
| 2-2 | Matrix Multiplication and Inverses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                  |  |
|     | Matrix manipusation and interfected<br>Matrix product:<br>Let A be a $m \times n$ and B be a $n \times p$ matrix. The product AB is the $m \times p$ matrix with entries<br>$(AB)_{ij} = \sum_{k=1}^{n} A_{ik}B_{kj}, 1 \le i \le m, 1 \le j \le p$<br>Interpretation of the product AB:<br>1. Row picture: Each row of A multiplies the whole matrix B.<br>2. Column picture: A is multiplied by each column of B. Each column of AB is a linear<br>combination of the columns of A, with the coefficients of the linear combination being<br>the entries in the column of B.<br>3. Row-column picture: (AB) <sub>ij</sub> is the dot product of row I of A and column j of B.<br>4. Column-row picture: Corresponding columns of A multiply corresponding rows of B<br>and add to AB.<br>Block multiplication: Matrices can be divided into a rectangular grid of smaller matrices, or<br>blocks. If the cuts between columns of A match the cuts between rows of B, then you can<br>multiply the matrices by replacing the entries in the product formula with blocks (entry i,j is<br>replaced with block i,j, blocks being labeled the same way as entries).<br>The identity matrix I <sub>n</sub> is a nxn square matrix with ones down the diagonal, i.e.<br>$(I_n)_{ij} = \delta_{ij} = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases}$<br>A is invertible if there exists a matrix A <sup>-1</sup> such that $AA^{-1} = A^{-1}A = I$ . The inverse is unique,<br>and for square matrices, any inverse on one side is also an inverse on the other side. |                                                                                                                                                                                                  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                  |  |
|     | 1. $A(B + C) = AB + AC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Left distributive                                                                                                                                                                                |  |
|     | 2.  (A+B)C = AC + BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Right distributive                                                                                                                                                                               |  |
|     | $3.  I_m A = A = A I_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Left/ right identity                                                                                                                                                                             |  |
|     | 4. $A(BL) = (AB)L$<br>5. $a(AB) = (aA)B = A(aB)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Associative                                                                                                                                                                                      |  |
|     | $\begin{array}{c c} 3. & u(AB) - (uA)B - A(uB) \\ \hline 6 & (AB)^{-1} = B^{-1}A^{-1} (A \ B \ invertible) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                  |  |
|     | $AB \neq BA$ : Not commutative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                  |  |
|     | Note that any 2 polynomials of the same i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | matrix commute.                                                                                                                                                                                  |  |
|     | A nxn matrix A is either a zero divisor (the $CA = O$ ) or it is invertible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ere exist nonzero matrices B, C such that $AB =$                                                                                                                                                 |  |

| 2-3 | The <b>Kronecker</b> (tensor) <b>product</b> of pxq matrix A and rxs matrix B is<br>$A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1q}B \\ \vdots & \ddots & \vdots \\ a_{p1}B & \cdots & a_{pq}B \end{bmatrix}$ . If v and w are column vectors with q, s elements,<br>$(A \otimes B)(v \otimes w) = (Av) \otimes (Bw)$ . Kronecker products give nice eigenvalue relations- for<br>example the eigenvalues are the products of those of A and B. [AMM 107-6, 6/2000]<br><b>Other Operations, Classification</b><br>The <b>transpose</b> of a mxn matrix A, A <sup>t</sup> , is defined by $(A^T)_{ij} = A_{ji}$ .<br>The <b>adjoint</b> or <b>Hermitian</b> of a matrix A is its conjugate transpose: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|
|     | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $A^* = A^{\prime\prime} = A^{\prime}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Properties                                                  |  |
|     | Symmetric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Delta - \Delta^T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |  |
|     | Self-adjoint/ Hermitian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $A = A^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $z^*Az$ is real for any complex z.                          |  |
|     | Skew-symmetric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-A = A^T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |  |
|     | Skew-self-adjoint/ Skew-Hermitian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $-A = A^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |  |
|     | Upper triangular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $A_{ij} = 0$ for $i > j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                             |  |
|     | Lower triangular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $A_{ii} = 0$ for $i < j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                             |  |
|     | Diagonal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $A_{ii} = 0$ for $i \neq j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |  |
|     | Properties of Transpose/ Adjoint<br>1. $(AB)^T = B^T A^T, (AB)^* = B^* A^*$ (For more matrices, reverse the order.)<br>2. $(A^{-1})^T = (A^T)^{-1}$<br>3. $(Ax)^T y = x^T A^T y = x^T (A^T y), (Ax)^* y = x^* A^* y = x^* (A^* y)$<br>4. $A^T A$ is symmetric.<br>The <b>trace</b> of a $n \times n$ matrix A is the sum of its diagonal entries:<br>$tr(A) = \sum_{n=1}^{n} A$                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             |  |
|     | The trace is a linear operator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             |  |
|     | The <b>direct sum</b> $A \oplus B$ of $m \times m$ and<br>(augmented) matrix C given by $C = \begin{bmatrix} A \\ B \end{bmatrix}$<br>$C_{ij} = \begin{cases} B_{i-m} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $n \times n \text{ matrices A a}  \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}, \\ A_{ij} \text{ for } 1 \le i, j \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le i, j \le n, j-m \text{ for } m+1 \le j, j \le n, j-m \text{ for } m+1 \le j, j \le n, j-m \text{ for } m+1 \le j, j \le n, j-m \text{ for } m+1 \le j, j \le n, j-m \text{ for } m+1 \le j, j \le n, j-m \text{ for } m+1 \le j, j \le n, j-m \text{ for } m+1 \le j, j \le n, j-m \text{ for } m+1 \le j, j \le n, j-m \text{ for } m+1 \le j, j \le n, j-m \text{ for } m+1 \le j, j \le n, j-m \text{ for } m+1 \le j, j \le n, j-m \text{ for } m+1 \le j, j \le n, j-m \text{ for } m+1 \le j, j \le n, j $ | nd B is the $(m + n) \times (m + n)$<br>in<br>$j \le n + m$ |  |

| 3   | Linear Transformations                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3-1 | Linear Transformations                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | For vector spaces V and W over F, a function $T: V \to W$ is a <b>linear transformation</b><br>(homomorphism) if for all $x, y \in V$ and $c \in F$ ,<br>(a) $T(x + y) = T(x) + T(y)$<br>(b) $T(cx) = cT(x)$                                                                                                                                                                                                                                             |
|     | It suffices to verify $T(cx + y) = cT(x) + T(y)$ .<br>T(0) = 0 is automatic.<br>$T\left(\sum_{i=1}^{n} a_i x_i\right) = \sum_{i=1}^{n} a_i T(x_i)$                                                                                                                                                                                                                                                                                                       |
|     | <i>Ex.</i> Rotation, reflection, projection, rescaling, derivative, definite integral Identity $I_v$ and zero transformation $T_0$                                                                                                                                                                                                                                                                                                                       |
|     | An <b>endomorphism</b> (or linear operator) is a linear transformation from V into itself.                                                                                                                                                                                                                                                                                                                                                               |
|     | T is <b>invertible</b> if it has an <b>inverse</b> $T^{-1}$ satisfying $TT^{-1} = I_W, T^{-1}T = I_V$ . If T is invertible, V and W have the same dimension (possibly infinite).<br>Vector spaces V and W are isomorphic if there exists a invertible linear transformation (an <b>isomorphism</b> , or automorphism if V=W) $T: V \to W$ . If V and W are finite-dimensional, they are isomorphic iff dim(V)=dim(W). V is isomorphic to $F^{\dim(V)}$ . |
|     | The space of all linear transformations $\mathcal{L}(V, W) = \text{Hom}(V, W)$ from V to W is a vector space over F. The inverse of a linear transformation and the composite of two linear transformations are both linear transformations.                                                                                                                                                                                                             |
|     | The <b>null space</b> or kernel is the set of all vectors x in V such that $T(x)=0$ .<br>$N(T) = \{x \in V   T(x) = 0\}$<br>The <b>range</b> or image is the subset of W consisting of all images of vectors in V.<br>$R(T) = \{T(x)   x \in V\}$<br>Both are subspaces. <b>nullity</b> (T) and <b>rank</b> (T) denote the dimensions of N(T) and R(T), respectively.                                                                                    |
|     | If $\beta = \{v_1, v_2,, v_n\}$ is a basis for V, then $R(T) = \text{span}(\{T(v_1), T(v_2),, T(v_n)\}).$                                                                                                                                                                                                                                                                                                                                                |
|     | <u>Dimension Theorem</u> : If V is finite-dimensional, nullity(T)+rank(T)=dim(V).<br><u><i>Pf.</i></u> Extend a basis for N(T) to a basis for V by adding $\{v_{k+1},, v_n\}$ . Show $\{T(v_{k+1}),, T(v_n)\}$ is a basis for R(T) by using linearity and linear independence.                                                                                                                                                                           |
|     | T is one-to-one iff $N(T) = \{0\}$ .                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | If V and W have equal finite dimension, the following are equivalent:<br>(a) T is one-to-one.<br>(b) T is onto.<br>(c) rank(T)=dim(V)<br>(a) and (b) imply T is invertible.                                                                                                                                                                                                                                                                              |

|     | A linear transformation is uniquely determ $\{v_1, v_2,, v_n\}$ is a basis for V and $w_1, w_2,$ transformation $T: V \to W$ such that $T(v_i)$                                                                                                                                                                                                                                                                                                                                  | nined by its action on a basis, i.e., if $\beta = .w_n \in W$ , there exists a unique linear<br>= $w_i$ , $i = 1, 2,, n$ . |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
|     | A subspace W of V is <b>T-invariant</b> if $T(x)$<br>T on W.                                                                                                                                                                                                                                                                                                                                                                                                                     | $\in W$ for every $x \in W$ . T <sub>W</sub> denotes the restriction of                                                    |  |
| 3-2 | Matrix Representation of Linear Tra                                                                                                                                                                                                                                                                                                                                                                                                                                              | ansformation                                                                                                               |  |
|     | Matrix Representation:<br>Let $\beta = \{v_1, v_2,, v_n\}$ be an ordered basis<br>for W. For $x \in V$ , define $a_1, a_2,, a_n$ so that                                                                                                                                                                                                                                                                                                                                         | for V and $\gamma = \{w_1, w_2,, w_n\}$ be an ordered basis<br>at                                                          |  |
|     | ر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $c = \sum a_i v_i$                                                                                                         |  |
|     | The coordinate vector of x relative to $\beta$ is $\phi_{\beta}(x)$                                                                                                                                                                                                                                                                                                                                                                                                              | $= [x]_{\beta} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ \vdots \end{pmatrix}$                                             |  |
|     | Note $\phi_{\beta}$ is an isomorphism from V to F <sup>n</sup> . Suppose $T: V \rightarrow W$ is a linear transformat                                                                                                                                                                                                                                                                                                                                                            | The <i>i</i> th coordinate is $f_i(x) = a_i$ .<br>tion satisfying                                                          |  |
|     | $T(v_j) = \sum_{j=1}^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $a_{ij}w_i$ for $1 \le j \le n$                                                                                            |  |
|     | The matrix representation of T in $\beta$ and $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                           | is $A = [T]_{\rho}^{\gamma} = \mathcal{M}_{\rho}^{\gamma}(T)$ with entries as defined                                      |  |
|     | above. (i.e. load the coordinate represent                                                                                                                                                                                                                                                                                                                                                                                                                                       | tation of $T(v_j)$ into the <i>j</i> th column of A.)                                                                      |  |
|     | Properties of Linear Transformations (Co                                                                                                                                                                                                                                                                                                                                                                                                                                         | mposition)                                                                                                                 |  |
|     | 1. $T(U_1 + U_2) = TU_1 + TU_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Left distributive                                                                                                          |  |
|     | 2. $(U_1 + U_2)T = U_1T + U_2T$                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Right distributive                                                                                                         |  |
|     | $3.  I_V T = T = T I_W$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Left/ right identity                                                                                                       |  |
|     | 4.  S(TU) = (ST)U                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Associative (holds for any functions)                                                                                      |  |
|     | 5. $a(TU) = (aT)U = T(aU)$                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                            |  |
|     | 6. $(TU)^{-1} = U^{-1}T^{-1}$ (T, U invertible)                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            |  |
|     | Linear transformations [over finite-dimensional vector spaces] can be viewed as left-<br>multiplication by matrices, so linear transformations under composition and their<br>corresponding matrices under multiplication follow the same laws. This is a<br>motivating factor for the definition of matrix multiplication. Facts about matrices, such<br>as associativity of matrix multiplication, can be proved can be proved using linear<br>transformations, or vice versa. |                                                                                                                            |  |
|     | Note: From now on, definitions applying t transformations they are associated with,                                                                                                                                                                                                                                                                                                                                                                                              | o matrices can also apply to the linear<br>and vice versa.                                                                 |  |
|     | The left-multiplication transformation $L_A$ : I matrix).                                                                                                                                                                                                                                                                                                                                                                                                                        | $F^n \to F^m$ is defined by $L_A(x) = Ax$ (A is a mxn                                                                      |  |
|     | Relationships between linear transformat<br>1. To find the image of a vector $u \in V$                                                                                                                                                                                                                                                                                                                                                                                           | ions and their matrices:<br><sup>7</sup> under T, multiply the matrix corresponding to T                                   |  |

|     | on the left: $[T(u)]_{\gamma} = [T]_{\beta}^{\gamma}[u]_{\beta}$ i.e. $L_A \phi_{\beta} = \phi_{\gamma} T$ where $A = [T]_{\beta}^{\gamma}$ .                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | 2. Let V, W be finite-dimensional vector spaces with bases $\beta$ , $\gamma$ . The function<br>$\Phi: f(V, W) \rightarrow M$ (F) defined by $\Phi(T) = [T]^{\gamma}$ is an isomorphism. So, for linear                                                                                                                                                                                                                                                                                                                                                |
|     | transformations $U, T: V \rightarrow W$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | a. $[T + U]_{\beta}^{\gamma} = [T]_{\beta}^{\gamma} + [U]_{\beta}^{\gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | b. $[aT]_{\beta}^{\gamma} = a[T]_{\beta}^{\gamma}$ for all scalars a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | c. $\mathcal{L}(V, W)$ has dimension mn.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | 3. For vector spaces V, W, Z with bases $\alpha$ , $\beta$ , $\gamma$ and linear transformations $T: V \to W$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | $U: W \to Z, \ [UT]'_{\alpha} = [U]'_{\beta} [T]'_{\alpha}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 4. T is invertible iff $[T]_{\beta}^{r}$ is invertible. Then $[T^{-1}]_{\gamma}^{\rho} = ([T]_{\beta}^{r})^{-1}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3-3 | Change of Coordinates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | Let $\beta$ and $\gamma$ be two ordered bases for finite-dimensional vector space V. The change of coordinate matrix (from $\beta$ -coordinates to $\gamma$ -coordinates) is $Q = [I_V]_{\beta}^{\gamma}$ . Write vector j of $\beta$ in terms of the vectors of $\gamma$ , take the coefficients and load them in the <i>j</i> th column of Q. (This is so $(0, \dots, 1, \dots, 0)$ gets transformed into the <i>j</i> th column.)<br>1. $Q^{-1}$ changes $\gamma$ -coordinates into $\beta$ -coordinates.<br>2. $[T]_{\gamma} = Q[T]_{\beta}Q^{-1}$ |
|     | Two nxn matrices are <b>similar</b> if there exists an invertible matrix Q such that $B = Q^{-1}AQ$ .<br>Similarity is an equivalence relation. Similar matrices are manifestations of the same linear transformation in different bases.                                                                                                                                                                                                                                                                                                              |
| 3-4 | Dual Spaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | A <b>linear functional</b> is a linear transformation from V to a field of scalars F. The <b>dual space</b> is the vector space of all linear functionals on V: $V^* = \mathcal{L}(V, F)$ . V <sup>**</sup> is the double dual.                                                                                                                                                                                                                                                                                                                        |
|     | If V has ordered basis $\beta = \{x_1, x_2,, x_n\}$ , then $\beta^* = \{f_1, f_2,, f_n\}$ (coordinate functions—the dual basis) is an ordered basis for V*, and for any $f \in V^*$ ,                                                                                                                                                                                                                                                                                                                                                                  |
|     | $f = \sum_{i=1}^{n} f(x_i) f_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | To find the coordinate representations of the vectors of the dual basis in terms of the standard coordinate functions:                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | 1. Load the coordinate representations of the vectors in $\beta$ into the columns of W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | <ol> <li>The desired representations are the rows of W<sup>-2</sup>.</li> <li>The two bases are biorthogonal. For an orthonormal basis (see section 5-5), the coordinate representations of the basis and dual bases are the same.</li> </ol>                                                                                                                                                                                                                                                                                                          |
|     | Let V, W have ordered bases $\beta$ , $\gamma$ . For a linear transformation $T: V \to W$ , define its transpose (or dual) $T^t: W^* \to V^*$ by $T^t(g) = gT$ . T <sup>t</sup> is a linear transformation satisfying $[T^t]_{\gamma^*}^{\beta^*} = ([T]_{\beta}^{\gamma})^t$ .                                                                                                                                                                                                                                                                        |
|     | Define $\hat{x}: V^* \to F$ by $\hat{x}(f) = f(x)$ (input is a function, output is the value of the function at a fixed point), and $\psi: V \to V^{**}$ by $\psi(x) = \hat{x}$ . (The input is a function: the output is a function                                                                                                                                                                                                                                                                                                                   |

| evaluated at a fixed point.) If V is finite-dimensional, $\psi$ is an isomorphism. Additionally, every ordered basis for V <sup>*</sup> is the dual basis for some basis for V. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The <b>annihilator</b> of a subset S of V is a subspace of $V^*$ :<br>$S^0 = \operatorname{Ann}(S) = \{f \in V^*   f(x) = 0 \forall x \in S\}$                                  |

| 4   | Systems of Linear Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4-1 | Systems of Linear Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | The system of equations $ \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | can be written in matrix form as Ax=b, where $A = \begin{bmatrix} a_{11} & \cdots & a_{n1} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$ and $b = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$ . The augmented matrix is $[A b]$ (the entries of b placed to the right of A). The system is consistent if it has solution(s). It is singular if it has zero or infinitely many solutions. If b=0, the system is homogeneous.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | <ol> <li>Row picture: Each equation gives a line/ plane/ hyperplane. They meet at the solution set.</li> <li>Column picture: The columns of A combine (with the coefficients x<sub>1</sub>, x<sub>n</sub>) to produce b.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4-2 | Elimination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | <ul> <li>There are three types of elementary row/ column operations:</li> <li>(1) Interchanging 2 rows/ columns</li> <li>(2) Multiplying any row/ column by a nonzero scalar</li> <li>(3) Adding any multiple of a row/ column to another row/ column</li> <li>An elementary matrix is the matrix obtained by performing an elementary operation on I<sub>n</sub>.</li> <li>Any two matrices related by elementary operations are (row/column-)equivalent.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | Performing an elementary row/ column operation is the same as multiplying by the corresponding elementary matrix on the left/right. The inverse of an elementary matrix is an elementary matrix of the same type. When an elementary row operation is performed on an augmented matrix or the equation $Ax = b$ , the solution set to the corresponding system of equations does not change.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | <b>Gaussian elimination</b> - Reduce a system of equations (line up the variables, the equations are the rows), a matrix, or an augmented matrix by using elementary row operations.<br>Forward pass<br>1. Start with the first row.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | <ol> <li>Excluding all rows before the current row (row j), in the leftmost nonzero column (column k), make the entry in the current row nonzero by switching rows as necessary. (Type 1 operation) The <b>pivot</b> d<sub>i</sub> is the first nonzero in the current row, the row that does the elimination. [Optional: divide the current row by the pivot to make the entry 1. (2)]</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | 3. Make all numbers below the pivot zero. To make the entry $a_{ik}$ in the <i>i</i> th row 0, subtract row j times the multiplier $l_{ik} = a_{ik}/d_i$ from row i. This corresponds to multiplication by a time 2 classes participation of the second seco |
|     | <ul> <li>4. Move on to the next row, and repeat until only zero rows remain (or rows are exhausted).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | Backward pass (Back-substitution)<br>5. Work upward, beginning with the last nonzero row, and add multiples of each row to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|     | <ul><li>the rows above to create zeros in the pivot column. When working with equations, this is essentially substituting the value of the variable into earlier equations.</li><li>6. Repeat for each preceding row except the first.</li></ul>                                                                                                                                                                                                                               |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | A <b>free variable</b> is any variable corresponding to a column without a pivot. Free variables can be arbitrary, leading to infinitely many solutions. Express the solution in terms of free variables.                                                                                                                                                                                                                                                                      |
|     | If elimination produces a contradiction (in A b, a row with only the last entry a nonzero, corresponding to $0=a$ ), there is no solution.                                                                                                                                                                                                                                                                                                                                     |
|     | Gaussian elimination produces the <b>reduced row echelon form</b> of the matrix: (Forward/<br>backward pass accomplished 1, (2), 3/ 4.)<br>1. Any row containing a nonzero entry precedes any zero row.                                                                                                                                                                                                                                                                        |
|     | <ol> <li>The first nonzero entry in each row is 1.</li> <li>It occurs in a column to the right of the first nonzero entry in the preceding row.</li> <li>The first nonzero entry in each row is the only nonzero entry in its column.</li> <li>The reduced row echelon of a matrix is unique.</li> </ol>                                                                                                                                                                       |
| 4-3 | Factorization                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | Elimination = Factorization                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | Performing Gaussian elimination on a matrix A is equivalent to multiplying A by a sequence of elementary row matrices.                                                                                                                                                                                                                                                                                                                                                         |
|     | If no row exchanges are made, $U = (\sum E_{ij})A$ , so A can be factored in the form                                                                                                                                                                                                                                                                                                                                                                                          |
|     | $A = \left(\sum_{ij} E_{ij}^{-1}\right) U = LU$<br>where L is a lower triangular matrix with 1's on the diagonal and U is an upper triangular<br>matrix (note the factors are in opposite order). Note $E_{ij}$ and $E_{ij}^{-1}$ differ only in the sign of<br>entry (i,j), and the <i>multipliers go directly into the entries of L</i> . U can be factored into a<br>diagonal matrix D containing the pivots and U' an upper triangular matrix with 1's on the<br>diagonal: |
|     | The first factorization corresponds to the forward pass, the second corresponds to completing the back substitution. If A is symmetric, $U' = L^T$ .                                                                                                                                                                                                                                                                                                                           |
|     | <ul> <li>Using A = LU, (LU)x = Ax = b can be split into two triangular systems:</li> <li>1. Solve Lc = b for c.</li> <li>2. Solve Ux = c for x.</li> </ul>                                                                                                                                                                                                                                                                                                                     |
|     | A permutation matrix P has the rows of I in any order; it switches rows.<br>If row exchanges are required, doing row exchanges<br>1. in advance gives $PA = LU$ .<br>2. after elimination gives $A = L_1P_1U_1$ .                                                                                                                                                                                                                                                              |
| 4-4 | The Complete Solution to Ax=b, the Four Subspaces                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | The rank of a matrix A is the rank of the linear transformation $L_A$ , and the number of pivots after elimination.                                                                                                                                                                                                                                                                                                                                                            |

| Properties:                                                                                                                                                                                                      |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1. Multiplying by invertible matrices does not change the rank of a matrix, so                                                                                                                                   |   |
| elementary row and column matrices are rank-preserving.                                                                                                                                                          |   |
| 2. $rank(A)=rank(A)$                                                                                                                                                                                             |   |
| 3. Ax=b is consistent iff rank(A)=rank(A b).                                                                                                                                                                     |   |
| 4. Rank inequalities                                                                                                                                                                                             |   |
| Linear transformations T, U Matrices A, B<br>reak $(TLI) \leq \min(\operatorname{reak}(T), \operatorname{reak}(LI))$ reak $(AB) \leq \min(\operatorname{reak}(A), \operatorname{reak}(B))$                       |   |
| $ \operatorname{Tarik}(TO) \leq \operatorname{Triir}(\operatorname{Tarik}(T), \operatorname{Tarik}(O))   \operatorname{Tarik}(AD) \leq \operatorname{Triir}(\operatorname{Tarik}(A), \operatorname{Tarik}(D))  $ |   |
| Four Fundamental Subspaces of A                                                                                                                                                                                  |   |
| 1 The <b>row space</b> $C(A^{T})$ is the subspace generated by rows of A i.e. it consists of all                                                                                                                 |   |
| linear combinations of rows of A.                                                                                                                                                                                |   |
| a. Eliminate to find the nonzero rows. These rows are a basis for the row space.                                                                                                                                 |   |
| 2. The <b>column space</b> C(A) is the subspace generated by columns of A.                                                                                                                                       |   |
| a. Eliminate to find the pivot columns. These columns of A (the original matrix)                                                                                                                                 |   |
| are a basis for the column space. The free columns are combinations of                                                                                                                                           |   |
| earlier columns, with the entries of F the coefficients. (See below)                                                                                                                                             |   |
| b. This gives a technique for extending a linearly independent set to a basis: Put                                                                                                                               |   |
| the vectors in the set, then the vectors in a basis down the columns of A.                                                                                                                                       |   |
| 3. The <b>nullspace</b> N(A) consists of all solutions to $Ax = 0$ .                                                                                                                                             |   |
| a. Finding the Nullspace (after elimination)                                                                                                                                                                     |   |
| 1. Repeat for each free variable x. Set x=1 and all other free variables to                                                                                                                                      | ` |
| free variable                                                                                                                                                                                                    | I |
| ii The special solutions found in (1) generate the nullspace                                                                                                                                                     |   |
| b. Alternatively, the nullspace matrix (containing the special solutions in its                                                                                                                                  |   |
| columne) is $N = \begin{bmatrix} -F \end{bmatrix}$ when the row reduced coholen form is $P = \begin{bmatrix} I & F \end{bmatrix}$ .                                                                              |   |
| columns) is $N = \begin{bmatrix} I \end{bmatrix}$ when the row reduced echelon form is $R = \begin{bmatrix} 0 & 0 \end{bmatrix}$ .                                                                               |   |
| columns are switched in R, corresponding rows are switched in N.                                                                                                                                                 |   |
| 4. The left nullspace N(A') consists of all solutions to $A^{T}x = 0$ or $x^{T}A = 0$ .                                                                                                                          |   |
| Fundamental Theorem of Lincor Algebra (Dort 1):                                                                                                                                                                  |   |
| <u>Fundamental medicin of Linear Algebra (Part 1)</u> :<br>Dimensions of the Four Subapagoa: A is myn. $rank(A)$ , $r$ (if the field is complete rankes: $A^T$                                                   |   |
| Dimensions of the Four Subspaces. A is fixed, rank(A)=r (if the field is complex, replace $A^*$ by $A^*$ )                                                                                                       |   |
| ј бу А. ј                                                                                                                                                                                                        |   |

|     | Row space $C(A^T)$<br>• $\{A^Ty\}$<br>• Dimension r                                                                                                                                                                                                                                                                                                                  | Column space <i>C</i> ( <i>A</i> )<br>• { <i>Ax</i> }<br>• Dimension r     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|     | $F^m = C(A) \oplus N(A^T)$                                                                                                                                                                                                                                                                                                                                           |                                                                            |
|     | $F^n = C(A)^T \oplus N(A)$                                                                                                                                                                                                                                                                                                                                           |                                                                            |
|     | Nullspace $N(A)$<br>• { $x   Ax = 0$ }<br>• Dimension n-r                                                                                                                                                                                                                                                                                                            | Left nullspace $N(A^T)$<br>• { $y A^Ty = 0$ }<br>• Dimension m-r           |
|     | The relationships between the dimensions can be shown using pivot theorem.                                                                                                                                                                                                                                                                                           | s or the dimension                                                         |
|     | <ul> <li><i>The Complete Solution to Ax=b</i></li> <li>1. Find the nullspace N, i.e. solve Ax=0.</li> <li>2. Find any particular solution x<sub>p</sub> to Ax=b (there may be no soluti to 0.</li> <li>3. The solution set is N + x<sub>p</sub>; i.e. all solutions are in the form x<sub>n</sub> - nullspace and x<sub>p</sub> is a particular solution.</li> </ul> | fon). Set free variables $+ x_p$ , where $x_n$ is in the                   |
| 4-5 | Inverse Matrices                                                                                                                                                                                                                                                                                                                                                     |                                                                            |
|     | <ul> <li>A is invertible iff it is square (nxn) and any one of the following is true</li> <li>1. A has rank n, i.e. A has n pivots.</li> <li>2. Ax = b has exactly 1 solution.</li> <li>3. Its columns/ rows are a basis for F<sup>n</sup>.</li> </ul>                                                                                                               | ):                                                                         |
|     | <b>Gauss-Jordan Elimination</b> : If A is an invertible nxn matrix, it is poss<br>into $(I_n A^{-1})$ by elementary row operations. Follow the same steps as<br>elimination, but on $(A I_n)$ . If A is not invertible, then such transformation<br>whose first n entries are zeros.                                                                                 | sible to transform (A I <sub>n</sub> )<br>in Gaussian<br>on leads to a row |

| Inner Products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| An <b>inner product</b> on a vector space V over F ( $\mathbb{R}$ or $\mathbb{C}$ ) is a function that assigns each ordered pair $(x, y) \in V$ a scalar $\langle x, y \rangle$ , such that for all $x, y, z \in V$ and $c \in F$ ,<br>1. $\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$<br>2. $\langle cx, y \rangle = c \langle x, y \rangle$ (The inner product is linear in its first component.) <sup>1</sup><br>3. $\overline{\langle x, y \rangle} = \langle y, x \rangle$ (Hermitian)<br>4. $\langle x, x \rangle > 0$ for $x > 0$ . (Positive)<br>V is called an inner product space, also an Euclidean/ unitary space if F is $\mathbb{R}/\mathbb{C}$ .<br>The inner product is conjugate linear in the second component:<br>1. $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$<br>2. $\langle x, cy \rangle = \overline{c} \langle x, y \rangle$<br>If $\langle x, y \rangle = \langle x, z \rangle$ for all $x \in V$ then $y = z$ . |  |  |
| The standard inner product (dot product) of $x = (a_1,, a_n)$ and $y = (b_1,, b_n)$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| $x \cdot y = \langle x, y \rangle = \sum_{i=1}^{n} a_i \overline{b_i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| The standard inner product for the space of continuous complex functions H on $[0,2\pi]$ is<br>$\langle f,g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t) \overline{g(t)} dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| A norm of a vector space is a real-valued function $\ \cdot\ $ satisfying<br>1. $\ cx\  = c\ x\ , c \ge 0$<br>2. $\ x\  \ge 0$ , equality iff $x = 0$ .<br>3. Triangle Inequality: $\ x + y\  \le \ x\  + \ y\ $<br>The distance between two vectors x, y is $\ x - y\ $ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| In an inner product space, the <b>norm</b> (length) of a vector is $  x   = \sqrt{\langle x, x \rangle}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| <u>Cauchy-Schwarz Inequality</u> : $ \langle x, y \rangle  \le   x     y  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Orthogonality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Two vectors are <b>orthogonal</b> (perpendicular) when their inner product is 0. A subset S is<br>orthogonal if any two distinct vectors in S are orthogonal, <b>orthonormal</b> if additionally all<br>vectors have length 1. Subspaces V and W are orthogonal if each $v \in V$ is orthogonal to<br>each $w \in W$ . The orthogonal complement $V^{\perp}(V \text{ perp})$ of V is the subspace containing all<br>vectors orthogonal to V. (Warning: $V^{\perp\perp} = V$ holds when V is finite-dimensional, not<br>necessarily when V is infinite-dimensional.) <i>When an orthonormal basis is chosen, every</i><br><i>inner product on finite-dimensional V is similar to the standard inner product.</i> The<br>conditions effectively determine what the inner product has to be.                                                                                                                                                                                                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |

<sup>&</sup>lt;sup>1</sup> In some books (like Algebra, by Artin) the inner product is linear in the second component and conjugate linear in the first. The standard inner product is sum of  $\bar{a}_i b_i$  instead.

Fundamental Theorem of Linear Algebra (Part 2): The nullspace is the orthogonal complement of the row space. The left nullspace is the orthogonal complement of the column space. **Projections** 5 - 3Take 1: Matrix and geometric viewpoint The [orthogonal] **projection** of b onto a is  $p = \frac{\langle b, a \rangle}{\|a\|^2} a = \frac{b \cdot a}{a \cdot a} a = \frac{a^* b}{\underline{a^* a}} a$ The last two expressions are for (row) vectors in  $\mathbb{C}^n$ , using the dot product. (Note: this shows that  $a \cdot b = ||a|| ||b|| \cos \theta$  for 2 and 3 dimensions.) Let S be a finite orthogonal basis. A vector y is the sum of its projections onto the vectors of S:  $y = \sum_{z=0}^{\infty} \frac{\langle y, v \rangle}{\|v\|^2} v$ <u>*Pf.*</u> Write y as a linear combination and take the inner product of y with a vector in the basis; use orthogonality to cancel all but one term. As a corollary, any orthogonal subset is linearly independent. To find the projection of b onto a finite-dimensional subspace W, first find an orthonormal basis for W (see section 5-5),  $\beta$ . The projection is  $p = \sum_{v \in P} \langle b, v \rangle v$ and the error is e = b - p. b is perpendicular to e, and p is the vector in W so that ||b - p|| is minimal. (Proof uses Pythagorean theorem) Bessel's Inequality: ( $\beta$  a basis for a subspace)  $\sum_{v \in \beta} \frac{\langle y, v \rangle^2}{\|v\|^2} \le \|y\|^2, \text{ equality iff } y = \sum_{v \in \beta} \frac{\langle y, v \rangle}{\|v\|^2} v$ If  $\beta = \{v_1, \dots, v_n\}$  is an orthonormal basis, then for any linear transformation T,  $([T]_{\beta})_{ij} =$  $\langle T(v_i), v_i \rangle.$ Alternatively: Let W be a subspace of  $\mathbb{C}^m$  generated by the linearly independent set  $\{a_1, \dots, a_n\}$ . Solving  $A^*(b - A\hat{x}) = 0 \Rightarrow A^*A\hat{x} = A^*b$ , the projection of a onto W is  $p = A\hat{x} = A(A^*A)^{-1}A^*b$ where P is the projection matrix. In the special case that the set is orthonormal,  $Qx \approx b \Rightarrow$  $\hat{x} = Q^T b, p = \underline{Q} \underline{Q} \underline{Q}^T b$ A matrix P is a projection matrix iff  $P^2 = P$ . Take 2: Linear transformation viewpoint If  $V = W_1 \bigoplus W_2$  then the **projection** on  $W_1$  along  $W_2$  is defined by  $T(x) = x_1$  when  $x = x_1 + x_2$ ;  $x_1 \in W_1, x_2 \in W_2$ T is an **orthogonal projection** if  $R(T)^{\perp} = N(T)$  and  $N(T)^{\perp} = R(T)$ . A linear operator T is an orthogonal projection iff  $T^2 = T = T^*$ .



| 5-5 | Orthogonal Bases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     | Gram-Schmidt Orthogonalization Process:<br>Let $S = \{v_1,, v_n\}$ be a linearly independent subset of V. Define $S' = \{w_1,, w_n\}$ by $v_1 = w_1$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|     | $w_k = v_k - \sum_{j=1}^{n-1} \frac{\langle y, v_j \rangle}{\ v_j^2\ } v_j$<br>Then S' is an orthogonal set having the same span as S. To make S' orthonormal, divide every vector by its length. (It may be easier to subtract the projections of $w_l$ on $w_k$ for all $l > k$ at step $k$ , like in elimination.)                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | <i>Ex.</i> Legendre polynomials $\frac{1}{\sqrt{2}}$ , $\sqrt{\frac{3}{2}}x$ , $\sqrt{\frac{5}{8}}(3x^2 - 1)$ , are an orthonormal basis for $\mathbb{R}[x]$ (integration from -1 to 1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|     | Factorization A=QR<br>From $a_1,, a_n$ , Gram-Schmidt constructs orthonormal vectors $q_1,, q_n$ . Then<br>A = QR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|     | $\begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} q_1 & \cdots & q_n \end{bmatrix} \begin{bmatrix} q_1^* a_1 & q_1^* a_2 & \cdots & q_1^* a_n \\ 0 & q_2^* a_2 & \ddots & q_2^* a_n \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & a_n^* a_n \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|     | Note R is upper triangular.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|     | Suppose $S = \{v_1,, v_k\}$ is an orthonormal set in n-dimensional inner product space V. Then<br>(a) S can be extended to an orthonormal basis $\{v_1,, v_n\}$ for V.<br>(b) If W=span(S), $S_1 = \{v_{k+1},, v_n\}$ is an orthonormal basis for $W^{\perp}$ .<br>(c) Hence, $V = W \bigoplus W^{\perp}$ and dim $(V) = \dim(W) + \dim(W^{\perp})$ .                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 5-6 | Adjoints and Orthogonal Matrices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|     | Let V be a finite-dimensional inner product space over F, and let $g: V \to F$ be a linear transformation. The unique vector $y \in V$ such that $g(x) = \langle x, y \rangle$ for all $x \in V$ is given by $y = \sum_{i=1}^{n} \overline{g(v_i)} v_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|     | Let $T: V \to W$ be a linear transformation, and $\beta$ and $\gamma$ be bases for inner product spaces V,<br>W. Define the <b>adjoint</b> of T to be the linear transformation $T^*: W \to V$ such that $[T^*]_{\gamma}^{\beta} = ([T]_{\beta}^{\gamma})^*$ . (See section 2.3) Then $T^*$ is the unique (linear) function such that $\langle T(x), y \rangle_W = \langle x, T^*(y) \rangle_V$ for all $x \in V, y \in W$ and $c \in F$ .<br>A linear operator T on V is an <b>isometry</b> if $  T(x)   =   x  $ for all $x \in V$ . If V is finite-<br>dimensional, T is <b>orthogonal</b> for V real and <b>unitary</b> for V complex. The corresponding<br>matrix representations, as well as properties of T, are described below. |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |

|            |                                                                                                                                                                                        | Commutative property                                  | Inverse property                                | Symmetry property                                                            |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------|
|            | Real                                                                                                                                                                                   | Normal                                                | Orthogonal                                      | Symmetric                                                                    |
|            |                                                                                                                                                                                        | $AA^T = A^T A$                                        | $A^T A = I$                                     | $A^T = A$                                                                    |
|            | Complex                                                                                                                                                                                | Normal                                                | Unitary                                         | Self-adjoint/ Hermitian                                                      |
|            |                                                                                                                                                                                        | $AA^* = A^*A$                                         | $A^*A = I$                                      | $A^* = A$                                                                    |
|            | Linear                                                                                                                                                                                 | $\langle Tv, Tw \rangle = \langle T^*v, T^*w \rangle$ | $\langle Tv, Tw \rangle = \langle v, w \rangle$ | $\langle Tv, w \rangle = \langle v, Tw \rangle$                              |
|            | I ransformation                                                                                                                                                                        | $  Iv   =   I^*x  $                                   | Iv   =   v  <br>(Iu)T(Iu) = uTu                 |                                                                              |
|            | A rool matrix () by                                                                                                                                                                    | <br>na arthanarmal aalumna ii                         | $\frac{1}{1} (0x)^2 (0y) = x^2 y$               | uara it is called an                                                         |
|            | orthogonal matr                                                                                                                                                                        | ix and its inverse is its tra                         | n ç ç — r. n ç is sy<br>ansnose                 |                                                                              |
|            | A complex matrix                                                                                                                                                                       | U has orthonormal column                              | ons iff $U^*U = I$ . If U i                     | s square it is a <b>unitary</b>                                              |
|            | matrix, and its inv                                                                                                                                                                    | erse is its adjoint.                                  |                                                 | , , , , , , , , , , , , , , , , , , ,                                        |
|            | If U has orthonor                                                                                                                                                                      | mal columns it leaves leng                            | gths unchanged ( $  U $                         | $\ x\  = \ x\ $ for every x) and                                             |
|            | preserves dot pro                                                                                                                                                                      | oducts $(Ux)^T(Uy) = x^T y$ .                         |                                                 |                                                                              |
|            | $A^*A$ is invertible if                                                                                                                                                                | ff A has linearly independ                            | ent columns. More g                             | enerally, $A^*A$ has the same                                                |
|            | rank as A.                                                                                                                                                                             |                                                       |                                                 |                                                                              |
| <b>F 7</b> |                                                                                                                                                                                        |                                                       |                                                 |                                                                              |
| 5-7        | Geometry of O                                                                                                                                                                          | rthogonal Operators                                   |                                                 |                                                                              |
|            | A rigid motion is                                                                                                                                                                      | s a function $f \cdot V \to V$ satis                  | fying $  f(x) - f(y)  $                         | $=    \mathbf{x} - \mathbf{y}   $ for all $\mathbf{x} \mathbf{y} \in V$ if V |
|            | is finite-dimensio                                                                                                                                                                     | nal <i>f</i> is also called an <b>iso</b>             | metry. Each rigid m                             | otion is the composition of a                                                |
|            | translation and an orthogonal operator.                                                                                                                                                |                                                       |                                                 |                                                                              |
|            |                                                                                                                                                                                        |                                                       |                                                 |                                                                              |
|            | A (orthogonal) lin                                                                                                                                                                     | ear operator is a                                     |                                                 |                                                                              |
|            | 1. rotation (around $W^{\perp}$ ) if there exists a 2-dimensional subspace $W \subseteq V$ and an                                                                                      |                                                       |                                                 | bspace $W \subseteq V$ and an                                                |
|            | orthonorm                                                                                                                                                                              | al basis $\beta = \{x_1, x_2\}$ for W                 | $\theta$ , and $\theta$ such that               |                                                                              |
|            | $T\left(\begin{vmatrix} x_1 \\ x_2 \end{vmatrix}\right) = \begin{vmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix}.$ |                                                       |                                                 |                                                                              |
|            | and $T(y) = y$ for $y \in W^{\perp}$ .                                                                                                                                                 |                                                       |                                                 |                                                                              |
|            | 2. reflection                                                                                                                                                                          | (about $W^{\perp}$ ) if W is a one-                   | -dimensional subspa                             | ice of V such that $T(x) = -x$                                               |
|            | for all $x \in$                                                                                                                                                                        | W and $T(y) = y$ for all $y \in$                      | $\equiv W^{\perp}$ .                            |                                                                              |
|            | Structured Theore                                                                                                                                                                      | m for Orthogonal Operat                               |                                                 |                                                                              |
|            | 1 Let The a                                                                                                                                                                            | n orthogonal operator on                              | <u>JIS.</u><br>finite-dimensional re            | al inner product space V                                                     |
|            | There exis                                                                                                                                                                             | its a collection of pairwise                          | orthogonal T-invaria                            | ant subspaces $\{W_1, \dots, W_m\}$ of                                       |
|            | V of dimension 1 or 2 such that $V = W_1 \oplus \cdots \oplus W_m$ . Each $T_{W_1}$ is a rotation or                                                                                   |                                                       |                                                 |                                                                              |
|            | reflection; the number of reflections is even/odd when $det(T) = 1/det(T) = -1$ . It is                                                                                                |                                                       |                                                 |                                                                              |
|            | possible to choose the subspaces so there is 0 or 1 reflection.                                                                                                                        |                                                       |                                                 |                                                                              |
|            | 2. If A is orthogonal there exists orthogonal Q such that                                                                                                                              |                                                       |                                                 |                                                                              |
|            | $\lceil I_p \rceil$                                                                                                                                                                    |                                                       |                                                 |                                                                              |
|            |                                                                                                                                                                                        | $-I_q$                                                |                                                 |                                                                              |
|            | $QTQ^{-1} =$                                                                                                                                                                           | $R_{\theta_1}$                                        | where p, q are the d                            | imensions of N(T-I), N(T+I)                                                  |
|            |                                                                                                                                                                                        | ×.                                                    |                                                 |                                                                              |
|            | l                                                                                                                                                                                      | $R_{\theta_n}$                                        |                                                 |                                                                              |
|            | and $R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ .<br>Fuller's Theorem: Every orthonormal 3x3 matrix represents a rotation     |                                                       |                                                 |                                                                              |
|            |                                                                                                                                                                                        |                                                       |                                                 | otation                                                                      |
|            |                                                                                                                                                                                        |                                                       |                                                 |                                                                              |
|            | Alternate method to factor QR:                                                                                                                                                         |                                                       |                                                 |                                                                              |
|            | Q is a product of reflection matrices $I - 2uu^T$ and plane rotation matrices (Givens rotation)                                                                                        |                                                       |                                                 |                                                                              |

in the form (1s on diagonal. Shown are rows/ columns i, j).

$$Q_{ij} = \begin{bmatrix} \ddots & \cos(\theta) & -\sin(\theta) \\ & \ddots & \\ \sin(\theta) & \cos(\theta) \\ & \ddots \end{bmatrix}$$
  
Multiply by  $Q_{ij}$  to produce 0 in the (i,j) position, as in elimination.  
 $\left( \prod Q_{ij} \right) A = R \Rightarrow A = \left( \prod Q_{ij}^{-1} \right) R$ 

$$\left(\prod Q_{ij}\right)A = R \Rightarrow A = \underbrace{\left(\prod Q_{ij}^{-1}\right)}_{Q} B$$

where the factors are reversed in the second product.

| 6   | Determinants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 6-1 | aracterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|     | The <b>determinant</b> (denoted   <i>A</i>   or det ( <i>A</i> )) is a function from the set of square matrices to the field F, satisfying the following conditions:<br>1. The determinant of the nxn identity matrix is 1, i.e. det( <i>I</i> ) = 1.<br>2. If two rows of A are equal, then det( <i>A</i> ) = 0, i.e. the determinant is alternating.<br>3. The determinant is a linear function of each row separately, i.e. it is n-linear. That is, if $a_1,, a_n, u, v$ are rows with n elements,<br>$det \begin{pmatrix} a_1 \\ \vdots \\ a_{r-1} \\ u + kv \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix} = det \begin{pmatrix} a_1 \\ \vdots \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix} + k det \begin{pmatrix} a_1 \\ \vdots \\ a_{r-1} \\ v \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix}$ <i>These properties completely characterize the determinant.</i> |  |  |
|     | <ul> <li>4. Adding a multiple of one row to another row leaves det(A) unchanged.</li> <li>5. The determinant changes sign when two rows are exchanged.</li> <li>6. A matrix with a row of zeros has det(A) = 0.</li> <li>7. If A is triangular then det(A) = a<sub>11</sub>a<sub>22</sub> ··· a<sub>nn</sub> is the product of diagonal entries.</li> <li>8. A is singular iff det(A) = 0.</li> <li>9. det(AB) = det(A) det (B)</li> <li>10. A<sup>T</sup> has the same determinant as A. Therefore the preceding properties are true if "row" is replaced by "column"</li> </ul>                                                                                                                                                                                                                                                                           |  |  |
| 6-2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 6-2 | Calculation<br>1. The Big Formula: Use n-linearity and expand everything.<br>$det(A) = \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) A_{1,\sigma(1)} A_{2,\sigma(2)} \cdots A_{n,\sigma(n)}$ where the sum is over all <i>n</i> ! permutations of {1,n} and sgn( $\sigma$ ) = {1, if $\sigma$ is even                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|     | 2. Cofactor Expansion: Recursive, useful with many zeros, perhaps with induction.<br>(Row)<br>$det(A) = \sum_{j=1}^{n} a_{ij}C_{ij} = \sum_{j=1}^{n} a_{ij}(-1)^{i+j} det(M_{ij})$ (Column)<br>$det(A) = \sum_{i=1}^{n} a_{ij}C_{ij} = \sum_{i=1}^{n} a_{ij}(-1)^{i+j} det(M_{ij})$ where $M_{ij}$ is A with the <i>i</i> th row and <i>j</i> th column removed.<br>3. Pivots:<br>If the pivots are $d_1, d_2,, d_n$ , and $PA = LU$ , (P a permutation matrix, L is lower triangular, U is upper triangular)<br>$det(A) = det(P) (d_1 d_2 d_n)$ where $det(P)=1/-1$ if P corresponds to an even/ odd                                                                                                                                                                                                                                                       |  |  |
|     | permutation.<br>a. Let $A_k$ denote the matrix consisting of the first k rows and columns of A. If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |

$$\begin{bmatrix} a_{1} & a_{2} & \cdots & a_{n} \\ a_{1} & a_{2} & b_{2} \\ det(A_{k-1}) \end{bmatrix}$$
4. By Blocks:  
a  $\begin{bmatrix} A & B \\ B \\ C & B \end{bmatrix} = \begin{vmatrix} A & B \\ 0 & D & CA^{-1}B \end{vmatrix} = |A||D - CA^{-1}B|$ 
Tips and Tricks  
Vandermonde determinant (look at when the determinant is 0, gives factors of polynomial)  

$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \\ x_{n}^{2} & x_{n}^{2} & \cdots & x_{n-1}^{2} \\ x_{n}^{2} & x_{n}^{2} & \cdots & x_{n-1}^{2} \\ a_{1} & a_{2} & \cdots & a_{n-1} \\ a_{n-1} & a_{0} & \cdots & a_{n-2} \\ a_{1} & a_{2} & \cdots & a_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x & x & \cdots & a_{n} \\ \vdots & x & \cdots & a_{n} \\ \vdots & x & \cdots & a_{n} \\ \vdots & x & \cdots & a_{n} \\ x & a_{2} & \cdots & x_{n} \\ \vdots & x & \cdots & a_{n} \\ x & a_{2} & \cdots & a_{n} \\ \vdots & x & \cdots & a_{n} \\ x & a_{2} & \cdots & a_{n} \\ \vdots & x & \cdots & a_{n} \\ a_{n-1} & a_{0} & \cdots & a_{n-2} \\ a_{n-1} & a_{2} & \cdots & a_{n} \\ = \prod_{l=0}^{n-1} \sum_{k=0}^{n-1} (e^{\frac{2\pi i}{m}})^{k} a_{k}$$

$$\begin{bmatrix} a_{1} & x & \cdots & x \\ x & a_{2} & \cdots & x \\ \vdots & x & \cdots & a_{n} \\ x & a_{2} & \cdots & a_{n} \\ \vdots & x & \cdots & a_{n} \\ = (a_{1} - x) \cdots (a_{n} - x) + x \sum_{l=1}^{n} \prod_{l=1}^{n-1} (a_{l} - x)$$
For a real matrix A,  $det(l + A^{2}) = \|det(l + iA)\|^{2} \ge 0$ 
If A has eigenvalues  $\lambda_{1}, \dots, \lambda_{n}$ , then  $det(l + A^{2}) = \|det(l + iA)\|^{2} \ge 0$ 
If A has eigenvalues  $\lambda_{1}, \dots, \lambda_{n}$ , then  $det(l + M) = 1 + tr(M)$ 
6-3
Properties and Applications
$$\frac{Cramer's Rule:}{If A is a nxn matrix and det(A) \neq 0 then Ax = b has the unique solution given by  $x_{1} = \frac{det(R_{1})}{det(A)}, 1 \le i \le n$ 
Where  $B_{l}$  is A with the *l*h column replaced by b.
Inverses:
Let C be the cofactor matrix of A. Then
$$A^{-1} = \frac{C^{T}}{det(A)}$$
The cross product of  $u = (u_{1}, u_{2}, u_{3})$  and  $v = (v_{1}, v_{2}, v_{3})$  is  $u \times v = \begin{vmatrix} i & j & k \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \end{vmatrix}$ 
a vector perpendicular to u and v (direction determined by the right-hand rule) with length$$

| $\ u\ \ v\  \sin\theta .$                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Geometry:<br>The area of a parallelogram with vertices sides $\langle x_1, y_1 \rangle$ , $\langle x_2, y_2 \rangle$ is $\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$ . (Oriented areas satisfy the same properties as determinants.)<br>The area of a parallelepiped with sides $u = (u_1, u_2, u_3)$ , $v = (v_1, v_2, v_3)$ , and $u = (w_1, w_2, w_3)$<br>is $(u \times v) : w = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_2 \end{vmatrix}$ |
| The <b>Jacobian</b> used to change coordinate systems in integrals is $\begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$                                                           |

| 7   | Eigenvalues and Eigenvectors, Diagonalization                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 7-1 | Eigenvalues and Eigenvectors                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|     | Let T be a linear operator (or matrix) on V. A nonzero vector $v \in V$ is an (right) <b>eigenvector</b> of T if there exists a scalar $\lambda$ , called the <b>eigenvalue</b> , such that $T(v) = \lambda v$ . The <b>eigenspace</b> of $\lambda$ is the set of all eigenvectors corresponding to $\lambda$ : $E_{\lambda} = \{x \in V   T(x) = \lambda x\}$ .                                                                                                                      |  |  |
|     | The characteristic polynomial of a matrix A is det $(A - \lambda I)$ . The zeros of the polynomial are the eigenvalues of A. For each eigenvalue solve $Av = \lambda v$ to find linearly independent eigenvalues that span the eigenspace.                                                                                                                                                                                                                                            |  |  |
|     | Multiplicity of an eigenvalue $\lambda$ :<br>1. Algebraic $(\mu_{alg})$ - the multiplicity of the root $\lambda$ in the characteristic polynomial of A.<br>2. Geometric $(\mu_{geom})$ - the dimension of the eigenspace of $\lambda$ . $1 \le \dim(E_{\lambda}) \le \mu_{alg}(\lambda)$ .<br>$\dim(E_{\lambda}) = \dim(N(A - \lambda I)) = n - \operatorname{rank}(A - \lambda I)$ .                                                                                                 |  |  |
|     | For real matrices, complex eigenvalues come in conjugate pairs.                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|     | The product of the eigenvalues (counted by algebraic multiplicity) equals $det(A)$ .<br>The sum of the eigenvalues equals the trace of A.                                                                                                                                                                                                                                                                                                                                             |  |  |
|     | An eigenvalue of 0 implies that A is singular.                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|     | Spectral Mapping Theorem:<br>Let A be a nxn matrix with eigenvalues $\lambda_1,, \lambda_n$ (not necessarily distinct, counted according to algebraic multiplicity), and P be a polynomial. Then the eigenvalues of $P(A)$ are $P(\lambda_1),, P(\lambda_n)$ .                                                                                                                                                                                                                        |  |  |
|     | <u>Gerschgorin's Disk Theorem</u> :<br>Every eigenvalue of A is strictly in a circle in the complex plane centered at some diagonal entry $A_{ii}$ with radius $r_i = \sum_{j \neq i}  a_{ij} $ (because $(\lambda - A_{ii})x_i = \sum_{j \neq i} a_{ij}x_j$ ).                                                                                                                                                                                                                       |  |  |
|     | <u>Perron-Frobenius Theorem</u> :<br>Any square matrix with positive entries has a unique eigenvector with positive entries (up to<br>multiplication by a positive factor), and the corresponding eigenvalue has multiplicity one<br>and has strictly greater absolute value than any other eigenvalue.<br><i>Generalization:</i> Holds for any irreducible matrix with nonnegative entries, i.e. there is no<br>reordering of rows and columns that makes it block upper triangular. |  |  |
|     | A left eigenvalue of A satisfies $v^T A = \lambda v$ instead. Biorthogonality says that any right eigenvector of A associated with $\lambda$ is orthogonal to all left eigenvectors of A associated with eigenvalues other than $\lambda$ .                                                                                                                                                                                                                                           |  |  |
| 7-2 | Invariant and T-Cyclic Subspaces                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|     | The subspace $C_x = Z(x;T) = W = \text{span}(\{x,T(x),T^2(x),\})$ is the <b>T-cyclic subspace</b><br>generated by x. W is the smallest T-invariant subspace containing x.<br>1. If W is a T-invariant subspace, the characteristic polynomial of T <sub>W</sub> divides that of T.<br>2. If k=dim(W) then $\beta_x = \{x, T(x), \dots, T^{k-1}(x)\}$ is a basis for W, called the T-cyclic basis                                                                                      |  |  |

| 7-5 | Normal Matrices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Simultaneous Triangulation and Diagonalization<br>Commuting matrices share eigenvectors, i.e. given that A and B can be diagonalized, there<br>exists a matrix S that is an eigenvector matrix for both of them iff $AB = BA$ . Regardless, AB<br>and BA have the same set of eigenvalues, with the same multiplicities.<br>More generally, let $\mathfrak{F}$ be a commuting family of triangulable/ diagonalizable linear operators<br>on V. There exists an ordered basis for V such that every operator in $\mathfrak{F}$ is simultaneously<br>represented by a triangular/ diagonal matrix in that basis. |
|     | corresponding eigenvalues into the diagonal entries of $\Lambda$ . Then<br>$A = S\Lambda S^{-1}$ or $QDQ^{-1}$<br>For a linear transformation, this corresponds to<br>$[T]_{\beta} = [I]_{\gamma}^{\beta}[T]_{\gamma}[I]_{\beta}^{\gamma}$                                                                                                                                                                                                                                                                                                                                                                     |
|     | <ul> <li>T is diagonalizable iff both of the following are true:</li> <li>1. The characteristic polynomial of T splits (into linear factors).</li> <li>2. For each eigenvalue, the algebraic and geometric multiplicities are equal. Hence there are n linearly independent eigenvectors</li> <li>T is diagonalizable iff V is the direct sum of eigenspaces of T.</li> <li>To diagonalize A, put the <i>n</i> linearly independent eigenvectors into the columns of A. Put the</li> </ul>                                                                                                                     |
| /-4 | Diagonalization<br>T is <b>diagonalizable</b> if there exists an ordered basis $\beta$ for V such that $[T]_{\beta}$ is diagonal. A is<br>diagonalizable if there exists an invertible matrix S such that $S^{-1}AS = \Lambda$ is a diagonal matrix.<br>Let $\lambda_1,, \lambda_k$ be the eigenvalues of A. Let $S_i$ be a linearly independent subset of $E_{\lambda_i}$ for<br>$1 \le i \le k$ . Then $\bigcup S_i$ is linearly independent. (Loosely, eigenvectors corresponding to<br>different eigenvalues are linearly independent.)                                                                    |
|     | A matrix is <b>triangulable</b> if it is similar to an upper triangular matrix.<br>(Schur) A matrix is triangulable iff the characteristic polynomial splits over F. A real/<br>complex matrix A is orthogonally/ unitarily equivalent to a real/ complex upper triangular<br>matrix. (i.e. $A = QTQ^{-1}$ , Q is orthogonal/ unitary)<br><u>Pf.</u> T=L <sub>A</sub> has an eigenvalue iff T* has. Induct on dimension n. Choose an eigenvector z of<br>T*, and apply the induction hypothesis to the T-invariant subspace $\text{span}(z)^{\perp}$ .                                                         |
| 7-3 | Triangulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | <u>Cayley-Hamilton Theorem</u> :<br>A satisfies its own characteristic equation: if $f(t)$ is the characteristic polynomial of A, then $f(A) = 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | <ul> <li>generated by x. If ∑<sub>i=0</sub><sup>k</sup> a<sub>i</sub>T<sup>i</sup>(x) = 0 with a<sub>k</sub> = 1, the characteristic polynomial of T<sub>W</sub> is (-1)<sup>k</sup> ∑<sub>i=0</sub><sup>k</sup> a<sub>i</sub>t<sup>i</sup>.</li> <li>3. If V = W<sub>1</sub>⊕W<sub>2</sub> … W<sub>k</sub>, each W<sub>i</sub> is a T-invariant subspace, and the characteristic polynomial of T<sub>Wi</sub> is f<sub>i</sub>(t), then the characteristic polynomial of T is ∏<sub>i=1</sub><sup>k</sup> f<sub>i</sub>(t).</li> </ul>                                                                        |

(For review see 5-6)

A nxn [real] symmetric matrix:

- 1. Has only real eigenvalues.
- 2. Has eigenvalues that can be chosen to be orthonormal.  $(S = Q, Q^{-1} = Q^T)$  (See below.)
- 3. Has n linearly independent eigenvectors so can be diagonalized.
- 4. The number of positive/ negative eigenvalues equals the number of positive/ negative pivots.

For real/ complex finite-dimensional inner product spaces, T is symmetric/ normal iff there exists an orthonormal basis for V consisting of eigenvectors of T.

## Spectral Theorem (Linear Transformations)

Suppose T is a normal linear operator  $(T^*T = TT^*)$  on a finite-dimensional real/ complex inner product space V with distinct eigenvalues  $\lambda_1, ..., \lambda_n$  (its spectrum). Let  $W_i$  be the eigenspace of T corresponding to  $\lambda_i$  and  $T_i$  the orthogonal projection of V on  $W_i$ .

- 1. T is diagonalizable and  $V = W_1 \oplus \cdots \oplus W_n$ .
- 2.  $W_i$  is orthogonal to the direct sum of  $W_j$  with  $j \neq i$ .
- 3. There is an orthonormal basis of eigenvectors.
- 4. Resolution of the identity operator:  $I = T_1 + \dots + T_n$
- 5. Spectral decomposition:  $T = \lambda_1 T_1 + \dots + \lambda_k T_n$
- <u>*Pf.*</u> The triangular matrix in the proof of Schur's Theorem is actually diagonal.
  - 1. If  $Ax = \lambda x$  then  $A^*x = \overline{\lambda} x$ .
  - 2. W is T-invariant iff  $W^{\perp}$  is  $T^*$ -invariant.
  - 3. Take a eigenvector v; let W = span(v). From (1) v is an eigenvector of  $T^*$ ; from (2)  $W^{\perp}$  is T-invariant.
  - 4. Write  $V = W \oplus W^{\perp}$ . Use induction hypothesis on  $W^{\perp}$ .

(Matrices)

Let A be a normal matrix ( $A^*A = AA^*$ ). Then A is diagonalizable with an orthonormal basis of eigenvectors:

 $A = U\Lambda U^*$ 

where  $\Lambda$  is diagonal and U in unitary.

| Type of Matrix           | Condition   | Factorization                                        |
|--------------------------|-------------|------------------------------------------------------|
| Hermitian (Self-adjoint) | $A^* = A$   | $A = U\Lambda U^{-1}$                                |
|                          |             | U unitary, $\Lambda$ real diagonal                   |
|                          |             | Real eigenvalues (because                            |
|                          |             | $\lambda v^* v = v^* A v = \overline{\lambda} v^* v$ |
| Unitary                  | $A^*A = I$  | $A = U\Lambda U^{-1}$                                |
|                          |             | U unitary, Λ diagonal                                |
|                          |             | Eigenvalues have absolute                            |
|                          |             | value 1                                              |
| Symmetric (real)         | $A^T = A$   | $A = Q\Lambda Q^{-1}$                                |
|                          |             | Q orthogonal, $\Lambda$ real                         |
|                          |             | diagonal                                             |
|                          |             | Real eigenvalues                                     |
| Orthogonal (real)        | $A^T A = I$ | $A = Q\Lambda Q^{-1}$                                |
|                          |             | Q unitary, Λ diagonal                                |
|                          |             | Eigenvalues have absolute                            |
|                          |             | value 1                                              |

| 7-6 | Positive Definite Matrices and Operators                                                                                                                                                                                                                                                                                    |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     | A real matrix A is <b>positive (semi)definite</b> if $x^*Ax > 0$ ( $x^*Ax \ge 0$ ) for every nonzero vector x.<br>A linear operator T on a finite-dimensional inner product space is positive (semi)definite if T is self-adjoint and $\langle T(x), x \rangle > 0$ ( $\langle T(x), x \rangle \ge 0$ ) for all $x \ne 0$ . |  |  |  |
|     | <ul> <li>The following are equivalent:</li> <li>1. A is positive definite.</li> <li>2. All eigenvalues are positive.</li> <li>3. All upper left determinants are positive.</li> <li>4. All pivots are positive.</li> </ul>                                                                                                  |  |  |  |
|     | Every positive definite matrix factors into                                                                                                                                                                                                                                                                                 |  |  |  |
|     | $A = LDU' = LDL^{T}$                                                                                                                                                                                                                                                                                                        |  |  |  |
|     | with positive proofs in D. The <b>Cholesky factorization</b> is $A = (I_2 \sqrt{D}) (I_2 \sqrt{D})^T$                                                                                                                                                                                                                       |  |  |  |
|     | $A = (L \vee D)(L \vee D)$                                                                                                                                                                                                                                                                                                  |  |  |  |
| 7-7 | Singular Value Decomposition                                                                                                                                                                                                                                                                                                |  |  |  |
|     | Even $m \times n$ matrix A has a singular value decomposition in the form                                                                                                                                                                                                                                                   |  |  |  |
|     | $AV = U\Sigma \Rightarrow A = U\Sigma V^{-1} = U\Sigma V^*$                                                                                                                                                                                                                                                                 |  |  |  |
|     | $\sigma_1$                                                                                                                                                                                                                                                                                                                  |  |  |  |
|     | where U and V are unitary matrices and $\Sigma = \begin{bmatrix} \ddots \\ \sigma \end{bmatrix}$ is diagonal. The singular values                                                                                                                                                                                           |  |  |  |
|     | $\sigma_1, \dots, \sigma_r$ ( $\sigma_k = 0$ for $k > r = \operatorname{rank}(A)$ ) are positive and are in decreasing order, with zeros at the end (not considered singular values).                                                                                                                                       |  |  |  |
|     | bases $\beta = \{v_1, \dots, v_n\}$ and $\gamma = \{u_1, \dots, u_m\}$ such that<br>$T(v_i) = \{\sigma_i u_i \text{ if } 1 \le i \le r\}$                                                                                                                                                                                   |  |  |  |
|     | Letting $\beta', \gamma'$ be the standard ordered bases for V, W,                                                                                                                                                                                                                                                           |  |  |  |
|     | $AV = U\Sigma \Leftrightarrow [T]^{\gamma'}_{\beta'}[I]^{\beta'}_{\beta} = [I]^{\gamma'}_{\gamma}[T]^{\gamma}_{\beta}$                                                                                                                                                                                                      |  |  |  |
|     | Orthogonal elements in the basis are sent to orthogonal elements; the singular values give the factors the lengths are multiplied by.                                                                                                                                                                                       |  |  |  |
|     | To find the SVD:                                                                                                                                                                                                                                                                                                            |  |  |  |
|     | 1. Diagonalize $A^*A$ , choosing orthonormal eigenvectors. The eigenvalues are the squares of the singular values and the eigenvector matrix is V.                                                                                                                                                                          |  |  |  |
|     | $A^*A = V\Sigma^2 V^* = V \begin{vmatrix} \sigma_1^2 \\ & \ddots \\ & & \sigma_1^2 \end{vmatrix} V^*$                                                                                                                                                                                                                       |  |  |  |
|     | 2. Similarly,                                                                                                                                                                                                                                                                                                               |  |  |  |
|     | $AA^* = U\Sigma^2 U^*$                                                                                                                                                                                                                                                                                                      |  |  |  |
|     | images of $v_1,, v_n$ under left multiplication by A: $u_i = Av_i$ , unless this gives 0.                                                                                                                                                                                                                                   |  |  |  |
|     | 3. If A is a mxn matrix:                                                                                                                                                                                                                                                                                                    |  |  |  |
|     | <ul> <li>a. The first r columns of V generate the row space of A.</li> <li>b. The last n-r columns generate the nullspace of A.</li> </ul>                                                                                                                                                                                  |  |  |  |
|     | c. The first r columns of U generate the column space of A.                                                                                                                                                                                                                                                                 |  |  |  |
|     | d. The last m-r columns of U generate the left nullspace of A.                                                                                                                                                                                                                                                              |  |  |  |

| The <b>pseudoinvers</b><br>x in the row space s<br>transformation, rep<br>1. $AA^+$ is the p<br>2. $A^+A$ is the p                   | The <b>pseudoinverse</b> of a matrix A is the matrix $A^+$ such that for $y \in C(A)$ , $A^+y$ is the vector x in the row space such that $Ax = y$ , and for $y \in N(A^T)$ , $A^+y = 0$ . For a linear transformation, replace $C(A)$ with $R(T)$ and $N(A^T)$ with $R(T)^{\perp}$ . In other words,<br>1. $AA^+$ is the projection matrix onto the column space of A.<br>2. $A^+A$ is the projection matrix onto the row space of A. |                                                                                                                                                                |                |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Finding the pseudo                                                                                                                   | inverse: $A^+ = V\Sigma^+U^* =$                                                                                                                                                                                                                                                                                                                                                                                                        | $= V \begin{bmatrix} \sigma_1^{-1} & & \\ & \ddots & \\ & & \sigma_r^{-1} \end{bmatrix} U^*$                                                                   |                |
| The shortest least s<br>See Section 5-4 for<br>The <b>polar decomp</b><br>where Q is unitary of<br>the SVD:<br>If A is invertible, Q | equares solution to <i>A</i><br>a picture.<br><b>osition</b> of a complex<br>(orthogonal) and H is<br><i>A</i><br>is positive definite an                                                                                                                                                                                                                                                                                              | $x = b$ is $x^+ = A^+b$ .<br>(real) matrix A is<br>A = QH<br>semi-positive definite Hermitian (sy<br>$= (UV^*)(V\Sigma V^*)$<br>d the decomposition is unique. | /mmetric). Use |
| Summary                                                                                                                              | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |                |
| Type of matrix                                                                                                                       | Eigenvalues                                                                                                                                                                                                                                                                                                                                                                                                                            | Eigenvectors (can be chosen)                                                                                                                                   | ]              |
| Real symmetric                                                                                                                       | Real                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                |                |
| Orthogonal                                                                                                                           | Absolute value 1                                                                                                                                                                                                                                                                                                                                                                                                                       | Orthogonal                                                                                                                                                     |                |
| Skew-symmetric                                                                                                                       | (Pure) imaginary                                                                                                                                                                                                                                                                                                                                                                                                                       | Orthogonal                                                                                                                                                     |                |
| Positive definite                                                                                                                    | Positive                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |                |
|                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                              | ]              |

г

Т

| 8   | Canonical Forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | <ul> <li>A canonical form is a standard way of presenting and grouping linear transformations or matrices. Matrices sharing the same canonical form are similar; each canonical form determines an equivalence class.</li> <li>Similar matrices share</li> <li>Eigenvalues</li> <li>Trace and determinant</li> <li>Rank</li> <li>Number of independent eigenvectors</li> <li>Jordan/ Rational canonical form</li> </ul>                                                                                                                                                                                                                                                                                                                                              |
| 8-1 | Decomposition Theorems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | A <b>minimal polynomial</b> of T is the (unique) monic polynomial $p(t)$ of least positive degree such that $p(T) = T_0$ . If $g(T) = T_0$ then $p(t) g(t)$ ; in particular, $p(t)$ divides the characteristic polynomial of T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | Let W be an invariant subspace for T and let $x \in V$ . The <b>T-conductor</b> ("T-stuffer") of x into W is the set $S_T(x; W)$ which consists of all polynomials g over F such that $(g(T))(x) \in W$ . (It may also refer to the monic polynomial of least degree satisfying the condition.)<br>If $W = \{0\}$ , T is called the <b>T-annihilator</b> of x, i.e. it is the (unique) monic polynomial $p(t)$ of least degree for which $p(T)(x) = 0$ . The T-conductor/ annihilator divides any other polynomial with the same property.<br>The T-annihilator $p(t)$ is the minimal polynomial of T <sub>W</sub> , where W is the T-cyclic subspace generated by x. The characteristic polynomial and minimal polynomial of T <sub>W</sub> are equal or negatives. |
|     | <ul> <li>Let L be a linear operator on V, and W a subspace of V. W is <b>T-admissible</b> if</li> <li>1. W is invariant under T.</li> <li>2. If <i>f</i>(<i>T</i>)<i>x</i> ∈ <i>W</i>, there exists <i>y</i> ∈ <i>W</i> such that <i>f</i>(<i>T</i>)(<i>x</i>) = <i>f</i>(<i>T</i>)(<i>y</i>).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | Let T be a linear operator on finite-dimensional V.<br><u>Primary Decomposition Theorem</u> (leads to Jordan form):<br>Suppose the minimal polynomial of T is<br>k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | $p(t) = \prod_{i} p_i^{r_i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | <ul> <li>where p<sub>i</sub> are distinct irreducible monic polynomials and r<sub>i</sub> are positive integers. Let W<sub>i</sub> be the null space of p<sub>i</sub>(T)<sup>r<sub>i</sub></sup> (a generalized eigenspace). Then</li> <li>1. V = W<sub>1</sub> ⊕ … ⊕ W<sub>k</sub>.</li> <li>2. Each W<sub>i</sub> is invariant under T.</li> <li>3. The minimal polynomial of T<sub>W<sub>i</sub></sub> is p<sub>i</sub><sup>r<sub>i</sub></sup>.</li> </ul>                                                                                                                                                                                                                                                                                                       |
|     | <u><i>Pf.</i></u> Let $f_i = \frac{p}{p_i^{r_i}}$ . These polynomial have gcd 1, so we can find $g_i$ so that $\sum_{i=1}^n f_i g_i = 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | $E_i = f_i(T)g_i(T)$ is the projection onto $W_i$ . So the direct sum of the eigenspaces is the vector space V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|     | <ul> <li><u>Cyclic Decomposition Theorem</u> (leads to rational canonical form):<sup>2</sup></li> <li>Let T be a linear operator on finite-dimensional V and W<sub>0</sub> (often taken to be {0}) a proper admissible subspace of V. There exist nonzero x<sub>1</sub>,, x<sub>r</sub> with (unique) T-annihilators p<sub>1</sub>,, p<sub>r</sub>, called <b>invariant factors</b> such that <ol> <li>V = W<sub>0</sub> ⊕ Z(x<sub>1</sub>; T) ⊕ … ⊕ Z(x<sub>r</sub>; T)</li> <li>p<sub>k</sub> p<sub>k-1</sub> for 2 ≤ k ≤ r.</li> </ol> </li> <li>Pf. <ol> <li>There exist nonzero vectors β<sub>1</sub>,, β<sub>r</sub> in V such that <ol> <li>V = W<sub>0</sub> + Z(β<sub>1</sub>; T) + … + Z(β<sub>r</sub>; T)</li> <li>If 1 ≤ k ≤ r and W<sub>k</sub> = W<sub>0</sub> + Z(β<sub>1</sub>; T) + … + Z(β<sub>k</sub>; T) then p<sub>k</sub> has maximum degree among all T-conductors into W<sub>k-1</sub>.</li> </ol> </li> <li>Let f = s(β; W<sub>k-1</sub>). If f(T)(β) = β<sub>0</sub> + Σ<sub>1≤i<k< sub=""> g<sub>i</sub>(T)(β<sub>i</sub>), β<sub>i</sub> ∈ W<sub>i</sub> then g<sub>i</sub> = fh<sub>i</sub> for some h<sub>i</sub> and f = f(T)(γ<sub>0</sub>) for some γ<sub>0</sub> ∈ W<sub>0</sub>. (Stronger form of condition that each is T-admissible.)</k<></sub></li> <li>Existence: Let x<sub>k</sub> = β<sub>k</sub> - γ<sub>0</sub> - Σ<sub>1≤i<k< sub=""> h<sub>i</sub>β<sub>i</sub>. β<sub>k</sub> - x<sub>k</sub> ∈ W<sub>k-1</sub>, β<sub>k</sub> ∈ W<sub>k</sub> implies s(x<sub>k</sub>; W<sub>k-1</sub>) = s(β<sub>k</sub>; W<sub>k-1</sub>) = p<sub>k</sub> and W<sub>k</sub> = W<sub>0</sub> + Z(x<sub>1</sub>; T) + … + Z(x<sub>k</sub>; T).</k<></sub></li> <li>Uniqueness: Induct. Show p<sub>1</sub> is unique. If p<sub>i</sub> is unique, operate p<sub>i+1</sub> on both sides of 2 decompositions of V to show that p<sub>i+1</sub> q<sub>i+1</sub> and vice versa.</li> </ol></li></ul> |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 8-2 | Jordan Canonical Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|     | $[T]_{\beta} \text{ is a Jordan canonical form of T if} \\ [T]_{\beta} = \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_n \end{bmatrix} \\ \text{where each } A_i \text{ is a Jordan block in the form} \\ \begin{bmatrix} \lambda & 1 & \cdots & 0 & 0 \\ 0 & \lambda & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & \cdots & 0 & \lambda \end{bmatrix} \\ \text{with } \lambda \text{ an eigenvalue.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|     | Nonzero $x \in V$ is a <b>generalized eigenvector</b> corresponding to $\lambda$ if $(T - \lambda I)^p(x) = 0$ for<br>some p. The <b>generalized eigenspace</b> consists of all generalized eigenvectors<br>corresponding to $\lambda$ :<br>$K_{\lambda} = \{x \in V   (T - \lambda I)^p(x) = 0 \text{ for some positive integer } p\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|     | If <i>p</i> is the smallest positive integer so that $(T - \lambda I)^p(x) = 0$ ,<br>$\{(T - \lambda I)^{p-1}(x),, (T - \lambda I)(x), x\}$<br>is a cycle of generalized eigenvectors corresponding to $\lambda$ . Every such cycle is linearly<br>independent.<br><u>Existence</u><br>$K_{\lambda}$ (the $W_i$ in the Primary Decomposition Theorem) has an ordered basis consisting of a<br>union of disjoint cycles of generalized eigenvectors corresponding to $\lambda$ . Thus every linear<br>transformation (or matrix) on a finite dimensional vector space, where the restories is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |

<sup>&</sup>lt;sup>2</sup> This is a terribly ugly way to prove the rational canonical form. A nicer approach is with the structure theorem for modules. See Abstract Algebra notes, section 5-2.

|     | polynomial splits, has a Jordan canonical form. V is the direct sum of the generalized eigenspaces of T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     | Uniqueness and Structure The Jordan canonical form is unique (when cycles are listed in order of decreasing length up to ordering of eigenvalues. Suppose β <sub>i</sub> is a basis for K <sub>λi</sub> . Let T <sub>i</sub> be the restriction of T to K <sub>λi</sub> . Suppose β <sub>i</sub> is a disjoint union of cycles of generalized eigenvectors γ <sub>1</sub> ,, γ <sub>ni</sub> with lengths p <sub>1</sub> ≥ ··· ≥ p <sub>ni</sub> . The dot diagram for T <sub>i</sub> contains one dot for each vector in β <sub>i</sub> , and 1. has n <sub>i</sub> columns, one for each cycle. 2. The jth column consists of p <sub>j</sub> dots that correspond to the vectors of γ <sub>j</sub> , starting wit the initial vector. The dot diagram of T <sub>i</sub> is unique: The number of dots in the first r rows equals nullity((T - λ <sub>i</sub> I) <sup>r</sup> ), or if r <sub>j</sub> is the number of cycles is the geometric multiplicity of λ <sub>i</sub> . The Jordan canonical form is determined by the eigenvalues and nullity((T - λ <sub>i</sub> I) <sup>r</sup> ) for every eigenvalue λ <sub>i</sub> . |  |  |  |
|     | So now we know<br>Supposing $p(t)$ splits, let $\lambda_1,, \lambda_k$ be the distinct eigenvalues of T, and let $p_i$ be the order of the largest Jordan block corresponding to $\lambda_i$ . The minimal polynomial of T is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|     | $p(t) = \prod_{i=1}^{n} (t - \lambda_i)^{p_i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|     | T is diagonalizable iff all exponents are 1. $i=1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 8-3 | Rational Canonical Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|     | Let T be a linear operator on finite-dimensional V with characteristic polynomial $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|     | $f(t) = (-1)^n \prod^{\kappa} (p_i(t))^{n_i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|     | where the factors $p_i(t)$ are distinct irreducible monic polynomials and $n_i$ are positive integers. Define                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|     | $K_{p_i} = \{x \in V   p_i(T)^k(x) = 0 \text{ for some positive integer } k\}$<br>Note this is a generalization of the generalized eigenspace.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|     | The <b>companion matrix</b> of the monic polynomial $p(t) = a_0 + a_1 t + \dots + a_{k-1} t^{k-1} + t^k$ is<br>$C(p) = \begin{bmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_{k-1} \end{bmatrix}$ because the characteristic polynomial of c(p) is $(-1)^k p(t)$ .<br>Every linear operator T on finite-dimensional V has a <b>rational canonical form</b> (Frobenius normal form) even if the characteristic polynomial does not split.<br>$[T]_{\beta} = \begin{bmatrix} C_1 & 0 & \dots & 0 \\ 0 & C_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & C \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |

|     | where each $C_i$ is the companion matrix of an invariant factor $p_i$ .                                                                                                        |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|     | Uniqueness and Structure:                                                                                                                                                      |  |  |
|     | The rational canonical form is unique under the condition $p_{i+1} p_i$ for each $1 \le i < r$ .                                                                               |  |  |
|     | The rational canonical form is determined by the prime factorization of f(t) and                                                                                               |  |  |
|     | nullity $(p_i(T)^r)$ for every positive integer r.                                                                                                                             |  |  |
|     | Generalized Cayley-Hamilton Theorem:                                                                                                                                           |  |  |
|     | Suppose the characteristic polynomial of T is                                                                                                                                  |  |  |
|     | $k \rightarrow k$                                                                                                                                                              |  |  |
|     | $f(t) = \prod_{i=1}^{n} p_i^{i}$                                                                                                                                               |  |  |
|     | where $p_i$ are distinct irreducible monic polynomials and $r_i$ are positive integers. Then the minimal polynomial of T is                                                    |  |  |
|     | $k = \frac{k}{1}$                                                                                                                                                              |  |  |
|     | $p(t) = \prod_{i=1}^{l} p_i^{a_i}$                                                                                                                                             |  |  |
|     | where $d_{i} = \frac{\text{nullity}(p_{i}(T)^{r_{i}})}{1}$                                                                                                                     |  |  |
|     | $\operatorname{deg}(p_i)$                                                                                                                                                      |  |  |
| 8-4 | Calculation of Invariant Factors                                                                                                                                               |  |  |
| •   |                                                                                                                                                                                |  |  |
|     | For a matrix over the polynomials F[x], elementary row/ column operations include:<br>(1) Interchanging 2 rows/ columns<br>(2) Multiplying apy row/ column by a popyore scalar |  |  |
|     |                                                                                                                                                                                |  |  |
|     | (3) Adding any polynomial multiple of a row/ column to another row/ column                                                                                                     |  |  |
|     | However, note arbitrary division by polynomials is illegal in F[x].                                                                                                            |  |  |
|     | For such a (mxn) polynomial F[x], the following are equivalent:                                                                                                                |  |  |
|     | 1. P is invertible.                                                                                                                                                            |  |  |
|     | 2. The determinant of P is a nonzero scalar.                                                                                                                                   |  |  |
|     | <ol><li>P is row-equivalent to the mxm identity matrix.</li></ol>                                                                                                              |  |  |
|     | 4. P is a product of elementary matrices.                                                                                                                                      |  |  |
|     | A $m \times n$ matrix is in <b>Smith normal form</b> if                                                                                                                        |  |  |
|     | 1. Every entry not on the diagonal is 0.                                                                                                                                       |  |  |
|     | 2. On the main diagonal of N, there appear polynomials $f_1, \dots f_l$ such that $f_k   f_{k+1}, 1 \le 1$                                                                     |  |  |
|     | $k < \min(m, n).$                                                                                                                                                              |  |  |
|     | Every matrix is equivalent to a unique matrix N in normal form. For a $m \times n$ matrix A, follow                                                                            |  |  |
|     | this algorithm to find it:                                                                                                                                                     |  |  |
|     | $\begin{bmatrix} p \\ 0 \end{bmatrix}$                                                                                                                                         |  |  |
|     | 1. Make the first column $\begin{bmatrix} 0 \\ \vdots \end{bmatrix}$ .                                                                                                         |  |  |
|     | $\begin{bmatrix} 0 \end{bmatrix}$                                                                                                                                              |  |  |
|     | b. For each other nonzero entry n use polynomial division to write $n = fa + r$                                                                                                |  |  |
|     | where r is the remainder upon division. Subtract q times the row with f from                                                                                                   |  |  |
|     | the row with p.                                                                                                                                                                |  |  |
|     | c. Repeat a and b until there is (at most) one nonzero entry. Switch the first row                                                                                             |  |  |
|     | With that row in the form $\begin{bmatrix} n \\ 0 \end{bmatrix}$ which the first row in the form $\begin{bmatrix} n \\ 0 \end{bmatrix}$ which following the stops above but    |  |  |
|     |                                                                                                                                                                                |  |  |

exchanging the words "rows" and "columns".

- 3. Repeat 1 and 2 until the first entry g is the only nonzero entry in its row and column. (This process terminates because the least degree decreases at each step.)
- 4. If *g* does not divide every entry of A, find the first column with an entry not divisible by g and add it to column 1, and repeat 1-4; the degree of "g" will decrease. Else, go to the next step.
- 5. Repeat 1-4 with the  $(m-1) \times (n-1)$  matrix obtained by removing the first row and column.

## Uniqueness:

Let  $\delta_k(M)$  be the gcd of the determinants of all  $k \times k$  submatrices of M ( $\delta_0(M) = 1$ ). Equivalent matrices have all these values equal. The polynomials in the normal form are  $f_k = \frac{\delta_k(M)}{2}$ 

$$f_k = \frac{1}{\delta_{k-1}(M)}$$

Let A be a  $n \times n$  matrix, and  $p_1, ..., p_r$  be its invariant factors. The matrix xI - A is equivalent to the  $n \times n$  diagonal matrix with diagonal entries  $1, ..., 1, p_1, ..., p_r$ . Use the above algorithm.

Summary



-Jordan blocks on diagonal -Characteristic polynomial splits -Determined by eigenvalues and nullity [(T-λI)<sup>r</sup>] -V is the direct sum of generalized eigenspaces K<sub>λ</sub>. -Exponent of linear term in minimal polynomial is order of largest Jordan block. -Primary decomposition theorem Rational Canonical Form -Companion matrices on diagonal, each polynomial (invariant factor) is multiple of the next. -No condition -Determined by prime factorization and nullity(p(T)<sup>r</sup>) -Exponent of irreducible factor in minimal polynomial is nullity(f(T)<sup>a</sup>)/deg(f) -Cyclic decomposition theorem

| 8-5 | Semi-Simple and Nilpotent Operators                                                                                                                                                                                                       |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     | A linear operator N is <b>nilpotent</b> if there is a positive integer r such that $N^r = T_0$ .<br>The characteristic and minimal polynomials are in the form $x^n$ .                                                                    |  |
|     | A linear operator is <b>semi-simple</b> if every T-invariant subspace has a complementary T-<br>invariant subspace.                                                                                                                       |  |
|     | A linear operator (on finite-dimensional V over F) is semi-simple iff the minimal polynomial has no repeated irreducible factors. If F is algebraically closed, T is semi-simple iff T is diagonalizable.                                 |  |
|     | Let F be a subfield of the complex numbers. Every linear operator T can be uniquely decomposed into a semi-simple operator S and a nilpotent operator N such that<br>1. $T = S + N$<br>2. $SN = NS$<br>N and S are both polynomials in T. |  |
|     | Every linear operator whose minimal (or characteristic) polynomial splits can be uniquely decomposed into a diagonalizable operator D and a nilpotent operator N such that<br>1. $T = D + N$<br>2. $DN = ND$                              |  |
|     | N and D are both polynomials in T. If $E_i$ are the projections in the Primary Decomposition<br>Theorem (Section 8.1) then $D = \sum_{i=1}^{k} \lambda_i E_i$ , $N = \sum_{i=1}^{k} (T - \lambda_i I) E_i$ .                              |  |

| 9   | Applications of Diagonalization, Sequences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 9-1 | Powers and Exponentiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|     | Diagonalization helps compute matrix powers:<br>$A^k = (S\Lambda S^{-1})^k = S\Lambda^k S^{-1}$<br>To find $A^k x$ , write x as a combination of the eigenvectors (Note S is a change of base<br>formula that finds the coordinates $(c_1,, c_n)$ )                                                                                                                                                                                                                                                                                                                              |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|     | $x = \sum_{i=1}^{n} c_i x_i$<br>Then<br>$A^k x = \sum_{i=1}^{n} c_i \lambda_i^k x_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|     | If diagonalization is not possible, use the Jordan form:<br>$A^{k} = (SJS^{-1})^{k} = SJ^{k}S^{-1}$ $[\lambda  1  \cdots  0  0]$                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|     | Use the following to take powers of a $m \times m$ Jordan block $J = \begin{bmatrix} n & 1 & \cdots & 0 & 0 \\ 0 & \lambda & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & \cdots & 0 & \lambda \end{bmatrix}$ :                                                                                                                                                                                                                                                                                                       |  |  |
|     | $J^{r} = \begin{bmatrix} \lambda^{r} \begin{pmatrix} r \\ 1 \end{pmatrix} \lambda^{r-1} & \cdots & \begin{pmatrix} r \\ m-2 \end{pmatrix} \lambda^{r-(m-2)} \begin{pmatrix} r \\ m-1 \end{pmatrix} \lambda^{r-(m-1)} \\ 0 & \lambda^{r} & \cdots & \begin{pmatrix} r \\ m-2 \end{pmatrix} \lambda^{r-(m-2)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & & \cdots & \lambda^{r} & \begin{pmatrix} r \\ 1 \end{pmatrix} \lambda^{r-1} \\ 0 & 0 & & \cdots & 0 & \lambda^{r} \end{bmatrix}$<br>For a matrix in Jordan canonical form, use this formula for each block. |  |  |
|     | The <b>spectral radius</b> is the largest absolute value of the eigenvalues. If it is less than 1, the matrix powers converge to 0, and it determines the rate of convergence.                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|     | The matrix exponential is defined as $(A^0 = I)$<br>$e^{At} = \sum_{i=0}^{\infty} \frac{(At)^n}{n!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|     | $e^{At} = Se^{\Lambda t}S^{-1} = S\begin{bmatrix} e^{\lambda_1 t} & & \\ & \ddots & \\ & & e^{\lambda_n t} \end{bmatrix} S^{-1}$<br>Thus the eigenvalues of $e^{At}$ are $e^{\lambda t}$ . For a Jordan block,                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|     | $e^{Jt} = \begin{bmatrix} e^{\lambda t} & te^{\lambda t} & \cdots & t^{m-2}e^{\lambda t} & t^{m-1}e^{\lambda t} \\ 0 & e^{\lambda t} & \cdots & t^{m-3}e^{\lambda t} & t^{m-2}e^{\lambda t} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & e^{\lambda t} & te^{\lambda t} \\ 0 & 0 & \cdots & 0 & e^{\lambda t} \end{bmatrix}$                                                                                                                                                                                                                                |  |  |
|     | For nilpotent A, $e^{A\iota} = a_{n-1}A^{n-1}t^{n-1} + \dots + a_0I$ for some functions of t $a_{n-1}, \dots, a_0$ . Letting $r(x) = a_{n-1}x^{n-1} + \dots + a_0$ , we have $e^{\lambda} = \frac{d^i}{d\lambda^i}r(\lambda)$ for $0 \le i < \mu_{alg}(\lambda)$ for every eigenvalue $\lambda$ .                                                                                                                                                                                                                                                                                |  |  |

|     | Use the system of n equations to solve for the coefficients.<br>If AB=BA, $e^{(A+B)t} = e^{At}e^{Bt}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     | When A is skew-symmetric, $e^{At}$ is orthogonal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 9-2 | 2 Markov Matrices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|     | Let $u_k$ be a column vector where the <i>i</i> th entry represents the probability that at the <i>k</i> th step<br>the system is at state i. Let A be the transition matrix, that is, $A_{ij}$ contains the probability<br>that a system in state j at any given time will be at state i the next step. Then<br>$u_k = A^k u_0$<br>where $u_0$ contains the initial probabilities or proportions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|     | The <b>Markov matrix</b> A satisfies:<br>1. Every entry is nonnegative.<br>2. Every column adds to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|     | A contains an eigenvalue of 1, and all other distinct eigenvalues have smaller absolute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|     | If all entries of A are positive, then the eigenvalue 1 has only multiplicity 1. The eigenvector corresponding to 1 is the steady state- approached by the probability vectors $u_k$ and describing the probability that a long time late the system will be at each state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 9-3 | B Recursive Sequences<br>System of linear recursions:<br>To find the solution to the recurrence with n variables<br>$\begin{cases} x_{1,k+1} = a_{11}x_{1,k} + \dots + a_{n1}x_{n,k} \\ \vdots \\ x_{n-1} = a_{n-1}x_{n-1} + \dots + a_{n-1}x_{n-1}x_{n-1} \\ \vdots \\ x_{n-1} = a_{n-1}x_{n-1} + \dots + a_{n-1}x_{n-1}x_{n-1} \\ \vdots \\ x_{n-1} = a_{n-1}x_{n-1} + \dots + a_{n-1}x_{n-1}x_{n-1} \\ \vdots \\ x_{n-1} = a_{n-1}x_{n-1} + \dots + a_{n-1}x_{n-1}x_{n-1} \\ \vdots \\ x_{n-1} = a_{n-1}x_{n-1} + \dots + a_{n-1}x_{n-1}x_{n-1} \\ \vdots \\ x_{n-1} = a_{n-1}x_{n-1} + \dots + a_{n-1}x_{n-1}x_{n-1}x_{n-1} \\ \vdots \\ x_{n-1} = a_{n-1}x_{n-1} + \dots + a_{n-1}x_{n-1}x_{n-1}x_{n-1} \\ \vdots \\ x_{n-1} = a_{n-1}x_{n-1} + \dots + a_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x_{n-1}x$ |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|     | let $x_k = \begin{bmatrix} x_{1,k} \\ \vdots \\ x_{n,k} \end{bmatrix}$ and use $x_k = A^k x_0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|     | Pell's Equation:         If D is a positive integer that is not a perfect square, then all positive solutions to $x^2 - Dy^2 = 1$ are in the form $(x, y)$ with $A^k = \begin{bmatrix} x & Dy \\ y & x \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|     | where $A = \begin{bmatrix} x_1 & Dy_1 \\ y_1 & x_1 \end{bmatrix}$ and $(x_1, y_1)$ is the fundamental solution, that is, the solution where $x_1 > 1$ is minimal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|     | Homographic recurrence:<br>A homographic function is in the form $f: \mathbb{C} \setminus \{-\frac{d}{c}\} \to C$ defined by $f(z) = \frac{az+b}{cz+d}, c \neq 0. A_f = [a, b]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|     | $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the corresponding matrix. Define the sequence $\{x_n\}_{n\geq 0}$ by $x_{n+1} = f(x_n), n \geq 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|     | Then $x_n = \frac{a_n x_0 + b_n}{c_n x_0 + d_n}$ where $(A_f)^n = \begin{bmatrix} a_n & b_n \\ c_n & d_n \end{bmatrix}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|     | Linear recursions:<br>A sequence of complex numbers satisfies a linear recursion of order k if<br>$x_n + a_1 x_{n-1} + \dots + a_k x_{n-k} = 0, n \ge k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |

| Solve the characteristic equation $t^k + a_1 t^{k-1} + \dots + a_k = 0$ . If the roots are $t_1, \dots, t_h$ with multiplicities $s_1, \dots, s_h$ , then $x_n = f_1(n)t_1^n + \dots + f_h(n)t_h^n$ where $f_i$ is a polynomial of degree at most $s_i$ . Determine the polynomials from solving a system involving the first k terms of the sequence. (Note the general solution is a k-dimensional subset of $\mathbb{C}^\infty$ .) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| 10   | Linear Forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 10-1 | Multilinear Forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|      | A function L from $V^n = \underbrace{V \times \cdots \times V}_{V}$ , where V is a module over R, to R is                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|      | <ol> <li>Multilinear (n-linear) if it is linear in each component separately:<br/>L(x<sub>1</sub>,, cx<sub>i</sub> + y<sub>i</sub>,, x<sub>n</sub>) = cL(x<sub>1</sub>,, x<sub>i</sub>,, x<sub>n</sub>) + L(x<sub>1</sub>,, y<sub>i</sub>,, x<sub>n</sub>)         2. Alternating if L(x<sub>1</sub>,, x<sub>n</sub>) = 0 whenever x<sub>i</sub> = x<sub>j</sub> with i ≠ j.     </li> <li>The collection of all multilinear functions on V<sup>n</sup> is denoted by M<sup>n</sup>(V), and the collection of alternating multilinear functions is Λ<sup>n</sup>(V).     </li> </ol> |  |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|      | If L and M are multilinear functions on $V^r$ , $V^s$ , respectively, the <b>tensor product</b> of L and M is the function on $V^{r+s}$ defined by $(L \otimes M)(r, v) = L(r)M(v)$                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|      | where $x \in V^r$ , $y \in V^s$ . The tensor product is linear in each component and is associative.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|      | For a permutation $\sigma$ define $L_{\sigma}(x_1,, x_r) = L(x_{\sigma(1)},, x_{\sigma(n)})$ and the linear transformation $\pi_r: M^r(V) \to \Lambda^r(V)$ by                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|      | $\pi_r L = \sum_{\sigma} (\operatorname{sgn}(\sigma) L_{\sigma})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|      | If V is a free module of rank n, $M^r(V)$ is a free R-module of rank $n^r$ , with basis $f_{j_1} \otimes \cdots \otimes f_{j_r}$ $(1 \le j_1, \dots, j_r \le n)$ where $\{f_1, \dots, f_n\}$ is a basis for $V^*$ .<br>When $V = R^n$ , and L is a r-linear form in $M^r(V)$ ,                                                                                                                                                                                                                                                                                                       |  |  |  |
|      | $L(x_1, \dots, x_r) = \sum_{1 \le j_1, \dots, j_r \le n} A(1, j_1) \cdots A(1, j_r) L(e_{j_1}, \dots, e_{j_r})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|      | $\Lambda^r(V)$ is a free R-module of rank $\binom{n}{r}$ , with basis the same as before, but $j_1, \dots, j_r$ are combinations of $\{1, \dots, n\}$ $(1 \le j_1 < \dots < j_r \le n)$ .                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|      | Where the Determinant fits in:<br>1. $D = \sum_{\sigma} (\operatorname{sgn}(\sigma) f_{\sigma(1)} \otimes \cdots \otimes f_{\sigma(n)})$ , the $f_i$ standard coordinate functions.<br>2. If T is a linear operator on $V = R^n$ and $L \in \Lambda^n(V)$ ,<br>$L(T(x_1), \dots, T(x_n)) = \det(T) L(x_1, \dots, x_n)$                                                                                                                                                                                                                                                               |  |  |  |
|      | The determinant of T is the same as the determinant of any matrix representation of $T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|      | 3. The special alternating form $D_J = \pi_r(f_{j_1} \otimes \cdots \otimes f_{j_r})$ $(J = \{j_1, \dots, j_r\})$ is the determinant $\frac{\partial(r_1, \dots, r_r)}{\partial r_r}$                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|      | of the rxr matrix A defined by $A_{ik} = f_{j_k}(x_i)$ , also written as $\frac{\partial \langle x_1, \dots, y_{j_r} \rangle}{\partial \langle y_{j_1}, \dots, y_{j_r} \rangle}$ , where $\{f_1, \dots, f_n\}$ is the standard dual basis                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 10.2 | Exterior Droducto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 10-2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|      | Let G be the group of all permutations which permute $\{1,, r\}$ and $\{r + 1,, s\}$ within<br>themselves. For alternating r and s-linear forms L and M, define $\psi : \mathfrak{S}_{r+s} \to M^{r+s}(V)$ by<br>$\psi(\sigma) = (\operatorname{sgn}(\sigma))(L \otimes M)_{\sigma}$ . For a coset $aG$ , define $\tilde{\psi}(aG) = \psi(a)$ . The <b>exterior product</b> of<br>and M is                                                                                                                                                                                           |  |  |  |

|      | $L \wedge M = \sum_{H \in \widetilde{\mathcal{A}}} \int_{\mathcal{C}} \widetilde{\psi}(H)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|      | Then<br>1. $r! s! L \wedge M = \pi_{r+s}(L \otimes M)$ ; in particular $L \wedge M = \frac{1}{r!s!}\pi_{r+s}(L \otimes M)$ if R is a field of characteristic 0.<br>2. $(L \wedge M) \wedge N = L \wedge (M \wedge N)$<br>3. $L \wedge M = (-1)^{rs} M \wedge L$                                                                                                                                                                                                                                                                                                                |  |  |  |
|      | Laplace Expansions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|      | Define $L(x_1, \dots, x_r) = \det \begin{pmatrix} \begin{vmatrix} A_{11} & \cdots & A_{1r} \\ \vdots & \ddots & \vdots \\ A_{r1} & \cdots & A_{rr} \end{vmatrix}$ and $M(x_1, \dots, x_s) = \det \begin{pmatrix} \begin{vmatrix} A_{1,r+1} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{s,r+1} & \cdots & A_{sn} \end{vmatrix}$ where                                                                                                                                                                                                                                   |  |  |  |
|      | $ \begin{aligned} x_i &= \langle A_{i1}, \dots, A_{in} \rangle \in \mathbb{R}^n \text{ and } s = n - r. \text{ Then } L \land M = \det(A), \text{ giving} \\ \det(A) &= \sum_{j_1 < \dots < j_r, k_1 < \dots < k_s} (-1)^{j_1 + \dots + j_r + \frac{r(r-1)}{2}} \det\left( \begin{bmatrix} A(j_1, 1) & \dots & A(j_1, r) \\ \vdots & \ddots & \vdots \\ A(j_r, 1) & \dots & A(j_r, r) \end{bmatrix} \right) \\ \det\left( \begin{bmatrix} A(k_1, r+1) & \dots & A(k_1, n) \\ \vdots & \ddots & \vdots \\ A(k_s, r+1) & \dots & A(k_s, n) \end{bmatrix} \right) \end{aligned} $ |  |  |  |
|      | For a free R-module V of rank n, the <b>Grassman ring</b> over $V^*$ is defined by $\Lambda(V) = \Lambda^0(V) \oplus \cdots \oplus \Lambda^n(V)$<br>and has dimension $2^n$ . (The direct sum is treated like a Cartesian product.)                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 10-3 | Bilinear Forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|      | A function $H: V \times V \to F$ is a <b>bilinear form</b> on V if H is linear in each variable when the other<br>is held fixed:<br>1. $H(ax_1 + x_2, y) = aH(x_1, y) + H(x_2, y)$<br>2. $H(x, ay_1 + y_2) = aH(x, y_1) + H(x, y_2)$<br>The bilinear form is <b>symmetric</b> (a scalar product) if $H(x, y) = H(y, x)$ for all $x, y \in V$ and<br><b>skew-symmetric</b> if $H(x, y) = -H(y, x)$ .<br>The set of all bilinear forms on V, denoted by $\mathcal{B}(V)$ , is a vector space. An real inner product<br>space is a symmetric bilinear form.                       |  |  |  |
|      | A function $K: V \to F$ is a <b>quadratic form</b> if there exists a symmetric bilinear form H such that $K(x) \equiv H(x, x)$ . If F is not of characteristic 2,<br>$H(x, y) = \frac{K(x + y) - K(x) - K(y)}{2}$                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|      | Let $\beta = \{v_1,, v_n\}$ be an ordered basis for V. The matrix $A = \psi_{\beta}(H)$ with $A_{ij} = H(v_i, v_j)$ is<br>the matrix representation of H with respect to $\beta$ .<br>1. $\psi_{\beta}$ is an isomorphism.<br>2. Thus $\mathcal{B}(V)$ has dimension $n^2$ .<br>3. If $\beta^* = \{L_1,, L_n\}$ is a basis for $V^*$ then $f_{ij}(x, y) = L_i(x)L_j(y)$ is a basis for $\mathcal{B}(V)$ .<br>4. $\psi_{\beta}$ is (skew-)symmetric iff H is.<br>5. A is the unique matrix satisfying $H(x, y) \equiv [x]_{\beta}^T A[y]_{\beta}$ .                             |  |  |  |
|      | Square matrix B is <b>congruent</b> to A if there exists an invertible matrix 0 such that $B = 0^T A 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |

|      | Congruence is a equivalence relation. For 2 bases $\beta$ , $\gamma$ , $\psi_{\beta}(H)$ and $\psi_{\gamma}(H)$ are congruent;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|      | conversely, congruent matrices are 2 representations of the same bilinear form.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      | Define $L_x(y) = (L_H(x))(y) = H(x, y)$ and $R_y(x) = (R_H(y))(x) = H(x, y)$ . The <b>rank</b> of H is rank $(L_H)$ = rank $(R_H)$ . For n-dimensional V, the following are equivalent:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|      | 2. For $x \neq 0$ , there exists y such that $H(x, y) \neq 0$ .<br>3. For $y \neq 0$ , there exists y such that $H(x, y) \neq 0$ .<br>Any H satisfying 2 and 3 is nondegenerate. The <b>radical</b> (or <b>null space</b> ) of H, Rad(H), is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|      | kernel of $L_H$ or $R_H$ , in other words, it is the set of vectors orthogonal to all other vectors.<br>Nondegenerate $\Leftrightarrow$ Nullspace is {0}.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 10-4 | Theorems on Bilinear Forms and Diagonalization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|      | A bilinear form H on finite-dimensional V is <b>diagonalizable</b> if there is a basis $\beta$ such that $\psi_{\beta}(H)$ is diagonal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|      | If F does not have characteristic 2, then a bilinear form is symmetric iff it is diagonalizable. If V is a real inner product space, the basis can be chosen to be orthonormal.<br>$\psi_{\beta}(H) = A = Q^{T}DQ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|      | where Q is the change-of-coordinate matrix changing standard $\beta$ -coordinates into $\gamma$ -coordinates and $\psi_{\gamma}(H) = D$ . Diagonalize the same way as before, choosing Q to be orthonormal so $Q^T = Q^{-1}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|      | A vector v is <b>isotropic</b> if $H(v, v) = 0$ (orthogonal to itself). A subspace W is isotropic if the restriction of H to W is 0. A subspace is maximally isotropic if it has greatest dimension among all isotropic subspaces. Orthogonality, projections, and adjoints for scalar products are defined the same way as orthogonality for inner products: v and w are orthogonal if $H(v,w) = 0$ , and $W^{\perp} = \{v   H(v,w) = 0 \forall w \in W\}$ .<br>1. If $V = \text{Rad}(H) \oplus W$ then the restriction of H to W, H <sub>W</sub> , is nondegenerate.<br>2. If H is nondegenerate on subspace $W \subseteq V, W \oplus W^{\perp} = V$ .<br>3. If H is nondegenerate, there exists an orthogonal basis for V. |  |
|      | Sylvester's Law of Inertia:<br>Let H be a symmetric form on finite-dimensional real V. Then the number of positive<br>diagonal entries (the <b>index</b> p of H) and negative diagonal entries in any diagonal<br>representation of H is the same. The <b>signature</b> is the number of positive entries and the<br>number of negative entries. The rank, index, and signature are all invariants of the bilinear<br>form                                                                                                                                                                                                                                                                                                    |  |
|      | 1. Two real symmetric nxn matrices are congruent iff they have the same invariants.<br>2. A symmetric nxn matrix is congruent to<br>$I_{pm} = \begin{bmatrix} I_p & \mathcal{O} & \mathcal{O} \\ \mathcal{O} & -I_m & \mathcal{O} \\ \mathcal{O} & \mathcal{O} & \mathcal{O} \end{bmatrix}$ 3. For nondegenerate H:                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|      | a. The maximal subspace W such that $H_W$ is positive/ negative definite is p/ n-p.<br>b. The maximal isotropic subspace W has dimension $\min\{p, n - p\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|      | If $f^*$ is the adjoint of linear transformation f, and $f^{\vee}$ is the dual (transpose), then $R_H f^* = f^V R_H$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |

|                                                                                                                                                                                                 | Let H be a skew-symmetric form on n-dimensional V over a subfield of $\mathbb{C}$ . Then r=rank(H) is even and there exists $\beta$ such that $\psi_{\beta}(H)$ is the direct sum of the $(n-r) \times (n-r)$ zero matrix and $\frac{r}{2}$ copies of $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ .                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 10-5                                                                                                                                                                                            | Sesqui-linear Forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                                                                                                                                                                 | A <b>sesqui-linear form</b> f on $\mathbb{R}$ or $\mathbb{C}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                                                                                                                                                 | Linear in the first component $f(cx + y, z) = cf(x, z) + f(y, z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                                                                                                                                                                                 | Conjugate-linear in the second component $f(x, cy + z) = \bar{c}f(x, y) + f(x, z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                                                                                                                                 | The form is <b>Hermitian</b> if $f(x, y) = \overline{f(y, x)}$ . A sesqui-linear form f is Hermitian if $f(x, x)$ is real<br>for all x. [Note: Some books reverse x and y for sesqui-linear forms and inner products.]<br>The matrix representation A of f in basis $\{v_1,, v_n\}$ is given by $A_{ij} = f(x_j, x_i)$ . (Note the<br>reversal.) Then $H(x, y) \equiv [y]_{\beta}^* A[x]_{\beta}$ .<br>If V is a finite-dimensional inner product space, there exists a unique linear operator $T_f$ on V<br>such that $f(x, y) = \langle T_f(x), y \rangle$ . This map $f \to T_f$ is an isomorphism from the vector space of<br>sesqui-linear forms onto $\mathcal{L}(V, V)$ . $f$ is Hermitian iff $T_f$ is self-adjoint. |  |  |  |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                                                                                                                                                                 | f on $\mathbb{R}$ or $\mathbb{C}$ is <b>positive</b> / nonnegative if it is Hermitian and $f(x, x) > 0$ for $x \neq 0/f(x, x) \geq 0$ positive form is simply an inner product. If is positive if its matrix representation is positive definite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Principal Axis Theorem: (from the Spectral Theorem)<br>For every Hermitian form f on finite-dimensional V, there exists an orthonormal be<br>which f has a real diagonal matrix representation. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                                                                                                                                                                 | Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |



| Hyperbolic paraboloid | $a_{11}x_1^2 + a_{22}x^2 = x_3$             |
|-----------------------|---------------------------------------------|
| Elliptic cone         | $a_{11}x_1^2 + a_{22}x^2 - a_{33}x_3^2 = 0$ |

The **Hessian** matrix A(p) of f(p) is defined by

$$A_{ij} = \frac{\partial^2 f(p)}{(\partial t_i)(\partial t_j)}$$

Second Derivative Test:

Let  $f(t_1, ..., t_n)$  be a real-valued function for which all third-order partial derivatives exist and are continuous. Let  $p = (p_1, ..., p_n)$  be a critical point (i.e.  $\frac{\partial f}{\partial t_i} = 0$  for all i).

(a) If all eigenvalues of A(p) are positive, f has a local minimum at p.

(b) If all eigenvalues are negative, f has a local maximum at p.

(c) If A(p) has at least one positive and one negative eigenvalue, p is a saddle point.

(d) If rank(A(p)) < n (an eigenvalue is 0) and A(p) does not have both positive and

negative eigenvalues, the test fails.

| 11                                                                                                                                                                                                  | Numerical Linear Algebra                                                                                                                                                                                                                                                                                                                                                                           |                  |                                                                                                                                                                                                                                    |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 11-1                                                                                                                                                                                                | Elimination and Factorization in Practice                                                                                                                                                                                                                                                                                                                                                          |                  |                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                     | <b>Partial pivoting-</b> For the kth pivot, choose the largest number in row k or below in that column. Exchange that row with row k. Small pivots create large roundoff error because they must be multiplied by large numbers.                                                                                                                                                                   |                  |                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                     | A <b>band matrix</b> A with half-bandwidth w has $A_{ij} = 0$ when $ i - j  > w$ .                                                                                                                                                                                                                                                                                                                 |                  |                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                     | Operation counts (A is $k \times k$ and invertible) (Multiply-subtract counted as one operation                                                                                                                                                                                                                                                                                                    |                  |                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                     | Process                                                                                                                                                                                                                                                                                                                                                                                            | Count (≾)        | Reason                                                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                                     | Forward elimination<br>(A→U), A=LU<br>factorization                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{3}n^3$ | $\sum k^2 - k$ . When there are k rows left, for all k-<br>1 rows below, multiply-subtract k times.                                                                                                                                |  |  |
| Forward elimination on<br>band matrix with half-<br>bandwidth w $\frac{1}{3}w^2(3n - 2w) \approx w^2n$<br>when w small $\approx \sum w^2 - w$ . There are no more that<br>nonzeros below any pivot. |                                                                                                                                                                                                                                                                                                                                                                                                    |                  | $\approx \sum w^2 - w$ . There are no more than w-1 nonzeros below any pivot.                                                                                                                                                      |  |  |
|                                                                                                                                                                                                     | Forward elimination, right side (b)                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{2}n^2$ | $\sum k$ . When there are k rows left, multiply-<br>subtract for all entries below the current one.                                                                                                                                |  |  |
|                                                                                                                                                                                                     | Back-substitution                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{1}{2}n^2$ | $\sum k$ . For row k, divide by pivot and substitute into previous k-1 rows.                                                                                                                                                       |  |  |
|                                                                                                                                                                                                     | Factorization into QR<br>(Gram-Schmidt)                                                                                                                                                                                                                                                                                                                                                            | $\frac{2}{3}n^3$ | $\sum 2k^2$ . When there are k columns left, divide<br>the <i>k</i> th vector by its norm, find the projection<br>of all remaining columns onto it ( $\approx k^2$ ) then<br>subtract ( $\approx k^2$ ).                           |  |  |
|                                                                                                                                                                                                     | A <sup>-1</sup> (Gauss-Jordan<br>elimination)                                                                                                                                                                                                                                                                                                                                                      | n <sup>3</sup>   | $\frac{1}{3}n^3 \text{ for A=LU}, \sum_{1}^{1} (n-k)^2 \approx \frac{1}{6}n^3 \text{ for right}$<br>side- no work is required on the <i>k</i> th column on<br>the right side until row k, $n(\frac{1}{2}n^2)$ back<br>substitution |  |  |
|                                                                                                                                                                                                     | Note: For parallel computing, working with matrices (more concise) may be more efficient.                                                                                                                                                                                                                                                                                                          |                  |                                                                                                                                                                                                                                    |  |  |
| 11-2                                                                                                                                                                                                | Norms and Condition                                                                                                                                                                                                                                                                                                                                                                                | Numbers          |                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                     | The <b>norm</b> of a matrix is the maximum magnification of a vector x by A:<br>$\ A\  = \max_{x \neq 0} \frac{\ Ax\ }{\ x\ }$ For a symmetric matrix, $\ A\ $ is the absolute value of the eigenvalue with largest absolute value.<br>Finding the norm:<br>$\ A\ ^2 = \max_{x \neq 0} \frac{\ Ax\ ^2}{\ x\ ^2} = \max_{x \neq 0} \frac{x^T A^T A x}{x^T x} = \text{Largest eigenvalue of } A^T A$ |                  |                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    | (                | II II                                                                                                                                                                                                                              |  |  |
|                                                                                                                                                                                                     | The condition number of A is $c = \operatorname{cond}(A) =   A     A^{-1}  $                                                                                                                                                                                                                                                                                                                       |                  |                                                                                                                                                                                                                                    |  |  |

|      | When A is symmetric, $c = \frac{ \lambda _{\text{max}}}{ \lambda _{\text{min}}}$ . Anyway, $c = \sqrt{\frac{\text{Largest eigenvalue of } A^T A}{\text{Smallest eigenvalue of } A^T A}}$ .<br>The condition number shows the sensitivity of a system $Ax = b$ to error. Problem error is inaccuracy in $A$ or $b$ due to measurement/ roundoff. Let $\Delta x$ be the solution error and $\Delta A, \Delta b$ be the problem errors.<br>1. When the problem error is in b,<br>$\frac{1}{c} \frac{  \Delta b  }{  b  } \le \frac{  \Delta x  }{  x  } \le c \frac{  \Delta b  }{  b  }$<br>2. When the problem error is in A,<br>$\frac{  \Delta x  }{  x + \Delta x  } \le c \frac{  \Delta A  }{  A  }$ |                                                                                                                                      |                                                                                                               |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 11-3 | <ul> <li>3 Iterative Methods</li> <li>For systems:<br/>General approach: <ol> <li>Split A into S-T. Ax = b ⇒ Sx = Tx + b</li> <li>Compute the sequence Sx<sub>k+1</sub> = Tx<sub>k</sub> + b</li> </ol> </li> <li>Requirements: <ol> <li>(2) should be easy to solve for x<sub>k+1</sub>, so the preconditioner S should be diagonal triangular.</li> <li>The error should converge to 0 quickly:<br/>e<sub>k+1</sub> = S<sup>-1</sup>Te<sub>k</sub>, e<sub>k</sub> = x - x<sub>k</sub><br/>Thus the largest eigenvalue of S<sup>-1</sup>T should have absolute value less than 1.</li> </ol></li></ul>                                                                                                  |                                                                                                                                      | er S should be diagonal or<br><sup>k</sup><br>ite value less than 1.                                          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                      | Descrite                                                                                                      |
|      | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S                                                                                                                                    | Remarks                                                                                                       |
|      | Jacobi's method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Diagonal part of A                                                                                                                   |                                                                                                               |
|      | Gauss-Siedel method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lower triangular part of A                                                                                                           | About twice as fast: Often $ \lambda _{\text{max}}$ is the square of the $ \lambda _{\text{max}}$ for Jacobi. |
|      | Successive overrelaxation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S has diagonal of original A,<br>but below, entries are those of $\omega A$ .                                                        | Combination of Jacobi and Gauss-Siedel. Choose $\omega$ to minimize spectral radius.                          |
|      | Incomplete LU method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Approximate L times<br>approximate U                                                                                                 | Set small nonzero in L, U to 0.                                                                               |
|      | Conjugate Gradients for positive Set $x_0 = 0$ (or approximate so<br>Formula<br>1. $\alpha_n = \frac{r_{n-1}^T r_{n-1}}{p_{n-1}^T A p_{n-1}}$<br>2. $x_n = x_{n-1} + \alpha_n p_{n-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sitive definite A:<br>$lution$ ), $r_0 = b$ , $p_0 = r_0$ .<br>Description<br>Step length $x_{n-1}$ to $x_n$<br>Approximate solution |                                                                                                               |
|      | $3.  r_n = r_{n-1} - \alpha_n A p_{n-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | New residual $b - Ax_n$                                                                                                              |                                                                                                               |
|      | 4. $\beta_n = \frac{r_n^T r_n}{r_{n-1}^T r_{n-1}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Improvement                                                                                                                          |                                                                                                               |
|      | 5. $p_n = r_n + \beta_n p_{n-1}$ Next search direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                      |                                                                                                               |

Computing eigenvalues

- 1. (Inverse) power methods: Keep multiplying a vector u by A. Typically, u approaches the direction of the eigenvector corresponding to the largest eigenvalue. Convergence is quicker when  $\left|\frac{\lambda_2}{\lambda_1}\right|$  is small, where  $\lambda_1, \lambda_2$  are eigenvalues with largest, second largest absolute values. For the smallest eigenvalue, apply the method with  $A^{-1}$  (but solve  $Au_{k+1} = u_k$  rather than compute the inverse).
- 2. QR Method: Factor A = QR, reverse R and Q (eigenvalues don't change), multiply them to get A', and repeat. Diagonal entries approach the eigenvalues. When the last diagonal entry is accurate, remove the last row and column and continue. Modifications:
  - a. Factor  $A_k c_k I$  into  $Q_k R_k$ .  $A_{k+1} = R_k Q_k + c_k I$ . Choose c near an unknown eigenvalue.
  - b. (Hessenberg) Obtain off-diagonal entries first by changing A to a similar matrix. Zeros in lower-left corner stay.

| 12   | Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 12-1 | Fourier Series (Analysis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|      | Use the orthonormal system $\frac{1}{\sqrt{2\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\cos 2x}{\sqrt{\pi}}, \cdots$ to express a function in $[0,2\pi]$ as a Fourier                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|      | $f(x) = a_0 + a_1 \cos x + b_1 \sin x + a_2 \cos 2x + b_2 \sin 2x + \cdots$<br>Use projections (Section 5.3) to find the coefficients. (Multiply by the function you're trying to find the coefficient for, and integrate from 0 to $2\pi$ ; orthogonality makes all but one term 0.) The orthonormal system is <b>closed</b> , meaning that f is actually equal to the Fourier series. Fourier coefficients offer a way to show the isomorphism between <b>Hilbert spaces</b> (complete, separable, infinite-dimensional Euclidean spaces).                                  |  |  |
|      | The exponential Fourier series uses the orthonormal system $f_n(t) = e^{int}$ , $n \in \mathbb{Z}$ instead. This applies to functions in $(-\infty, \infty)$ .                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 12-2 | Fast Fourier Transform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|      | Let $\omega = e^{\frac{2\pi i}{n}}$ . The Fast Fourier Transform takes as input the coefficients $c_j$ of $\omega^j$ , $0 \le j < n$ and outputs the value of the function $f(x) = \sum_{j=0}^{n-1} c_j \omega^{xj}$ at $k, 0 \le k < n$ . The matrix for F satisfies $F_{jk} = \omega^{jk}$ when the rows and columns are indexed from 0. Then $F_n c = y, c = \begin{bmatrix} c_0 \\ \vdots \\ c_{n-1} \end{bmatrix}, y = \begin{bmatrix} y_0 \\ \vdots \\ y_{n-1} \end{bmatrix} = \begin{bmatrix} f(0) \\ \vdots \\ f(n-1) \end{bmatrix}$                                  |  |  |
|      | The inverse of F is $\frac{1}{n}F^* = \frac{1}{n}\overline{F}$ . The inverse Fourier transform gives the coefficients from the functional values. To calculate a Fourier transform quickly when $n = 2^l$ , break $F_n = \begin{bmatrix} In & Dn \\ 2 & Pn \end{bmatrix} \begin{bmatrix} Fn \\ 2 & Fn \end{bmatrix} \begin{bmatrix} Fn \\ 2 & Fn \end{bmatrix} $ [even-odd permutation]                                                                                                                                                                                       |  |  |
|      | $l \bar{z} = \bar{z} l l$ $\bar{z}^{-1} \bar{z}^{-1}$<br>D <sub>n/2</sub> is the diagonal matrix with (n/2)th roots of unity. The last matrix has n/2 columns with 1's in even locations (in increasing order starting from 0) and the next n/2 rows in odd locations. Then break up the middle matrix using the same idea, but now there's two copies. Repeating to $F_2$ , the operation count is $\frac{1}{2}nl = \frac{1}{2}n \ln(n)$ . The net effect of the permutation matrices is that the numbers are ordered based on the number formed from their digits reversed. |  |  |

|      | $x[0] \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet X[0]$ $x[4] \bullet \bullet W_{H}^{4} \bullet W_{H}^{0} \bullet V_{H}^{0} \bullet V_{H}^{0}$ $x[2] \bullet \bullet W_{H}^{4} \bullet W_{H}^{0} \bullet V_{H}^{0} \bullet V_{H}^{0}$ $x[6] \bullet \bullet W_{H}^{4} \bullet W_{H}^{0} \bullet V_{H}^{0} \bullet V_{H}^{0}$ $x[1] \bullet \bullet W_{H}^{4} \bullet W_{H}^{0} \bullet V_{H}^{0} \bullet V_{H}^{0}$ $x[3] \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet V_{H}^{0} \bullet V_{H}^{0} \bullet V_{H}^{0} \bullet V_{H}^{0}$ $x[3] \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet V_{H}^{0} \bullet V_{H}^{0} \bullet V_{H}^{0} \bullet V_{H}^{0}$ |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|      | x[7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|      | http://cnx.org/content/m12107/latest/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|      | Set $m = \frac{1}{2}n$ . The first and last m components of $y = F_n c$ are combinations of the half-size transforms $y' = F_m c'$ and $y'' = F_m c''$ , i.e. for $0 \le j < m$ ,<br>$\begin{cases} y_j = y'_j + \omega_n^j y_j'' \\ y_{j+m} = y'_j - \omega_n^j y_j'' \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 12-3 | Differential Equations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|      | The set of solutions to a homogeneous linear differential equation with constant coefficients $\sum_{i=0}^{n} a_i y^{(i)} = 0$ is a n-dimensional subspace of $C^{\infty}$ . The functions $t^j e^{\lambda t}$ ( $\lambda$ a root of the auxiliary polynomial                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|      | $\sum_{i=0}^{n} a_i x^i = 0, \ 0 \le j < m$ , where m is the multiplicity of the root) are linearly independent and satisfy the equation. Hence they form a basis for a solution space.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|      | The general solution to the system of n linear differential equations $x' = Ax$ is any sum of solutions of the form<br>$e^{\lambda t} [f(t)(A - \lambda I)^{p-1} + f'(t)(A - \lambda I)^{p-2} + \dots + f^{(p-1)}(t)]x$<br>where the x are the end vectors of distinct cycles that make up a Jordan canonical basis for A,<br>$\lambda$ is the eigenvalue corresponding to x, p is the order of the Jordan block, and $f(t)$ is a<br>polynomial of degree less than p.                                                                                                                                                                                                                                                        |  |  |  |  |
| 12-4 | Combinatorics and Graph Theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|      | Graphs and applications to electric circuits<br>The <b>incidence matrix</b> A of a directed graph has a row for every edge and a column for every<br>node. If edge i points away from/ toward node j, then $A_{ij} = -1/1$ , respectively. Suppose the<br>graph is connected, and has n nodes and m edges. Each node is labeled with a number<br>(voltage), and multiplying by A gives the vector of edge labels showing the difference between                                                                                                                                                                                                                                                                               |  |  |  |  |

|      | the nodes                                                                                                                                                        | they connect (                                                                    | (potential differences/ flow)               | ).                       |                        |                              |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------|--------------------------|------------------------|------------------------------|
|      | 1. The                                                                                                                                                           | 1. The row space has dimension n-1. Take any n-1 rows corresponding to a spanning |                                             |                          |                        |                              |
|      | tree of the graph to get a basis for the row space. Rows are dependent when edges                                                                                |                                                                                   |                                             |                          |                        |                              |
|      | form a loop.                                                                                                                                                     |                                                                                   |                                             |                          |                        |                              |
|      | 2. 106                                                                                                                                                           | e column space                                                                    | e has dimension n-1. The                    | vectors in a             | the column             | space are exactly the        |
|      | in t                                                                                                                                                             | bo rovorso dire                                                                   | such that the numbers au                    | 10 Zero a<br>ly by -1) 7 | Touria ever            | y loop (when moving          |
|      | in the reverse direction as the edges, multiply by -1). This corresponds to all attainable sets of potential differences (Voltage law)                           |                                                                                   |                                             |                          |                        |                              |
|      | sets of potential differences (Voltage IaW).<br>3 The nullspace has dimension 1 and contains multiples of $(1, 1)^{T}$ . Potential                               |                                                                                   |                                             |                          | <sup>T</sup> Potential |                              |
|      | 3. The nullspace has dimension 1 and contains multiples of (1,,1) <sup>2</sup> . Potential differences are 0                                                     |                                                                                   |                                             |                          |                        |                              |
|      | 4. The                                                                                                                                                           | e left nullspace                                                                  | has dimension m-n+1. Th                     | ere are m                | -n+1 indep             | endent loops in the          |
|      | graph. The vectors in the left nullspace are those where the flow in equals the flow out                                                                         |                                                                                   |                                             |                          | in equals the flow out |                              |
|      | at e                                                                                                                                                             | each node (Cu                                                                     | rrent law). To find a basis,                | find m-n+                | 1 independ             | ent loops; for each          |
|      | loo                                                                                                                                                              | p choose a dire                                                                   | ection, and label the edge                  | 1 if it goes             | around the             | e loop in that direction     |
|      | and                                                                                                                                                              | d -1 otherwise.                                                                   |                                             |                          |                        |                              |
|      | Let C be the diagonal matrix assigning a conductance (inverse of resistance) to each edge.                                                                       |                                                                                   |                                             | ance) to each edge.      |                        |                              |
|      | Onm's law                                                                                                                                                        | $y = -c_A$                                                                        | $4x$ . The voltages at the hole $A^T C A x$ |                          |                        |                              |
|      | whore f to                                                                                                                                                       | lle the source f                                                                  | $A^{-} CAx =$                               | J                        |                        |                              |
|      |                                                                                                                                                                  |                                                                                   | Tom outside (ex. battery).                  |                          |                        |                              |
|      | Another u                                                                                                                                                        | seful incidence                                                                   | e matrix is where A has a re                | ow and co                | lumn for ea            | ich vertex, and $A_{ii} = 1$ |
|      | if vertices                                                                                                                                                      | i and i are con                                                                   | nected by an edge, and 0                    | otherwise.               | (For direct            | ed graphs, use -1/ 1.)       |
|      |                                                                                                                                                                  | ,                                                                                 |                                             |                          | (                      | <b>J J J J J J J J J J</b>   |
|      | Sets                                                                                                                                                             |                                                                                   |                                             |                          |                        |                              |
|      | The <b>incident matrix</b> A for a family of subsets $\{S_1,, S_n\}$ containing elements $\{x_1,, x_m\}$ has                                                     |                                                                                   |                                             |                          |                        |                              |
|      | $A_{ii} = \begin{cases} 1 \text{ if } x_i \in S_j \\ \dots \dots \dots \dots \end{pmatrix}$ Exploring $AA^T$ and using properties of ranks, determinants, linear |                                                                                   |                                             |                          |                        |                              |
|      | $x_{ij} = (0 \text{ if } x_i \notin S_j)$                                                                                                                        |                                                                                   |                                             |                          |                        |                              |
|      | dependency, etc. may give conclusions about the sets. Working in the field $\mathbb{Z}_2$ on problems                                                            |                                                                                   |                                             |                          |                        |                              |
|      | dealing with parity may help.                                                                                                                                    |                                                                                   |                                             |                          |                        |                              |
| 12-5 | Engineering                                                                                                                                                      |                                                                                   |                                             |                          |                        |                              |
| 12-0 | Linginee                                                                                                                                                         | inig                                                                              |                                             |                          |                        |                              |
|      | Discrete c                                                                                                                                                       | ase: Springs                                                                      |                                             |                          |                        |                              |
|      |                                                                                                                                                                  |                                                                                   | $K = A^T C A, K$                            | u = f                    |                        |                              |
|      | Vector/ E                                                                                                                                                        | quation                                                                           | Description                                 |                          | Matrix                 |                              |
|      | u                                                                                                                                                                |                                                                                   | Movements of the n mass                     | ses                      |                        |                              |
|      | e = Au                                                                                                                                                           |                                                                                   | Kinematic equation: Elon                    | gations                  | A gives th             | e elongations of the         |
|      |                                                                                                                                                                  |                                                                                   | of the m springs                            | _                        | springs.               |                              |
|      | y = Le                                                                                                                                                           |                                                                                   | (internal forces) in the m                  | S                        |                        | gonal matrix that            |
|      |                                                                                                                                                                  |                                                                                   | (internal lorces) in the m                  | springs                  | spring ai              | ving the forces              |
|      | $f - A^T y$                                                                                                                                                      |                                                                                   | Static/ balance equation:                   | External                 | Internal fo            | arces balance                |
|      | J = II y                                                                                                                                                         |                                                                                   | forces on n masses                          | External                 | external for           | prces on masses.             |
|      |                                                                                                                                                                  |                                                                                   |                                             |                          |                        |                              |
|      | There are                                                                                                                                                        | four possibiliti                                                                  | es for A:                                   |                          |                        |                              |
|      | Case                                                                                                                                                             | Description                                                                       |                                             | Matrix A                 |                        | Equations                    |
|      | Fixed-                                                                                                                                                           | There are n+                                                                      | 1 springs; each mass has                    |                          |                        | $e_1 = u_1$                  |
|      | fixed                                                                                                                                                            | 2 springs com                                                                     | ning out of it and the top                  | −1 ∴                     | 1                      | $e_2 = u_2 - u_1$            |
|      |                                                                                                                                                                  | and dottom al                                                                     | re fixed in place.                          |                          |                        |                              |
|      |                                                                                                                                                                  |                                                                                   |                                             | L                        | -11                    | $e_{n+1} = u_n$              |

|      | Fixed-<br>free                                                                            | There are n springs; one end is fixed<br>and the other is not. (Here we assume<br>the top end is fixed.)   | $\begin{bmatrix} 1 & & \\ -1 & \ddots & \\ & & 1 \end{bmatrix}$                                                                                                   | $e_1 = u_1$<br>$e_2 = u_2 - u_1$<br>: |  |
|------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
|      |                                                                                           |                                                                                                            |                                                                                                                                                                   | $e_n = u_n - u_{n-1}$                 |  |
|      | Free-                                                                                     | No springs at either end. n-1 springs.                                                                     | $\begin{bmatrix} -1 & 1 \\ & \ddots & \ddots \end{bmatrix}$                                                                                                       | $e_1 = u_2 - u_1$<br>:                |  |
|      |                                                                                           |                                                                                                            | $\begin{bmatrix} I & -1 & 1 \end{bmatrix}$                                                                                                                        | $e_{n-1} = u_n - u_{n-1}$             |  |
|      | Circular                                                                                  | The nth spring is connected to the first                                                                   | [1 -1]                                                                                                                                                            | $e_1 = u_1 - u_n$                     |  |
|      |                                                                                           | one. n springs.                                                                                            |                                                                                                                                                                   | $e_2 = u_2 - u_1$                     |  |
|      |                                                                                           |                                                                                                            |                                                                                                                                                                   |                                       |  |
|      | Each spri                                                                                 | ng is stratched or compressed by the diff.                                                                 | ronco in displacom                                                                                                                                                | $e_n = u_n - u_{n-1}$                 |  |
|      | Each spring is stretched or compressed by the difference in displacements.                |                                                                                                            |                                                                                                                                                                   |                                       |  |
|      | Facts about K:                                                                            |                                                                                                            |                                                                                                                                                                   |                                       |  |
|      | 1. K is tridiagonal except for the circular case: only nonzero entries are on diagonal or |                                                                                                            |                                                                                                                                                                   |                                       |  |
|      | ent                                                                                       | try above or below.                                                                                        |                                                                                                                                                                   | -                                     |  |
|      | 2. Ki                                                                                     | s symmetric.                                                                                               |                                                                                                                                                                   |                                       |  |
|      | 3. Ki                                                                                     | s positive definite for the fixed-fixed and f                                                              | ixed-free case.                                                                                                                                                   |                                       |  |
|      | 4. $K^{-1}$                                                                               | <sup>1</sup> has all positive entries for the fixed-fixed<br>in the fixed fixed and fixed free energy give | d and fixed-free case                                                                                                                                             | e.<br>En the forese                   |  |
|      | $u = \kappa$                                                                              | In the fixed-fixed and fixed-free case give                                                                |                                                                                                                                                                   | III the lorces.                       |  |
|      | For the si                                                                                | ngular case:                                                                                               |                                                                                                                                                                   |                                       |  |
|      |                                                                                           | [1]                                                                                                        |                                                                                                                                                                   |                                       |  |
|      | 1. Th                                                                                     | 1. The nullspace of K is :, if the whole system moves by the same amount the forces                        |                                                                                                                                                                   |                                       |  |
|      | [1]                                                                                       |                                                                                                            |                                                                                                                                                                   |                                       |  |
|      | stay the same.<br>2 To solve $Ky = f$ the forces must add up to 0 (equilibrium)           |                                                                                                            |                                                                                                                                                                   |                                       |  |
|      | 2. To solve $Ku = f$ , the forces must add up to 0 (equilibrium).                         |                                                                                                            |                                                                                                                                                                   |                                       |  |
|      | <u>Continuous case:</u> Elastic bar                                                       |                                                                                                            |                                                                                                                                                                   |                                       |  |
|      | $\overline{A^T C A u} = f$ becomes the differential equation                              |                                                                                                            |                                                                                                                                                                   |                                       |  |
|      |                                                                                           | $-\frac{d}{d}\left(c(x)\frac{du}{dt}\right) - f(x)$                                                        |                                                                                                                                                                   |                                       |  |
|      | The diam                                                                                  | $dx \left( \begin{array}{c} c \\ c \\ dx \end{array} \right) dx$                                           |                                                                                                                                                                   | han aging from the                    |  |
|      | The discrete case can be used to approximate the continuous case. When going from the     |                                                                                                            |                                                                                                                                                                   | nen going from the                    |  |
|      | Continuou                                                                                 | is to discrete case, multiply by $\Delta x$ .                                                              |                                                                                                                                                                   |                                       |  |
| 12-6 | Physics:                                                                                  | Special Theory of Relativity                                                                               |                                                                                                                                                                   |                                       |  |
|      | ,,                                                                                        |                                                                                                            |                                                                                                                                                                   |                                       |  |
|      | For each                                                                                  | event p occurring at $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ at time t read on                         | clock C relative to S                                                                                                                                             | , assign the space-time               |  |
|      |                                                                                           | $\begin{bmatrix} x \end{bmatrix}$                                                                          |                                                                                                                                                                   |                                       |  |
|      | coordinate                                                                                | es relative to C and S $\begin{bmatrix} y \\ z \\ t \end{bmatrix}$ . Suppose S and                         | d S' have parallel ax                                                                                                                                             | es and S' moves at                    |  |
|      | constant                                                                                  | velocity v relative to S in the +x direction,                                                              | and they coincide w                                                                                                                                               | hen their clocks C and                |  |
|      |                                                                                           | •                                                                                                          | $\begin{bmatrix} x \\ \end{bmatrix} \begin{bmatrix} x' \end{bmatrix}$                                                                                             |                                       |  |
|      | C' read 0.                                                                                | The unit of length is the light second. De                                                                 | efine $T_v \begin{bmatrix} y \\ z \\ t \end{bmatrix} = \begin{bmatrix} y' \\ z' \\ t' \end{bmatrix}$ , where $T_v = \begin{bmatrix} y' \\ z' \\ t' \end{bmatrix}$ | nere the two sets of                  |  |
|      | coordinate                                                                                | es represent the same event with respect                                                                   | t to S and S'                                                                                                                                                     |                                       |  |
|      | Avioma                                                                                    |                                                                                                            |                                                                                                                                                                   |                                       |  |
| 1    |                                                                                           |                                                                                                            |                                                                                                                                                                   |                                       |  |

|      | 1. The speed of light is 1 when measured in eith                                                                                                                                                                        | er coordinate system.                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|      | 2. $T_v$ is an isomorphism.                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      | $\begin{bmatrix} x \end{bmatrix} \begin{bmatrix} x' \end{bmatrix}$                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      | 3 $T \begin{vmatrix} y \\ y \end{vmatrix} = \begin{vmatrix} y' \\ y' \end{vmatrix}$ implies $y = y'$ $z = z'$                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      | $3.  I_v  z  =  z'   \text{implies } y = y, z = z.$                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      | $\lfloor t \rfloor \lfloor t' \rfloor$                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      | $\begin{bmatrix} x \end{bmatrix} \begin{bmatrix} x' \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} x'' \end{bmatrix}$                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      | 4. $T_{x_1} \begin{vmatrix} y_1 \\ y_1 \end{vmatrix} = \begin{vmatrix} y' \\ y' \end{vmatrix}$ , $T_{x_1} \begin{vmatrix} y_2 \\ y_2 \end{vmatrix} = \begin{vmatrix} y'' \\ y'' \end{vmatrix}$ implies $x'' = x'$ .     | $t^{\prime\prime} = t^{\prime}$                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      | 4. $I_v  _{Z_1} -  _{Z'}  _{I_v}  _{Z_2} -  _{Z''}$ implies $x - x$ , $t - t$ .                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      | $\begin{bmatrix} t \\ t \end{bmatrix} \begin{bmatrix} t' \\ t' \end{bmatrix} \begin{bmatrix} t \\ t' \end{bmatrix} \begin{bmatrix} t'' \end{bmatrix}$                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      | 5. The origin of S moves in the negative x -axis                                                                                                                                                                        | of S' at velocity –v as measured from S'.                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|      | These evices complete characterize the Lerentz tr                                                                                                                                                                       | <b>enclarmation</b> T, where representation in                                                                                                                                                                                                                                                                                                                                                                                                |  |
|      | These axioms complete characterize the Lorentz transformation $T_v$ , whose representation in                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      |                                                                                                                                                                                                                         | —12 I                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|      | $\frac{1}{\sqrt{1-2}}$ 0                                                                                                                                                                                                | $0 \frac{v}{\sqrt{1-v^2}}$                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|      | $\sqrt{1-v^2}$                                                                                                                                                                                                          | $\sqrt{1-v^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|      | $[T_{\nu}]_{\beta} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      | $\left  -\frac{1}{\sqrt{1-x^2}} \right ^2$                                                                                                                                                                              | $0 - \frac{1}{\sqrt{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|      | $L = v^2$                                                                                                                                                                                                               | $\sqrt{1-v^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|      | 1. If a light flash at time 0 at the origin is observe                                                                                                                                                                  | ed at $\begin{bmatrix} x \\ y \end{bmatrix}$ is observed at time t, then                                                                                                                                                                                                                                                                                                                                                                      |  |
|      |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      | $x^2 + y^2 + z^2 - t^2 = 0.$                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      | 2. Time contraction: $t' = t\sqrt{1-v^2}$                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      | 3. Length contraction: $x' = x\sqrt{1-v^2}$                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      | <b>3</b>                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 12-7 | Computer Graphics                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      |                                                                                                                                                                                                                         | $[^{x}]$                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|      | 3-D computer graphics use homogeneous coordinat                                                                                                                                                                         | res: $\begin{vmatrix} y \end{vmatrix}$ represents the point $\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}\right)$ (the                                                                                                                                                                                                                                                                                                                         |  |
|      |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      | point at infinity if $c=0$                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      | The transformation                                                                                                                                                                                                      | is like multiplying (on the left side) by                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|      | Translation by $(x, y, z)$                                                                                                                                                                                              | $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|      | Translation by $(x_0, y_0, z_0)$                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|      |                                                                                                                                                                                                                         | $\begin{bmatrix} 0 & 0 & 1 & 0 \\ x_0 & y_0 & z_0 & 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                          |  |
|      | Scaling by a, b, c in x, y, and z directions                                                                                                                                                                            | $\begin{bmatrix} 0 & 0 & 1 & 0 \\ x_0 & y_0 & z_0 & 1 \end{bmatrix}$ [a & 0 & 0 & 0]                                                                                                                                                                                                                                                                                                                                                          |  |
|      | Scaling by a, b, c in x, y, and z directions                                                                                                                                                                            | $\begin{bmatrix} 0 & 0 & 1 & 0 \\ x_0 & y_0 & z_0 & 1 \end{bmatrix}$ $\begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                           |  |
|      | Scaling by a, b, c in x, y, and z directions                                                                                                                                                                            | $\begin{bmatrix} 0 & 0 & 1 & 0 \\ x_0 & y_0 & z_0 & 1 \end{bmatrix}$ $\begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                          |  |
|      | Scaling by a, b, c in x, y, and z directions                                                                                                                                                                            | $\begin{bmatrix} 0 & 0 & 1 & 0 \\ x_0 & y_0 & z_0 & 1 \end{bmatrix}$ $\begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$                                                                                                                                                                                                                                                                         |  |
|      | Scaling by a, b, c in x, y, and z directions<br>Rotation around z-axis (similar for others) by θ                                                                                                                        | $\begin{bmatrix} 0 & 0 & 1 & 0 \\ x_0 & y_0 & z_0 & 1 \end{bmatrix}$ $\begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ -\sin \theta & 0 & 0 \end{bmatrix}$                                                                                                                                                                              |  |
|      | Scaling by a, b, c in x, y, and z directions<br>Rotation around z-axis (similar for others) by θ                                                                                                                        | $\begin{bmatrix} 0 & 0 & 1 & 0 \\ x_0 & y_0 & z_0 & 1 \end{bmatrix}$ $\begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \end{bmatrix}$                                                                                                                            |  |
|      | Scaling by a, b, c in x, y, and z directions<br>Rotation around z-axis (similar for others) by θ                                                                                                                        | $\begin{bmatrix} 0 & 0 & 1 & 0 \\ x_0 & y_0 & z_0 & 1 \end{bmatrix}$ $\begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & c & 0 \end{bmatrix}$ $\begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$                                                                                                                               |  |
|      | Scaling by a, b, c in x, y, and z directions<br>Rotation around z-axis (similar for others) by $\theta$<br>Projection onto plane through (0.0.0)                                                                        | $\begin{bmatrix} 0 & 0 & 1 & 0 \\ x_0 & y_0 & z_0 & 1 \end{bmatrix}$ $\begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $P = \begin{bmatrix} l - nn^T & 0 \end{bmatrix}$                                                                              |  |
|      | Scaling by a, b, c in x, y, and z directions<br>Rotation around z-axis (similar for others) by $\theta$<br>Projection onto plane through (0,0,0)<br>perpendicular to unit vector n                                      | $\begin{bmatrix} 0 & 0 & 1 & 0 \\ x_0 & y_0 & z_0 & 1 \end{bmatrix}$ $\begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & c & 0 \end{bmatrix}$ $\begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $P = \begin{bmatrix} I - nn^T & 0 \\ 0 & 1 \end{bmatrix}$                                                                     |  |
|      | Scaling by a, b, c in x, y, and z directions<br>Rotation around z-axis (similar for others) by θ<br>Projection onto plane through (0,0,0)<br>perpendicular to unit vector n<br>Projection onto plane passing through Q. | $\begin{bmatrix} 0 & 0 & 1 & 0 \\ x_0 & y_0 & z_0 & 1 \end{bmatrix}$ $\begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $P = \begin{bmatrix} I - nn^T & 0 \\ 0 & 1 \end{bmatrix}$ $T_PT_+ \text{ where T is the translation taking}$ |  |

|      | Reflection through plane through (0,0,0) perpendicular to unit vector n                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{bmatrix} I - 2nn^T & 0\\ 0 & 1 \end{bmatrix}$                          |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|
|      | The matrix representation for an affine transformation is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                |  |  |
|      | $\begin{bmatrix} T(1,0,0) - T(0,0,0) & 0 \\ T(0,1,0) & T(0,0,0) & 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |  |  |
|      | T(0,1,0) - T(0,0,0) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                |  |  |
|      | $\begin{bmatrix} T(0,0,1) \\ T(0,0,1) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                |  |  |
| 12-8 | Linear Programming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |  |  |
|      | Linear programming searches for a nonnegative vector x satisfying $Ax = b$ that minimizes (or maximizes) the cost $c \cdot x$ . The dual problem is to maximize $b \cdot y$ subject to $A^T y \le c$ . The extremum must occur at a corner. A corner is a vector x with positive entries that satisfies the m equations $Ax = b$ with at most m positive components.                                                                                                                                                                              |                                                                                |  |  |
|      | Duality Theorem:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                |  |  |
|      | If either problem has a best solution then so does the other. Then the minimum cost $c \cdot x^*$ equals the maximum income $b \cdot y^*$ .                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                |  |  |
|      | Simplex Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                |  |  |
|      | <ol> <li>First find a corner. If one can't easily be found, create m new variables, start with their sum as the cost, and follow the remaining steps until they are all zero, then revert to the criginal problem.</li> </ol>                                                                                                                                                                                                                                                                                                                     |                                                                                |  |  |
|      | <ol> <li>2. Move to another corner that lowers the cost. Repeat for each zero component: Change it from 0 to 1, find how the nonzero components would adjust to satisfy <i>Ax</i> = <i>b</i>, then compute the change in the total cost <i>c</i> · <i>x</i>. Let the entering variable be the one that causes the most negative change (per single unit). Reduce the entering variable until the first positive component hits 0.</li> <li>3. When every other "adjacent" corner has higher cost, the current corner is the optimal x.</li> </ol> |                                                                                |  |  |
| 12-9 | Economics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                |  |  |
|      | A consumption matrix A has the amount of $(i, i)$ . Then $y = Ay$ where $y/y$ are the input/out                                                                                                                                                                                                                                                                                                                                                                                                                                                   | product j needed to produce product i in entry                                 |  |  |
|      | product i in entry i.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | put column vectors containing the amount of                                    |  |  |
|      | If the column vector y contains the demands f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | or each product, then for the economy to meet                                  |  |  |
|      | the demands, there must exist a vector p with $n - 4n - y \in \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nonnegative entries satisfying<br>$(I - A)n - y \rightarrow n - (I - A)^{-1}y$ |  |  |
|      | p - p - y - m - y<br>input consumption demand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(I  A)p = y \Rightarrow p = (I  A)  y$                                        |  |  |
|      | if the inverse exists.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                |  |  |
|      | If the largest eigenvalue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | then $(I - A)^{-1}$                                                            |  |  |
|      | is greater than 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | has negative entries                                                           |  |  |
|      | is equal to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | fails to exist                                                                 |  |  |
|      | Lis iess than 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nas only nonnegative entries                                                   |  |  |
|      | If the spectral radius of A is less than 1, then the following expansion is valid:<br>$(I - A)^{-1} = I + A + A^2 + A^3 + \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                |  |  |

## References

Introduction to Linear Algebra (Third Edition) by Gilbert Strang Linear Algebra (Fourth Edition) by Friedberg, Insel, and Spence Linear Algebra (Second Edition) by Kenneth Hoffman and Ray Kunze Putnam and Beyond by Titu Andreescu and Razvan Gelca MIT OpenCourseWare, 18.06 and 18.700

## Notes

I tried to make the notes as complete yet concise and understandable as possible by combining information from 3 books on linear algebra, as well as put in a few problem-solving tips. Strang's book offers a very intuitive view of many linear algebra concepts; for example the diagram on "Orthogonality of the Four Subspaces" is copied from the book. The other two books offer a more rigorous and theoretical development; in particular, Hoffman and Kunze's book is quite complete.

I prefer to focus on vector spaces and linear transformations as the building blocks of linear algebra, but one can start with matrices as well. These offer two different viewpoints which I try to convey: Rank, canonical forms, etc. can be described in terms of both. Big ideas are *emphasized* and I try to summarize the major proofs as I understand them, as well as provide nice summary diagrams.

A first (nontheoretical) course on linear algebra may only include about half of the material in the notes. Often in a section I put the theoretical and intuitive results side by side; just use the version you prefer. I organized it roughly so later chapters depend on earlier ones, but there are exceptions. The last section is applications and a miscellany of stuff that doesn't fit well in the other sections. Basic knowledge of fields and rings is required.

Since this was made in Word, some of the math formatting is not perfect. Oh well.

Feel free to share this; I hope you find it useful!

Please report all errors and suggestions by posting on my blog or emailing me at <u>holdenlee1@yahoo.com</u>. (I'm only a student learning this stuff myself so you can expect errors.) Thanks!