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1 Ordered Fields 
1-1 Ordered sets and fields 

 

Let S be an ordered set and let    .   is bounded below, above if there exists       
(called a lower or upper bound) such that         for all    , respectively. 
 

If   is a lower bound such that any     is not a lower bound for E, then   is the greatest 
lower bound (supremum) of E, denoted by     . The supremum is unique when it exists. 

Similarly, if   is an upper bound such that any     is not an upper bound for E, then   is 
the least upper bound (infimum) of E, denoted by     . 
 

S has the least upper bound property if whenever     is nonempty and bounded above, 
     exists in S. This is equivalent to the greatest lower bound property. 
 
An ordered field is a field that is an ordered set satisfying: 

1. If     then        . 
2. If         then     . 

 

An ordered field   is Archimedean if for all       with    , there exists     such that 
    .   and   are both Archimedean. 
 

1-2 Construction of the Reals 1: Dedekind Cuts 
 

There exists a unique ordered field   (the real numbers) with the least upper bound 
property; it contains   as a subfield. 
Pf. 

1. The real numbers are associated with subsets     (called cuts) satisfying: 

a.      . 
b. If         and    , then    . (If   contains  , it contains all numbers 

less than  .) 
c. If     then     for some    . (No matter which     we choose, we can 

always find     in   larger than it.) 
2. We say     if    . 
3.   has the LUB property. 
4. Let                  . Verify the axioms for addition. The inverse of   is 

                  (some rational number smaller than –   is not in  ). 

5. Show that            . 
6. For positive    , let                                   . 
7. Complete the definition by defining multiplication involving negative elements. Verify 

the remaining axioms. 

8. Each rational number   is associated with          . Check that with this 
embedding, the rational numbers are an ordered subfield. 

 

In the set            , every nonempty subset has a infimum and supremum.1 

  

                                            
1
 The definitions of limit, etc. extend to numbers in    is we let the neighborhoods of   be all sets of the form        , 

and similarly for   . 
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2 Metric Spaces 
2-1 Metric Spaces 

 
A set X with a real-valued function (a metric)        on pairs of points in X is a metric 
space if: 

1.          with equality iff    . 
2.               
3.                      (Triangle inequality) 

Ex. 

 Discrete space: For any set X, define the metric 

        
     
     

  

 N-dimensional Euclidean space   , with distance defined as 

                                
 

 

   

 

   
     : 

                 
 

   

 

 
 

 

o To prove this is a metric, use Hölder’s Inequality… 

          
 

   

 

 
 

        
 

   

 

 
 

       
 

   

 

 
 

     

o …to derive Minkowski’s Inequality: 

       

 

   

        
 

   

 

 
 

        
 

   

 

 
 

 
 

 
 

 

 
         

  
  

          
     

        

       
 : Continuous functions defined on       

                     
 

 

 

 
 

 

       :  

          
     

            

   : Infinite sequences with    
  

     : 

                 

 

   

 

 
 

 

  : Bounded infinite sequences 
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2-2 Definitions 
 

Term Definition in metric space X Definition in topology X 

neighborhood For    , the  -neighborhood 
of a point   is the set 

                     

A neighborhood of   is an open set 
containing  . 

contact point   is a contact point of     if every neighborhood of   contains a point 
of  . 

limit point   is a limit point of     if every neighborhood of   contains a point of   

besides  .    is the set of limit points of E. 

isolated point If     but is not a limit point of E, then p is an isolated point. (Contact 
points = limit points   isolated points.) 

closed E is closed if every limit point 
of E is in E. 

E is closed if X-E is open. 

closure The closure of E is the set of 
contact points of E. 

             

The closure        of X is the 
intersection of all closed sets contained 
in E. 

interior point   is an interior point if there is a neighborhood N of   such that    . 
The interior of N, denoted by         , is the set of interior points (or 
union of open sets contained in E). 

open E is open if every point of E is 
an interior point of E. 

A topology on a set X is a collection   
of subsets, called open sets satisfying:  

1.       
2. The union of an arbitrary collection of 

sets in   is in  . 
3. The intersection of a finite number of 

sets in   is in  . 

perfect E is perfect if E is closed and every point of E is a limit point of E. 

bounded E is bounded if there exists 

    and     so that 
         for all    . 

N/A 

dense E is dense in X if every point of X is a contact point of E, i.e.     . 

 
Closed sets satisfy the following: 

1.     are closed. 
2. Arbitrary intersections of closed sets are closed. 
3. Finite unions of closed sets are closed. 

 
A metric space is a topology- the definitions in topology hold in a metric space. (Note that 
neighborhoods in metric spaces are more strictly defined.) 
 
If p is a limit point of E, then every neighborhood of p contains infinitely many points of E. 
Thus a finite point set has no limit points. 
 
%On closure: 

1.    is closed. 
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2.      iff E is closed. 

3.      for every closed set F with    . 
 

Let E be a nonempty subset of   that is bounded above. If E is closed, then       . 
 

Subspace topology: Let      . E is open relative to Y iff       for some open set U 
in X. 

 

2-3 Separability 
 
A metric space is separable if it contains a countable2 dense subset. 

Ex.    is separable since    is dense in   .   is not separable. 
Any subset of a separable space is separable. 
 

A base for a topology on X is a collection   of subsets, called base elements, of X such that 

1. For each    , there is at least one base element containing  . 
2. If          for some        , then            for some     . 

In the topology generated by  , a subset U is open if for each    , there is a base 

element     so that      . In particular, each base element is open. 
Two other equivalent formulations: 

   is the collection of all unions of elements of  . 

   is a collection of open sets of X such that for each open set U of X and each    , 
there is an element     such that      . 

Ex.  -neighborhoods 
 
A metric space is separable iff it has a countable base. 

 Separable Countable base: Let P be a countably dense subset and take 
             . 

 Countable base Separable: (true for any topology) Choose a point in each base 
element. 

 

2-4 Compact Sets 
 

An open cover of a set E in a topology X is a collection   of open subsets such that 
       . A subset     is compact if every open cover of K contains a finite subcover. 
K is sequentially (or countably) compact if every infinite subset of K has a limit point in K. 
 
On subsets: 

 Suppose      . Then K is compact relative to X if it is compact relative to Y. In 
other words, compactness is an intrinsic property. 

 Compact subsets are closed. 

 Closed subsets of compact sets are compact. 
 
Theorems on compact sets: 

 K is compact iff K is sequentially compact. 
o  : Let E be infinite subset. If no limit points, each     has a neighborhood 

                                            
2
 Here countable means finite or having same cardinality as  . 
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containing at most 1 point of E- neighborhoods form a cover with no finite 
subcover. 

o  :  
 Sequentially compact Separable: Given  , choose any   , take      to 

be   away from all        . This must stop. Let   range over    ; 
putting together   ’s gives countable dense subset. 

 Separable Countable base 
 Countable base Every cover has at most countable subcover: For   a 

base and   a subcover, associate each element     contained in 
some     with       .       is a finite subcover. 

 Sequentially compact Nested nonempty sets      have nonempty 
intersection: Take      . If        finite then done; else it has limit 
point, which is in the intersection. 

 Take countable subcover; let              
 
    . If      

 
    for 

any  , there is      
 
    by above. Then      

 
   , contradiction. 

 If   is a family of compact subsets of X such that the intersection of every finite 
subcollection is nonempty, then        . 

 (Nested Intervals Theorem) If      is a nested sequence of intervals (       ), then 

   
 
     . If the length of the intervals goes to 0, then the intersection consists of a 

single point. 

 If      is a nested sequence of k-cells (closed boxes in   ), then    
 
     . 

 Every k-cell is compact. 
o Pf. Suppose there’s an open cover   without a finite subcover. Find a nested 

sequence      of k-cells whose dimensions go to 0, such that the cells can’t be 
covered by a finite subcollection of  . Some point x is in    

 
   . It’s in an 

open set in   which is contained in    for n large enough, contradiction. 
 

Heine-Borel Theorem: For a subset     , the following properties are equivalent: 
1. E is compact (every cover has a finite subcover). 
2. E is closed and bounded. 

Cor. Every bounded infinite subset of    has a limit point in   . 
 

2-5 Perfect Sets 
 

Any nonempty perfect set in    is uncountable. Thus every interval           is 
uncountable. 
 
The Cantor set: Let         . Once    is defined, write it as a disjoint union of intervals in 

the form      , and replace each with    
 

 
          

 

 
         to form     . The 

Cantor set is       
   . C is a (uncountable) perfect, compact set containing no 

segment. The Cantor set consists of all numbers whose ternary expansion consists only of 
the digits 0 and 2 (an infinite string of 2s being allowed). 
 

2-6 Connected Sets 
 

Two subsets     of a metric space   are separated if            . A subset E is 
disconnected if it is a union of two nonempty separated sets, and connected otherwise. 
Equivalent condition (see below): E is disconnected if there exist disjoint nonempty open 
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    so that      . 
 

The union of sets in   is connected if every distinct pair of sets in   are not separated. 
 

For    , the union of all connected subsets containing x is the connected component of 
X containing x. The connected components form a partition of E, and they are all closed 
sets. 
If X is a metric space with finitely many components, then the components are both closed 
and open (clopen). Conversely, any clopen set is a union of components of X. In particular, 

if X is connected, the only clopen sets are X and  . 
 
In a totally disconnected set, all connected components are point sets. 
Ex.   and the Cantor set C 
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3 Sequences and Series 
3-1 Sequences and Convergence 

 
Let        

  be a sequence of points in a metric space X. The sequence converges to a 

point     if for every     there exists     such that for every    ,          . Else 
it diverges. 

        
  converges to p if every open set containing p contains    for all but finitely 

many  . (This is the definition of convergence in a topological space.) 

 If        
  converges then it converges to a unique    , denoted by         . 

 If        
  converges then it is bounded. 

 If    ,   is a contact point of E iff there exists a sequence        
  such that 

          . 
 
A Cauchy sequence is a sequence      such that for every    , there is an integer   so 
that            for all      . In other words, letting                and defining 

                        ,                . 
Cauchy Criterion: Every convergent sequence is Cauchy. 
 

A sequence is monotonically increasing, decreasing if        ,        , 
respectively. A monotonically increasing, decreasing sequence is convergent iff it is 
bounded above, below, respectively. 
 

Basic properties (for  ): Suppose                      . 
                 
                  

               
               ,      

 Squeeze Theorem: If          and                     then          
 . 

The same properties and definitions hold if       are replace with functions defined on reals, 
letting the variable range over the reals. 
 
A subsequence of      is in the form     

 , where         are positive integers. The 

limits of subsequences are called subsequential limits. 

 If      is a sequence in a compact metric space X, then some subsequence of      
converges to a point of X. In particular, every bounded subsequence of     contains 
a convergent subsequence. 

 The subsequential limits for a closed subset. 
 
Césaro-Stolz Lemma: Let           be two sequences of real numbers and suppose either 
of the following holds. 

1.                     and      is decreasing for sufficiently large  . 

2.            and      is increasing for sufficiently large  . 

Then       
  

  
       

       

       
, provided the latter limit exists. 

 

3-2 Lim inf and Lim sup 
 



9 
 

Given a sequence     , let               . Let          and         . Define 

                      

                      
Properties: 

 Any sequence      in   has a monotonic subsequence converging to            , 

            (allowing     ). 

 Let S be the set of subsequential limit points (including   ). Then 

o                  
o                  

 

3-3 Construction of the Reals 2: Cauchy Sequences 
 

1. Identify the real numbers with equivalence classes of Cauchy sequences of rational 
numbers. Two sequences           are equivalent if              . Each 
rational number is associated with its constant sequence. 

2. Define addition and multiplication as termwise addition and multiplication, and show it 
is well-defined. 

3. For the multiplicative inverse, take the reciprocal of all terms, except those that are 0. 
(Sequence is eventually nonzero.) 

4. Structure of ordered field: A real number is positive (greater than 0) if the sequence is 

eventually positive.     if     is positive. Check the order axioms. 
5.   is Archimedean: We can find   so the terms of a given positive      are eventually 

at least  . 
6.   is dense in  : follows from construction. 
7.   has the LUB property: Construct real sequences           of upper and lower 

bounds of      so that               (you can make it halve each time).       
approach the same real number, the sup. 

8.   is complete:     funness. 

 

3-4 Completion 
 
In a complete metric space, every convergent sequence is Cauchy. 

 Every compact metric space is complete. 

 Any Euclidean space    is complete. 

Each metric space   has a completion   : 
1. The elements of    are equivalence classes of Cauchy sequences in  . Two 

sequences are equivalent if                 . Each     is associated with a 
constant sequence. 

2. Define distance by               . 
3.    is complete:     funness. 
4.   is dense in    and      if   is complete. 

 

3-5 Infinite Series 
 
The partial sums of      are       

 
   . Define 
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The sum converges if this limit exists; else it diverges. Infinite products are defined similarly. 
 
Convergence/ Divergence Tests: 

 Divergence Theorem: If    
 
    converges then           . 

 A series of nonnegative terms converges iff its partial sums form a bounded 
sequence. 

 Basic Comparison Test: Suppose         for all    . 
o (Convergence) If    

 
    converges then so does    

 
   . 

o (Divergence) If    
 
    diverges then so does    

 
   . 

 Limit Comparison Test: Let           be eventually positive sequences. If       
  

  
 

is finite and nonzero, then    
 
    and    

 
    either both converge or both diverge. 

 Ratio Test: Let      be a sequence of nonzero terms. 

o If            
    

  
    then    

 
    converges. 

o If            
    

  
    then    

 
    diverges. 

 Root Test: Let                   
.  

o If     then    
 
    converges. 

o If     then    
 
    diverges. If          for infinitely many distinct values of 

  then    
 
    diverges. 

 Cauchy’s Condensation Criterion: Suppose      is nonincreasing.    
 
    converges 

iff       
 
    converges. 

 P-Test:     
    converges iff     . 

 Absolute Convergence: If       
    converges then    

 
    converges. It is said to 

converge absolutely. 

 Alternating Series (Leibniz) Test: If         for all   and           , then 
        

 
    converges. If the series converges but does not converge absolutely, it 

converges conditionally. 
o Alternating Series Approximation Theorem: Suppose         

 
    satisfies 

the conditions above. Then the  th partial sum approximates the infinite 
series with an error of at most     : 

         

 

     

       

 Kummer’s Test: Let           be positive sequences. Suppose  
 

  

 
    diverges and 

let        
    

  
     . Then    

 
    converges if                and diverges if 

     for all  . 
For products: 

Coriolis Test: If    
 
    and    

  
    converge, then so does         

   . (Pf. Take ln and 
use Taylor expansion.) 
 

Let       be a bijection. Then       
 
    is a rearrangement of    

 
   . 

 If    
 
    is absolutely convergent to   then any rearrangement is also absolutely 
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convergent to  . 

 If    
 
    is conditionally convergent then for every     , there exists a 

rearrangement that is conditionally convergent to  .3 
o Pf. Break up into a positive and negative sequence. Add terms from the 

positive sequence until sum overshoots B, add terms from the negative 
sequence until sum below B, and repeat. 

 

3-6 Power Series 
 
A power series is in the form            

   . There exists     (possibly  ), called the 
radius of convergence, so that 

1.      converges for all complex      . 

2.      diverges for all complex      . 
A Laurent series is in the form            

        . 

  

                                            
3
 For complex number sequences, the set of possible sums is a point, a line, or the whole plane. (This is difficult.) 
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4 Limits and Continuity 
4-1 Limits 

 

Let X and Y be metric spaces,    , and   be a limit point of  . Let       be a function. 
The limit of   at   is     if for every     there exists     such that for every     with 
           we have            . 

   
   

       

Note that      does not matter (it need not exist). 
 

Equivalently, for any sequence        such that      and           , we have 
             . (This allows basic properties of sequences to carry over as below.) 
 

Infinite limits: (Definitions with    are similar.) 
 

              if for every     there exists   such that            whenever 

   . 

              if for every   there exists     such that        whenever 
       . 

 
The limit is unique if it is defined, and satisfies the following: 
Suppose                          . 

                     

                    

                   

                    ,     

 Squeeze Theorem: If                for all   in a neighborhood of   except 
possibly at  , and                        , then             . 

 

4-2 Continuity 
 

Let              .   is continuous at   if for every     there exists     such 

that for every   such that         , we have               .   is continuous iff either   

is an isolated point of E or                . 

Equivalently, for every sequence      converging to  ,       converges to     . 
      is continuous if   is continuous at every point    . 
 

If       and       are continuous then         is continuous. 
 

(One topological definition) Let       be any function between topological spaces.   is 

continuous iff for any open set    ,          is open. 
Pf. 

1.  : For every open set U,          can find neighborhood of      in U. By 

continuity some neighborhood of   is in  . 
2.  : Take U equal to neighborhood of      of radius  .        is open and contains  ; 

some neighborhood of   is in       . 
      is continuous for every closed set    ,        is closed in  . (Use         
       . 
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A homeomorphism is a continuous bijective function   such that         is continuous. 
 
Basic properties: 

 If     are continuous      , then        
 

 
 (if    ) are continuous. 

 Let            .             is continuous in    iff         are continuous. 

             is continuous. 
Ex. Any polynomial        is continuous. Any rational function is continuous except at 
points where the denominator is 0. 
 

4-3 Compactness and Uniform Continuity 
 

Let       be a continuous map of metric spaces, where   is compact. Then        is 
also compact. 
Pf. For an open cover of     , take the inverse of each subset. They’re open since   is 
continuous; choose a finite subcover and take the image. 
Cor. Any continuous map        from compact   is bounded. 

Cor. (Weierstrass) A continuous function       attains its maximum and minimum. 
 

If X is compact and       is continuous and bijective, then         is also continuous. 
Pf. Take open    .     is closed and hence compact (since X is compact). Then 
              (since   is bijective) is compact. Hence      is open. 
 

A function       is uniformly continuous if for every     there exists     

(independent of      ) such that                for every         with           . 

 
Heine-Cantor Theorem: A continuous function on a compact metric space is uniformly 
continuous. 

Pf. Suppose else. For every    , we can find       so          
 

 
 but                

 . By compactness, some subsequence    
 converges; then    

 converges to the same 

point  . They get arbitrarily close to   but                 , contradicting continuity at  . 
 
If       is continuous and   is connected then      is also connected. 

Pf. If       are open sets whose union is     , then their inverses under   would be open 

sets whose union is  . 
 
Intermediate Value Theorem:  

1. Let       be continuous on a connected metric space.  If               then 

there exists     so that       . 

2. If           is continuous, then   has the intermediate value property: If 

                                then there exists         so that       . 

 

X is pathwise connected if for any         there exists a continuous function           
so that                . Any pathwise connected set is connected. 
Pf. If X is a disjoint union of nonempty open sets, take            , let   connect them. 

Take     of      ; we get that       is disconnected, contradiction. (Topo) 

Counterexample to converse: Topologist’s sine curve         
 

 
                     is 
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connected but not pathwise connected. 
 

4-4 Discontinuities 
 
One-sided limits 

               if for every     there exists     such that for every     with 

        we have           . 

               if for every     there exists     such that for every     with 

        we have           . 
 
Discontinuity of the first kind: 

(a) Jump discontinuity:             
(b) Removable discontinuity:                  The function can be redefined at   

to make it continuous. 
Discontinuity of the second kind: Everything else. 
 
Ex. 

1. Dirichlet’s function  

      
     
     

  

2. Riemann’s function is continuous at irrational points, and has removable 
discontinuities at rational points. (         is the denominator of x in lowest terms) 

      

     
 

        
    

  

3.       
 

 
  has a discontinuity of the second kind at    . 

 
Monotonic functions 
Increasing:               
Strictly increasing:               
Decreasing:               
Strictly decreasing:               
Monotonic: Increasing or decreasing 
 

 If   is increasing then       and       exist for all         and 
         

   
             

   
           

Moreover, for all    ,            . Reverse inequalities for   decreasing. 

 The only discontinuities of a monotonous function are jump discontinuities. 

 The set of discontinuities points of a monotonic function are at most countable. 

Pf. For each discontinuity point  , associate it with a rational number in 

                                   .  

 
Given an at most countable set                    , there exists a monotonic function 

          such that   has discontinuities exactly at S. 
A: Take any positive convergent series; define                . 
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5 Differentiation 
5-1 Derivative 

 
The derivative of           at   is 

 

  
              

   

            

  
    

   

         

   
  

Left and right-sided derivatives are defined with left and right-sided limits. If    exists   is 
differentiable. 
Generalizes to vector-valued functions. 
 

If   is differentiable at   then   is continuous at  . 
Pf. Multiply derivative by      . 
 
Rules: 

1.              
2.               (Pf. add and subtract         .) 

3.  
 

 
 

 

 
       

   (Prove for     and use product rule.) 

4.                      
 

            
Tells us how to differentiate polynomials and rational functions. 
 

A local maximum (minimum) of       is a point     such that there exists     such 
that           (         ) for all     with         . 
If   is defined on       and has a local maximum or minimum at        , and    exists, 

then        . 
 
Mean Value Theorem: If     are continuous real functions on       which are differentiable 
in      , then there exists a point         such that  

                                   
In particular, there exists a point         at which 

                      
When           this is called Rolle’s Theorem. 
Pf.  Let                                     . Then            , need to find 

        so that        . Take the point   where   attains maximum or minimum. 
 

  is increasing if     , constant if     , and decreasing if     . 
 
If   is differentiable on       then    satisfies the Intermediate Value Theorem, and cannot 
have any simple discontinuities. 
 
L’Hospital’s Rule: 
Suppose     are real and differentiable in      ,         for all        , and one of the 
following holds: 

1.                         

2.               
Then 
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if the latter limit is defined. (This rule may need to be used multiple times, and is true for  .) 
 

Higher derivatives:                
        denotes the set of functions           (or  ) with continuous  th derivatives. 

        denotes the set of functions with derivatives of all orders. 
 
For vector-valued functions: Suppose            is continuous and differentiable in      . 
There exists         so that 

                          
Pf. Project onto line connecting      with     . 
 

5-2 Taylor and Power Series 
 
Power series (and Laurent series) are continuous in the open ball of convergence. 
Pf. If     where   is the radius of convergence, then   is uniformly continuous on       . 
Factor out     from each term       in           and use Triangle Inequality and 
Root Test. 
 

If   has derivatives of all orders at  , the Taylor series of   around   is 

      
     

  
      

 

   

  

 

Taylor’s Theorem: Suppose   is a real function on      , n is a positive integer,      is 

continuous on      ,         exists for every        .  Let     be distinct points of      , 
and let 

      
     

  
      

   

   

  

Then there exists a point   between   and   such that 

          
     

  
        

Pf. Let   
         

      , so                  . Let                       . 

Then                    . Need         so that          .           for       

and       . By induction and the Mean Value Theorem, there exists      such that 
       . 
Remarks: For     this is the Mean Value Theorem. Useful when there is a convenient 

upper bound for         on      . 
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6 Riemann Integration 
6-1 Riemann-Stiltjes Integral 

 
A partition   of       is a finite collection of points               . Define 

           .  
Let   be bounded on      ,                  

    ,                  
    . 

1. The lower integral sum is              
 
   . The lower integral is 

  
 

 

          
 

        

2. The upper integral sum is              
 
   . The upper integral is 

  
 

 

          
 

        

(Exist when   bounded.) 
  is Riemann integrable on       if the lower and upper integral sums are equal. Then 

       
 

 

   
 

 

         
 

 

        

(If     the integral is 0.) 
 
More general context: Let   be a monotonically increasing function on      , and let 

                 . Define sums and integrals (  ) similarly with     replaced by    . 
The integral is called the Riemann-Stieltjes integral. The set of Riemann-Stieltjes 
integrable functions with respect to   is denoted     . 

Useful in probability- random variables. If   is the distribution function,    
 

 
 is the 

expected value of     . 
 
The integral of a vector (or complex) valued function is taken componentwise (real and 
imaginary parts separately). 
 

 Integrability 
 
A refinement of a partition obtained from adding a set of division points. Any two partitions 
have a common refinement. 
Preliminary Results: 

 If    is a refinement of   then 
o                    
o                    

   
 

 
         

 

 
      . 

        iff for every     there exists a partition P such that (*)          
          . 

o If (*) holds, then it holds for any refinement of P. 
o If (*) holds for                and                 then          

   

      < . 

o If (*) holds and        then           
 
        

 

 
   . 

Main Results: 
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 Let   be continuous on      . Then   is Riemann-Stieltjes integrable for any  . Proof: 

o   is uniformly continuous. Given    choose  , take partition so that all intervals 
are shorter than  . Then (*) holds (choosing    depending on   small enough). 

 If   is monotonic and   is continuous then       . Proof: 

o By IVT and continuity of  , we can choose a partition so that     
         

 
. 

Choose   large enough to make (*) hold. 

 If   is bounded with only finitely many discontinuity points and   is continuous at all 
these points, then       . 

o Take very small intervals around discontinuity points: Surround the 
discontinuity points by nonoverlapping intervals         where   changes by 

less than   , where      . Delete the intervals (and endpoints if they are 
discontinuity points).   is uniformly continuous on the resulting set (union of 
closed intervals), take a partition with intervals of length at most     , including 
       . Upper bound depends on   and               (for the intervals 

       ), and can be made small. (Sum consists of two parts.) 

o Counterexample when   not continuous:       
     
     

 .     
 

  
 does not 

exist. 

 A set     has measure 0 if for all     there exists a countable collection of open 
intervals                 such that             and          .   is Riemann 
integrable on       iff the set of discontinuity points of   has measure 0. 

o Let    be intervals of total length at most 
 

  
 covering discontinuity points. Let 

V be the union of “bad balls,” those where      
       

  
 

  
. 

o Lemma: There exists     such that if    ,      ,                     
 

  
, then        , i.e. any small interval with large variation must be contained 

in V. Proof: Else take a sequence               that violate the lemma, for 
    . By sequential compactness, take a simultaneously convergent 

subseqence; it must be in    since    is closed, but must also be in  . 
o Break Riemann sum into two parts: the intervals in V (bounded by 

   
            

 
 

  
  

                

) and others (bounded by           
                

 
 

  
  

             

). 

o Any subset of a set of measure 0 has measure 0. 
o A closed interval       doesn’t have measure 0. (Use compactness) Sets of 

measure 0 can’t contain an interval. 

o Any countable set (ex.  ) has measure 0. (Choose sequence of lengths to 
make sum converge to arbitrarily small number.) 

o Cantor set has measure 0. 
o A countable union of sets of measure 0 has measure 0. 

o Baire Category Theorem:   is not a countable union of nowhere dense sets. 

(A set S is nowhere dense if    does not contain an interval.) I.e. intervals are 
of the second category. 

o Nowhere dense set of measure >0: Like Cantor set but remove intervals 
whose sum of lengths is <1. 

 Let        on      ,      , and let           be a continuous function. 

Then            on      . 
o   is uniformly continuous, so can choose   so                     
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 . Choose   so                     . Let                
     

            
 . Divide indices into 2 classes. 

        : Bound this part of this sum by               . 

        : Bound this part by                       . 

 

6-3 Properties 
 

1. Linearity:            
 

 
       

 

 
      

 

 
. 

2.            
 

 
      

 

 
. 

3. If       then     
 

 
     

 

 
     

 

 
. 

4.               
 

 
              . 

5. For            
 

 
       

 

 
      

 

 
. 

 
More integrability: (Use composition theorem to prove.) 

1. If          then        . 

2. If        then          and      
 

 
        

 

 
. 

 

Ex. Let       
     
     

 .        iff   is right continuous at 0. Then     
 

 
     . 

Let    
 
  be a convergent nonnegative series. Let                  

   . For any   

continuous,     
 

 
          

   . 

 
Assume   is Riemann integrable on       and   is bounded on      . Then        iff 

     , and if so,     
 

 
       

 

 
. “       .” 

Pf. By the Mean Value Theorem, there exists              such that              . The 
upper (lower) sums of the two integrals can be made arbitrarily close; the upper and lower 
integrals are equal (use refinement). 
 
Change of variable: Let               be a strictly increasing continuous function. If 

       on       then            and     
 

 
            

 

 
. 

Pf. A partition of       induces a partition of      . 

Cor. If   is differentiable and     in      , then        
 

 
                

 

 
. (If   is 

strictly monotone then        
 

 
                  

 

 
.) 

 
Integration and differentiation. 

Fundamental Theorem of Calculus: Let     on      . For       define      

       
 

 
. Then   is continuous on       and it   is continuous at         , then   is 

differentiable at    and             . 
Pf.   is Lipschitz with constant        so F is uniformly continuous. Using continuity of  , 

choose   from  ; using integral bounds the difference  
         

   
        is at most  . Take 

limit. 
 
Integration by Parts: If     are differentiable on      , then 
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Pf.               is integrable. 
 

Assuming the integrals are defined, for            (or  ),       
 

 
         

 

 
. (Use 

Cauchy-Schwarz.) 
 

 Rectifiable Curves 
 

A curve in    is a continuous function           . If   is injective it is an arc; if      
     it is closed. 
 
Let                        

 
    when                . Define 

        
 

        

The curve is rectifiable if      is finite. 
Ex. Nonrectifiable curve- Koch snowflake. 
 

If    is continuous on      , then   is rectifiable, and                
 

 
. 

Pf. By FTC,                         
  

    
  . Summing,   is rectifiable. 

Using uniform continuity of   , take a partition with distances less than     ; bound the error 

by        . (There are 2 parts to the error, sum of                
  

    
           

  

    
 . 
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7 Sequences of Functions 
 

7-1 Uniform Convergence 
 
A sequence of functions    converges to   (    ) if                  for all  . In 
general, pointwise convergence does not preserve limits (continuity), derivatives, or 
integrals. Convergence for series of functions is defined similarly. 
 

   converges uniformly to       (X a complete metric space) if for every     there 

exists   so that for every     and    ,                . 

Cauchy Criterion for Uniform Convergence:      is uniformly convergent iff for all     there 

exists   such that                  for every          . 

Pf. Choose   for 
 

 
 and use triangle inequality. 

 
Weierstrass M-Test for Uniform Convergence:  

Suppose      pointwise, and let                 . Then      uniformly iff      as 

   . 
Cor. Let        ,        . If    

 
    is convergent then        

    converges uniformly. 
Pf. Use Cauchy criterion on difference of partial sums. 
 
Suppose      converges uniformly to      . Let   be a limit point of   (subset of metric 
space). Then 

   
   

        
   

   
   

         
   

   
   

       

Pf. Let                             . Choose   and   so that 

1.              
 

 
 for all   (use uniform continuity). 

2.        
 

 
. 

3.            
 

 
 for           . 

Then           . 
Cor. If        is continuous and      uniformly on  , then   is continuous on  . 
 
Suppose      is a continuous real-valued functions on a compact set  ,        , and 

     pointwise. Then      uniformly. 
Pf. Consider                      . As closed subsets of K they are compact. By 

monotonicity,        . Since         , one of the sets, and all subsequent sets, are 
empty. 
 
Let      be the space of bounded continuous functions. For          define     
          and             . Then      with this metric iff      uniformly on X. 
     is complete because if      is Cauchy, then it is uniformly convergent. Hence it is 
continuous (and bounded). 
Note continuity is not important. The space of continuous functions      on compact   is a 
complete metric space. 
 
Integration: Suppose   is a monotonically increasing on      ,        , and      

uniformly. Then        and      
 

 
            

 

 
. 

Pf. Let            . Then              ; both sides go to  ; integrate. 
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     uniformly does not imply   
    . 

Suppose    are differentiable,     converges uniformly, and        converges for some 

        . Then    is uniformly continuous to some function  , and         
          . 

Pf. Choose   so that for      ,                 
 

 
 and    

       
      

 

      
. Use 

MVT for       on     to get difference at most 
 

 
. Using Triangle Inequality and Cauchy 

criterion,      uniformly,   continuous. 

Let       
           

   
. Then       is uniformly convergent to      when     so by 

exchanging limits         
                     . 

 
Everywhere continuous but nowhere differentiable function: 
Weierstrass:                     

    

Or: Let                have period 2.        
 

 
 

 

      .             
    is nowhere 

differentiable because of increasing oscillations, but continuous by the M-Test (oscillations 

on smaller scale). In the difference quotient choose     
 

 
    (direction so that don’t hit 

cusps→   linear at this scale scale);   becomes a finite sum but the difference quotient 
increases as   increases (    is large; the smaller ones don’t cancel out). 
 
Holder ½ 
(Differentiable functions have Baire category 2 in continuous functions.) 
 
Let X be compact (so continuous functions are bounded) and      be the space of 
continuous functions       with the metric                             .      
is complete:   is complete so a Cauchy sequence    converges uniformly. Since    are 
continuous, their limit is continuous. 
 

Heine-Borel fails: Take    to be a function with a spike of height 1 at  
 

   
 
 

 
  and 0 

elsewhere.      is closed but the functions are all distance 1 from each other. 
  

7-2 Equicontinuity 
 

A family   of functions     is equicontinuous if for every     there exists     such 
that               for all     so that         . For a finite collection, this is equivalent 
to all elements being uniformly continuous. 

  is uniformly bounded if there exists   so that        for all     and    . 
 
Suppose X is compact and      is uniformly convergent in     . Then      is 

equicontinuous. (Holds if X is not compact but    are uniformly continuous. 

Pf.      uniformly Cauchy. Choose   for 
 

 
 and then choose   for               

 

 
. 

 
Arzela-Ascolli Theorem: If   is compact and      is a pointwise bounded equicontinuous 
sequence in      then      has a uniformly convergent subsequence. 
(Separable X implies existence of pointwise convergent subsequence.) 
A closed and bounded equicontinuous family of functions C(X) is compact. 
Pf. 

1. Pointwise bounded implies uniformly bounded: Choose   for equicontinuity for  , the 
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 -neighborhoods form an open cover; take a finite subcover        and take 

              . 
2. Take a countable dense subset          .            

  is bounded so has a 
convergent subsequence              

 . Given       , take a convergent subsequence 

              .        is row i. Take the diagonal     ; by 
 

 
-argument,         

converges. 

3. For    , choose     for equicontinuity for      for 
 

 
.       covers  ; take a finite 

subcover       . For each    take    so                 
 

 
 for       . Take 

       . For this   , compare             to               to show        
        . 

4. A closed, bounded, and equicontinuous family in      is sequentially compact so it is 
compact. 

Cor. If functions    defined on a compact set converge pointwise and are equicontinuous, 
then they converge uniformly. 
 
Application: 

Show the existence of the solution to a differential equation. Solution to           is the 

minimizer of          given by               . Restricting to a compact set of     , if   
is continuous there must be a minimum. 
 

7-3 Approximation Theorems 
 

An algebra   of functions is a set of functions closed under addition, multiplication, and 

scalar multiplication.   is self-adjoint if     implies     . 

The uniform closure of   is the set of limits of uniform convergent sequences in  ; i.e. the 
closure of   in the uniform metric. If   is its own uniform closure, then   is uniformly 
closed. 
 
Weierstrass Approximation Theorem: Let       be a compact interval in  , and let         
  be continuous. Then there exists a sequence of polynomials    such that           on 
     . I.e. the uniform closure of the set of polynomials on       is       . 
Pf. WLOG             and            . Set                . 

1. Choose    so that          
 

 
  .     

 

 
. 

2.    converges to 0 uniformly on           for    . The polynomials “squish” to 0 
and become higher at 0. 

Let        
          

           
 . Let             

  
                             

 

 
 (a 

convolution). Let                   
    . Pick     so that                

       
 

 
. Then                                   

 

  
. Split into   

  

  
  

 

 
  

 

  
 

Cor. There exists a sequence of polynomials       such that         and           
uniformly on       . 
 
Stone-Weierstrass Theorem: Let   be a compact metric space, and          (  is a 

subalgebra of the set of continuous function from   to  ). Suppose that  … 

 Separates points: for every         there exist     such that            . 
 Does not vanish at any point: there does not exist   such that        for all    . 
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Then   is dense in     ; i.e. the uniform closure   of   is the set of all continuous 
functions. 

If   is a self-adjoint algebra of complex functions that separates points and does not vanish 

at any point, then   is dense in       . 
Pf. 

1. For every                 there exists     such that         ,         . 

2.          . Let            . Take      so that              on       . 

Then                    on  . 

3.                          .          
         

 
. 

4. For       , there exists      such that            and             . From 
(1) take    so that           ,           . There exists an open set    so that 

            . Take a finite subcover     
; take            

 . 

5. For each   there exists    containing   so that             . Take a finite 

subcover     
 and let             

 . 

6. For complex: Use      
    

 
. 

Corollary: Functions          can be uniformly approximated by trigonometric 

polynomials (linear combinations of                  ). Any complex continuous function 
on the unit circle can be uniformly approximated by Laurent polynomials. 
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8 Power Series 
 

8-1 Analytic Functions 
 
A function   on        is analytic if it is representable as the sum of a convergent power 
series       

   . 
 
A power series with radius of convergence   is uniformly convergent on        for all     
and 

              

 

   

                   

By induction,     ; i.e. all derivatives exist. 
Pf.          

    converges uniformly by the Root Test. 
 
An analytic function is determined completely by all its derivatives at 0, in particular by 

values of   in        for any    . We can define an analytic continuation. 
 
Suppose    

 
    is a convergent series. Let                   

   . Then 

              
 
   . 

Pf.                          
      . 

Cor. Suppose      
 
         

 
         

 
   ,           

 
   . Then     . 

This is true if A or B converges absolutely. Else, let            
   ,            

   , 
           

   . Then               for    ; take    . 
 

Inversion of order of sums: If        
 
   

 
    converges, then      

 
   

 
         

 
   

 
   . 

Pf. Take        
 

 
     ; let    

 

 
      

 
              

 
   .      uniformly on   so 

we can exchange double sums. 
 
Taylor’s Theorem: Suppose that       

    converges for      . If       then   can be 

expanded into a power series about     which converges for            , and 

      
       

  
       

   . 

Pf.                  
  

          
 

            
   

 
   . Change order of sum 

(legal since             gives absolute convergence by applying Binomial Theorem 

backwards):        
 

       
          

    converges since      . The series must be 

its Taylor series. 
Suppose       

    and    
 
    converge for      , and let                  . If   

is not discrete in        (i.e. has a limit point in  ) then      . Let   be the set of all limit 

points of   in        and     .   is closed so   is open. However   is open: Expanding 
                

    near     , we get either             
  as      for some   

        in a neighborhood of          , or        in a neighborhood of       is 
internal point of  . 
Since    is both open and closed, either                 or       discrete. 

  


