Analysis Math Notes • Study Guide Real Analysis

Contents

Ordered Fields	2
Ordered sets and fields	2
Construction of the Reals 1: Dedekind Cuts	2
Metric Spaces	3
Metric Spaces	3
Definitions	4
Separability	5
Compact Sets	5
Perfect Sets	6
Connected Sets	6
Sequences and Series	8
Sequences and Convergence	8
Lim inf and Lim sup	8
Construction of the Reals 2: Cauchy Sequences	9
Completion	9
Infinite Series	9
Power Series	.11
Limits and Continuity	.12
Limits	.12
Continuity	.12
Compactness and Uniform Continuity	.13
Discontinuities	.14
Differentiation	.15
Derivative	.15
Taylor and Power Series	.16
Riemann Integration	.17
Riemann-Stiltjes Integral	.17
Integrability	.17
Properties	.19
Rectifiable Curves	.20
Sequences of Functions	.21
Uniform Convergence	.21
Equicontinuity	.22
Approximation Theorems	.23

1	Ordered Fields
1-1	Ordered sets and fields
	Let S be an ordered set and let $E \subseteq S$. <i>E</i> is bounded below, above if there exists $a, b \in S$ (called a lower or upper bound) such that $a < x, x < b$ for all $x \in E$, respectively.
	If <i>a</i> is a lower bound such that any $c < a$ is not a lower bound for E, then <i>a</i> is the greatest lower bound (supremum) of E, denoted by $\sup X$. The supremum is unique when it exists. Similarly, if <i>b</i> is an upper bound such that any $c > b$ is not an upper bound for E, then <i>b</i> is the least upper bound (infimum) of E, denoted by $\inf E$.
	S has the least upper bound property if whenever $E \subseteq S$ is nonempty and bounded above, $\sup E$ exists in S. This is equivalent to the greatest lower bound property.
	An ordered field is a field that is an ordered set satisfying: 1. If $y < z$ then $x + y < x + z$. 2. If $x > 0, y > 0$ then $xy > 0$.
	An ordered field <i>F</i> is Archimedean if for all $x, y \in F$ with $x > 0$, there exists $n \in \mathbb{N}$ such that $nx > y$. \mathbb{Q} and \mathbb{R} are both Archimedean.
1-2	Construction of the Reals 1: Dedekind Cuts
	There exists a unique ordered field \mathbb{R} (the real numbers) with the least upper bound property; it contains \mathbb{Q} as a subfield.
	1. The real numbers are associated with subsets $a \in \mathbb{Q}$ (called cuts) satisfying:
	 a. a ≠ φ, Q. b. If p ∈ a, q ∈ Q and q < p, then q ∈ a. (If a contains p, it contains all numbers less than p.)
	c. If $p \in a$ then $p < r$ for some $r \in a$. (No matter which $p \in a$ we choose, we can always find $r > p$ in a larger than it.)
	2. We say $a < b$ if $a \subset b$. 3. \mathbb{R} has the LLB property
	4. Let $a + b = \{r + s r \in a, s \in b\}$. Verify the axioms for addition. The inverse of a is
	$b = \{p \exists r > 0, -p - r \notin a\}$ (some rational number smaller than $-p$ is not in a).
	5. Show that $b < c \Rightarrow a + b < a + c$. 6. For positive a, b , let $ab = \{p p \le rs \text{ for some } r \in a, s \in b; r, s > 0\}.$
	7. Complete the definition by defining multiplication involving negative elements. Verify
	8. Each rational number q is associated with $\{x \in \mathbb{Q} x < q\}$. Check that with this embedding, the rational numbers are an ordered subfield.
	In the set $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$, every nonempty subset has a infimum and supremum. ¹

¹ The definitions of limit, etc. extend to numbers in \mathbb{R} is we let the neighborhoods of ∞ be all sets of the form $\{x | x > L\}$, and similarly for $-\infty$.

2 Metric Spaces
2-1 Metric Spaces
A set X with a real-valued function (a metric)
$$d(p,q)$$
 on pairs of points in X is a metric space if:
1. $d(p,q) \ge 0$ with equality iff $p = q$.
2. $d(p,q) \ge d(p,r) + d(r,q)$ (Triangle inequality)
Ex.
0. Discrete space: For any set X, define the metric
 $d(x,y) = {0, x = y \ 1, x \neq y}$
• N-dimensional Euclidean space \mathbb{R}^n , with distance defined as
 $d((x_1, ..., x_n), (y_1, ..., y_n)) = \sqrt{\sum_{l=1}^n (x_l - y_l)^2}$
• $\mathbb{R}_p^n, p \ge 1$:
 $d(x,y) = \left(\sum_{l=1}^n |x_k - y_k|^p\right)^{\frac{1}{p}}$
• To prove this is a metric, use Hölder's Inequality...
 $\left(\sum_{l=1}^n |a_k + b_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^n |a_k|^p\right)^{\frac{1}{p}}, p \ge 1$
• ...to derive Minkowski's Inequality:
 $\sum_{k=1}^n |a_k b_k| \le \left(\sum_{k=1}^n |a_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^n |b_k|^q\right)^{\frac{1}{p}}, p \ge 1$
• ...to derive Minkowski's $|a_l a_k|^p| = \max_{1 \le k \le k} |x_k - y_k|$
• $C_{(a,b)}^2$:
 $C_{(a,b)}^2$:
 $C_{(a,b)}^2$:
 $C_{(a,b)}^2$:
 $d(r,g) = \max_{1 \le k \le k} |f(x) - g(x)|$
• f_p : Infinite sequences with $\sum_{i=1}^n x_i^p < \infty$:
 $d(x,y) = \left(\sum_{k=1}^\infty (x_k - y_k)^p\right)^{\frac{1}{p}}$
• *m*: Bounded infinite sequences
 $d(x,y) = \sup_k |x_k - y_k|$

Definitions			
Term	Definition in metric space X	Definition in topology X	
neighborhood	For $\varepsilon > 0$, the ε -neighborhood	A neighborhood of <i>p</i> is an open set	
	of a point p is the set	containing p.	
	$N_{\varepsilon}(p) = \{ p \in X d(p,q) < \varepsilon \}$		
contact point	<i>p</i> is a contact point of $E \subseteq X$ if e of <i>E</i> .	every neighborhood of p contains a point	
limit point	<i>p</i> is a limit point of $E \subseteq X$ if every neighborhood of <i>p</i> contains a point of <i>E</i>		
	besides $p. E'$ is the set of limit po	pints of E.	
isolated point	If $p \in E$ but is not a limit point of E, then p is an isolated point . (Contact points = limit points \cup isolated points.)		
closed	E is closed if every limit point of E is in E.	E is closed if X-E is open.	
closure	The closure of E is the set of	The closure $\overline{E} = [E]$ of X is the	
	contact points of E.	intersection of all closed sets contained	
	$\overline{E} = [E] = E \cup E'.$	in E.	
interior point	p is an interior point if there is a neighborhood N of p such that $N \subseteq E$.		
	The interior of N, denoted by E° : union of open sets contained in E	= Int E , is the set of interior points (or Ξ).	
open	E is open if every point of E is	A topology on a set X is a collection \mathcal{T}	
	an interior point of E.	of subsets, called open sets satisfying: 1. $\phi, X \in \mathcal{T}$	
		2. The union of an arbitrary collection of sets in \mathcal{T} is in \mathcal{T} .	
		3. The intersection of a finite number of sets in T is in T	
perfect	E is perfect if E is closed and ev	erv point of E is a limit point of E.	
bounded	E is bounded if there exists	N/A	
	$M \in \mathbb{R}$ and $q \in X$ so that		
	$d(p,q) < M$ for all $p \in E$.		
dense	E is dense in X if every point of X	X is a contact point of E. i.e. $X = \overline{E}$.	

Closed sets satisfy the following:

- 1. X, ϕ are closed.
- 2. Arbitrary intersections of closed sets are closed.
- 3. Finite unions of closed sets are closed.

A metric space is a topology- the definitions in topology hold in a metric space. (Note that neighborhoods in metric spaces are more strictly defined.)

If p is a limit point of E, then every neighborhood of p contains infinitely many points of E. Thus a finite point set has no limit points.

%On closure:

1. \overline{E} is closed.

	2. $E = E$ iff E is closed.
	3. $E \subseteq F$ for every closed set \vdash with $E \subseteq F$.
	Let E be a nonempty subset of \mathbb{R} that is bounded above. If E is closed, then sup $E \in E$.
	Subspace topology: Let $E \subseteq Y \subseteq X$. E is open relative to Y iff $E = Y \cap U$ for some open set U in X.
2-3	Separability
	A metric space is separable if it contains a countable ² dense subset. <i>Ex.</i> \mathbb{R}^k is separable since \mathbb{Q}^k is dense in \mathbb{R}^k . <i>m</i> is not separable. Any subset of a separable space is separable.
	 A base for a topology on X is a collection B of subsets, called base elements, of X such that For each x ∈ X, there is at least one base element containing x. If x ∈ B₁ ∩ B₂ for some B₁, B₂ ∈ B, then x ∈ B₃ ⊆ B₁ ∩ B₂ for some B₃ ∈ B. In the topology generated by B, a subset U is open if for each x ∈ U, there is a base element B ∈ B so that x ∈ B ⊆ U. In particular, each base element is open. Two other equivalent formulations: T is the collection of all unions of elements of B. B is a collection of open sets of X such that for each open set U of X and each x ∈ U, there is an element C ∈ B such that x ∈ C ⊂ U. Ex. ε-neighborhoods
	 A metric space is separable iff it has a countable base. Separable⇒Countable base: Let P be a countably dense subset and take {N_{1/n}(p) p ∈ P}. Countable base⇒Separable: (true for any topology) Choose a point in each base element.
2-4	Compact Sets
	An open cover of a set E in a topology X is a collection \mathcal{F} of open subsets such that $E \subseteq \bigcup_{G \in \mathcal{F}} G$. A subset $K \subseteq X$ is compact if every open cover of K contains a finite subcover. K is sequentially (or countably) compact if every infinite subset of K has a limit point in K.
	On subsets:
	• Suppose $K \subseteq Y \subseteq X$. Then K is compact relative to X if it is compact relative to Y. In
	other words, compactness is an intrinsic property.
	Compact subsets are closed.
	Glosed subsets of compact sets are compact.
	Theorems on compact sets:
	K is compact iff K is sequentially compact.
	\circ ⇒: Let E be infinite subset. If no limit points, each $m \in K$ has a neighborhood

 $^{^{2}}$ Here countable means finite or having same cardinality as $\mathbb{N}.$

	containing at most 1 point of E- neighborhoods form a cover with no finite
	 Sequentially compact⇒Separable: Given δ, choose any x₁, take x_{i+1} to be δ away from all x₁,, x_i. This must stop. Let δ range over 1/n; putting together x_i's gives countable dense subset. Separable⇒Countable base
	 Countable base⇒Every cover has at most countable subcover: For <i>G</i> a base and <i>H</i> a subcover, associate each element <i>G</i> ∈ <i>G</i> contained in some <i>H</i> ∈ <i>H</i> with <i>f</i>(<i>G</i>) ⊇ <i>G</i>. ∪<i>f</i>(<i>G</i>) is a finite subcover. Sequentially compact⇒Nested nonempty sets {<i>F_n</i>} have nonempty intersection: Take <i>x_n</i> ∈ <i>F_n</i>. If <i>E</i> = {<i>x_n</i>} finite then done; else it has limit point, which is in the intersection. Take countable subcover; let <i>F_n</i> = {<i>x</i> ∈ <i>K</i>, <i>x</i> ∉ ∪ⁿ_{i=1} <i>G_i</i>}. If <i>K</i> ⊈ ∪ⁿ_{i=1} <i>G_i</i> for any <i>n</i>, there is <i>y</i> ∈ ∩[∞]_{i=1} <i>F_n</i> by above. Then <i>y</i> ∉ ∪[∞]_{i=1} <i>G_i</i>, contradiction. If <i>F</i> is a family of compact subsets of X such that the intersection of every finite subcollection is nonempty, then ∩_{<i>K</i>∈<i>F</i>} <i>K</i> ≠ <i>φ</i>. (Nested Intervals Theorem) If {<i>I_n</i>} is a nested sequence of intervals (<i>I_n</i> ⊇ <i>I_{n+1}</i>), then ∩[∞]_{n=1} <i>I_n</i> ≠ <i>φ</i>. If the length of the intervals goes to 0, then the intersection consists of a single point. If {<i>I_n</i>} is a nested sequence of k-cells (closed boxes in ℝ^k), then ∩[∞]_{n=1} <i>I_n</i> ≠ <i>φ</i>. Every k-cell is compact. <i>Pf</i>. Suppose there's an open cover <i>F</i> without a finite subcover. Find a nested sequence {<i>I_n</i>} of k-cells whose dimensions go to 0, such that the cells can't be covered by a finite subcollection of <i>F</i>. Some point x is in ∩[∞]_{n=1} <i>I_n</i>. It's in an open set in <i>F</i> which is contained in <i>I_n</i> for n large enough, contradiction.
	 E is compact (every cover has a finite subcover). E is closed and bounded. Cor. Every bounded infinite subset of Rⁿ has a limit point in Rⁿ
2-5	Perfect Sets
	Any nonempty perfect set in \mathbb{R}^n is uncountable. Thus every interval $[a, b]$, $a < b$ is uncountable.
	The Cantor set: Let $E_0 = [0,1]$. Once E_i is defined, write it as a disjoint union of intervals in the form $[a, b]$, and replace each with $[a + \frac{1}{3}(b - a)] \cup [a + \frac{2}{3}(b - a), b]$ to form E_{i+1} . The Cantor set is $C = \bigcap_{n=1}^{\infty} E_n$. C is a (uncountable) perfect, compact set containing no segment. The Cantor set consists of all numbers whose ternary expansion consists only of the digits 0 and 2 (an infinite string of 2s being allowed).
2-6	Connected Sets
	Two subsets <i>A</i> , <i>B</i> of a metric space <i>X</i> are separated if $\overline{A} \cap B = A \cap \overline{B} = \phi$. A subset E is disconnected if it is a union of two nonempty separated sets, and connected otherwise. Equivalent condition (see below): E is disconnected if there exist disjoint nonempty open

A, B so that $X = A \cup B$.

The union of sets in \mathcal{F} is connected if every distinct pair of sets in \mathcal{F} are not separated.

For $x \in E$, the union of all connected subsets containing x is the **connected component** of X containing x. The connected components form a partition of E, and they are all closed sets.

If X is a metric space with finitely many components, then the components are both closed and open (clopen). Conversely, any clopen set is a union of components of X. In particular, if X is connected, the only clopen sets are X and ϕ .

In a **totally disconnected set**, all connected components are point sets. *Ex.* \mathbb{Q} and the Cantor set C

3	Sequences and Series
3-1	Sequences and Convergence
	Let $\{p_n\}_{n=1}^{\infty}$ be a sequence of points in a metric space X. The sequence converges to a point $p \in X$ if for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for every $n > N$, $d(p_n, p) < \varepsilon$. Else it diverges
	 {p_n}_{n=1}[∞] converges to p if every open set containing p contains p_n for all but finitely many n. (This is the definition of convergence in a topological space.) If {p_n}_{n=1}[∞] converges then it converges to a unique p ∈ X, denoted by lim_{n→∞} p_n. If {p_n}_{n=1}[∞] converges then it is bounded. If E ⊆ X, p is a contact point of E iff there exists a sequence {p_n}_{n=1}[∞] such that lim_{n→∞} p_n = p.
	A Cauchy sequence is a sequence $\{p_n\}$ such that for every $\varepsilon > 0$, there is an integer <i>N</i> so that $d(p_n, p_m) < \varepsilon$ for all $m, n \ge N$. In other words, letting $E_N = \{p_N, p_{N+1},\}$ and defining diam $S = \sup\{d(p, q) p, q \in S\}$, $\lim_{N\to\infty} \dim E_N = 0$. <u>Cauchy Criterion:</u> Every convergent sequence is Cauchy.
	A sequence is monotonically increasing , decreasing if $a_n \le a_{n+1}$, $a_n \ge a_{n+1}$, respectively. A monotonically increasing, decreasing sequence is convergent iff it is bounded above, below, respectively.
	Basic properties (for \mathbb{C}): Suppose $\lim_{n\to\infty} s_n = s$, $\lim_{n\to\infty} t_n = t$. • $\lim_{n\to\infty} s_n \pm t_n = s \pm t$ • $\lim_{n\to\infty} cs_n + d = cs + d$ • $\lim_{n\to\infty} s_n t_n = st$ • $\lim_{n\to\infty} 1/s_n = 1/s$, $s_n \neq 0$ • <u>Squeeze Theorem</u> : If $a_n \leq b_n \leq c_n$ and $\lim_{n\to\infty} a_n = L = \lim_{n\to\infty} c_n$ then $\lim_{n\to\infty} b_n = L$. The same properties and definitions hold if s_n , t_n are replace with functions defined on reals,
	letting the variable range over the reals.
	A subsequence of $\{p_n\}$ is in the form $\{p_{n_i}\}$, where $n_1 < n_2 < \cdots$ are positive integers. The limits of subsequences are called subsequential limits.
	 If {p_n} is a sequence in a compact metric space X, then some subsequence of {p_n} converges to a point of X. In particular, every bounded subsequence of ℝ[^]k contains a convergent subsequence. The subsequential limits for a closed subset.
	<u>Césaro-Stolz Lemma</u> : Let $\{a_n\}, \{b_n\}$ be two sequences of real numbers and suppose either of the following holds.
	1. $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0$ and $\{b_n\}$ is decreasing for sufficiently large n . 2. $\lim_{n\to\infty} b_n = \infty$ and $\{b_n\}$ is increasing for sufficiently large n .
	Then $\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}$, provided the latter limit exists.
3-2	Lim inf and Lim sup
L	8

	Given a sequence $\{p_n\}$, let $E_N = \{p_N, p_{N+1},\}$. Let $i_N = \inf E_N$ and $s_N = \sup E_N$. Define • $\lim_{n\to\infty} \inf p_n = \lim_{n\to\infty} i_n$
	• $\lim_{n \to \infty} \sup p_n = \lim_{n \to \infty} s_n$
	• Any sequence $\{p_n\}$ in \mathbb{R} has a monotonic subsequence converging to $\lim_{n\to\infty} \inf p_n$,
	$\lim_{n\to\infty} \sup p_n$ (allowing $\infty, -\infty$). • Let S be the set of subsequential limit points (including $+\infty$). Then
	$\circ \lim_{n \to \infty} \inf p_n = \inf S$
	$\circ \lim_{n \to \infty} \sup p_n = \sup S$
3-3	Construction of the Reals 2: Cauchy Sequences
	1. Identify the real numbers with equivalence classes of Cauchy sequences of rational numbers. Two sequences $\{a_n\}, \{b_n\}$ are equivalent if $\lim_{n\to\infty} a_n - b_n = 0$. Each rational number is associated with its constant sequence.
	2. Define addition and multiplication as termwise addition and multiplication, and show it is well-defined.
	 For the multiplicative inverse, take the reciprocal of all terms, except those that are 0. (Sequence is eventually nonzero.)
	4. Structure of ordered field: A real number is positive (greater than 0) if the sequence is eventually positive. $s > t$ if $s - t$ is positive. Check the order axioms.
	5. \mathbb{R} is Archimedean: We can find ε so the terms of a given positive $\{a_n\}$ are eventually at least ε .
	6. \mathbb{Q} is dense in \mathbb{R} : follows from construction.
	 7. R has the LUB property: Construct real sequences {u_n}, {l_n} of upper and lower bounds of sup <i>S</i> so that lim_{n→∞} u_n - l_n = 0 (you can make it halve each time). u_n, l_n approach the same real number, the sup. 8 R is complete: δ - ε funness
3-4	Completion
	In a complete metric space, every convergent sequence is Cauchy.
	 Every compact metric space is complete. Any Euclidean space Rⁿ is complete.
	Each metric space X has a completion X^* :
	1. The elements of X^* are equivalence classes of Cauchy sequences in X. Two sequences are equivalent if $\lim_{x \to a} d(x, q) = 0$. Each $x \in X$ is associated with a
	constant sequence.
	2. Define distance by $\lim_{n\to\infty} d(p_n, q_n)$.
	4. <i>X</i> is dense in X^* and $X = X^*$ if <i>X</i> is complete.
3-5	Infinite Series
	The partial sums of $\{a_n\}$ are $s_n = \sum_{k=1}^n a_k$. Define
	$\sum_{n=1}^{\infty}a_n=\lim_{n\to\infty}s_n.$
	<u>k=1</u>

The sum converges if this limit exists; else it diverges. Infinite products are defined similarly. Convergence/ Divergence Tests: <u>Divergence Theorem</u>: If $\sum_{n=1}^{\infty} a_n$ converges then $\lim_{n\to\infty} a_n = 0$. A series of nonnegative terms converges iff its partial sums form a bounded • sequence. <u>Basic Comparison Test:</u> Suppose $a_n \ge b_n \ge 0$ for all $n \ge N$. • (Convergence) If $\sum_{n=1}^{\infty} a_n$ converges then so does $\sum_{n=1}^{\infty} b_n$. • (Divergence) If $\sum_{n=1}^{\infty} b_n$ diverges then so does $\sum_{n=1}^{\infty} a_n$. Limit Comparison Test: Let $\{a_n\}, \{b_n\}$ be eventually positive sequences. If $\lim_{n\to\infty} \frac{a_n}{b_n}$ is finite and nonzero, then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ either both converge or both diverge. <u>Ratio Test:</u> Let $\{a_n\}$ be a sequence of nonzero terms. • If $\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$ then $\sum_{n=1}^{\infty} a_n$ converges. • If $\liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \ge 1$ then $\sum_{n=1}^{\infty} a_n$ diverges. <u>Root Test:</u> Let $l = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$. • If l < 1 then $\sum_{n=1}^{\infty} a_n$ converges. • If l > 1 then $\sum_{n=1}^{\infty} a_n$ diverges. If $\sqrt[n]{|a_n|} \ge 1$ for infinitely many distinct values of *n* then $\sum_{n=1}^{\infty} a_n$ diverges. <u>Cauchy's Condensation Criterion</u>: Suppose $\{a_n\}$ is nonincreasing. $\sum_{n=1}^{\infty} a_n$ converges iff $\sum_{k=1}^{\infty} 2^k a_{2^k}$ converges. • <u>P-Test:</u> $\sum_{n=1}^{\infty} n^p$ converges iff p < -1. • <u>Absolute Convergence</u>: If $\sum_{n=1}^{\infty} |a_n|$ converges then $\sum_{n=1}^{\infty} a_n$ converges. It is said to converge absolutely. • <u>Alternating Series (Leibniz) Test</u>: If $a_n \ge a_{n+1}$ for all n and $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=1}^{\infty} (-1)^n a_n$ converges. If the series converges but does not converge absolutely, it converges conditionally. • <u>Alternating Series Approximation Theorem</u>: Suppose $\sum_{n=1}^{\infty} (-1)^n a_n$ satisfies the conditions above. Then the *m*th partial sum approximates the infinite series with an error of at most a_{m+1} : $\left| \sum_{n=1}^{\infty} (-1)^n a_n \right| \le a_{m+1}$ <u>Kummer's Test</u>: Let $\{a_n\}, \{b_n\}$ be positive sequences. Suppose $\sum_{n=1}^{\infty} \frac{1}{b_n}$ diverges and let $x_n = b_n - \left(\frac{a_{n+1}}{a_n}\right) b_{n+1}$. Then $\sum_{n=1}^{\infty} a_n$ converges if $\lim \inf_{n \to \infty} x_n > 0$ and diverges if $x_n \leq 0$ for all n. For products: <u>Coriolis Test:</u> If $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} x_n^2$ converge, then so does $\prod_{n=1}^{\infty} (1 + x_n)$. (Pf. Take In and use Taylor expansion.) Let $\sigma: \mathbb{N} \to \mathbb{N}$ be a bijection. Then $\sum_{n=1}^{\infty} a_{\sigma(n)}$ is a rearrangement of $\sum_{n=1}^{\infty} a_n$. If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent to A then any rearrangement is also absolutely

	 convergent to <i>A</i>. If ∑_{n=1}[∞] a_n is conditionally convergent then for every <i>B</i> ∈ ℝ, there exists a rearrangement that is conditionally convergent to <i>B</i>.³ o Pf. Break up into a positive and negative sequence. Add terms from the positive sequence until sum overshoots B, add terms from the negative sequence until sum below B, and repeat.
3-6	Power Series
	A power series is in the form $f(x) = \sum_{n=0}^{\infty} a_n x^n$. There exists $r \ge 0$ (possibly ∞), called the radius of convergence , so that 1. $f(x)$ converges for all complex $ x < r$. 2. $f(x)$ diverges for all complex $ x > r$. A Laurent series is in the form $f(x) = \sum_{n=k}^{\infty} a_n x^n$, $k > -\infty$.

 $^{^{3}}$ For complex number sequences, the set of possible sums is a point, a line, or the whole plane. (This is difficult.) 11

4	Limits and Continuity
4-1	Limits
	Let X and Y be metric spaces, $E \subseteq X$, and p be a limit point of E . Let $f: E \to Y$ be a function. The limit of f at p is $q \in Y$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every $x \in E$ with $0 < d(x,p) < \varepsilon$ we have $d(f(x),q) < \varepsilon$. $\lim f(x) = q$
	Note that $f(p)$ does not matter (it need not exist).
	Equivalently, for any sequence $\{x_n\} \subseteq E$ such that $x_n \neq p$ and $\lim_{n\to\infty} x_n = p$, we have $\lim_{n\to\infty} f(x_n) = q$. (This allows basic properties of sequences to carry over as below.)
	Infinite limits: (Definitions with $-\infty$ are similar.)
	• $\lim_{x\to\infty} f(x) = q$ if for every $\varepsilon > 0$ there exists <i>L</i> such that $ f(x) - q < \varepsilon$ whenever $x > L$
	• $\lim_{x \to a} f(x) = \infty$ if for every <i>L</i> there exists $\delta > 0$ such that $f(x) > L$ whenever $ x - a < \delta$.
	The limit is unique if it is defined, and satisfies the following: Suppose $\lim_{x\to p} f(x) = L$, $\lim_{x\to p} g(x) = M$. • $\lim_{x\to p} f(x) \pm g(x) = L \pm M$ • $\lim_{x\to p} cf(x) + d = cL + d$ • $\lim_{x\to p} f(x)g(x) = LM$ • $\lim_{x\to p} f(x)/g(x) = L/M, M \neq 0$ • <u>Squeeze Theorem:</u> If $f(x) \le g(x) \le h(x)$ for all x in a neighborhood of p except possibly at p , and $\lim_{x\to p} f(x) = L = \lim_{n\to\infty} h(x)$, then $\lim_{n\to\infty} g(x) = L$.
4-2	Continuity
	Let $E \subseteq X, f: E \to Y, p \in E$. <i>f</i> is continuous at <i>p</i> if for every $\varepsilon > 0$ there exists $\delta > 0$ such that for every <i>x</i> such that $d(x, p) < \varepsilon$, we have $d(f(x), f(p)) < \varepsilon$. <i>f</i> is continuous iff either <i>p</i> is an isolated point of E or $\lim_{x\to p} f(x) = f(p)$. Equivalently, for every sequence $\{x_n\}$ converging to <i>p</i> , $f(x_n)$ converges to $f(p)$. $f: X \to Y$ is continuous if <i>f</i> is continuous at every point $x \in X$.
	If $f: X \to Y$ and $g: Y \to Z$ are continuous then $g \circ f: X \to Z$ is continuous.
	(One topological definition) Let $f: X \to Y$ be any function between topological spaces. f is continuous iff for any open set $U \subseteq Y$, $f^{-1}(U) \subseteq X$ is open. Pf.
	 ⇒: For every open set U, x ∈ f⁻¹(U) can find neighborhood of f(x) in U. By continuity some neighborhood of x is in U. ⇐: Take U equal to neighborhood of f(x) of radius ε. f⁻¹(U) is open and contains x; some neighborhood of x is in f⁻¹(U). f: X → Y is continuous for every closed set C ⊆ Y, f⁻¹(C) is closed in X. (Use f⁻¹(E^c) = f⁻¹(E)^c.

	A homeomorphism is a continuous bijective function f such that $f^{-1}: Y \to X$ is continuous.
	Basic properties: • If f, g are continuous $f: X \to \mathbb{R}$, then $f + g, fg, \frac{f}{2}$ (if $g \neq 0$) are continuous.
	 Let f₁,, f_n: X → ℝ. f = (f₁,, f_n) is continuous in ℝⁿ iff f₁,, f_n are continuous. f(x) = d(x, p) is continuous. Fx Any polynomial f: ℂⁿ → ℂ is continuous. Any rational function is continuous except at
	points where the denominator is 0.
4-3	Compactness and Uniform Continuity
	Let $f: X \to Y$ be a continuous map of metric spaces, where X is compact. Then $f(X) \subseteq Y$ is also compact.
	<u><i>Pf.</i></u> For an open cover of $f(X)$, take the inverse of each subset. They're open since f is continuous; choose a finite subcover and take the image. <u><i>Cor.</i></u> Any continuous map $f: X \to \mathbb{R}^n$ from compact X is bounded. <u><i>Cor.</i></u> (Weierstrass) A continuous function $f: X \to \mathbb{R}$ attains its maximum and minimum.
	If X is compact and $f: X \to Y$ is continuous and bijective, then $f^{-1}: Y \to X$ is also continuous. <u><i>Pf.</i></u> Take open $U \subseteq X$. $X - U$ is closed and hence compact (since X is compact). Then f(X - U) = Y - f(U) (since f is bijective) is compact. Hence $f(U)$ is open.
	A function $f: X \to Y$ is uniformly continuous if for every $\varepsilon > 0$ there exists $\delta > 0$ (independent of x_1, x_2) such that $d(f(x_1), f(x_2))$ for every $x_1, x_2 \in X$ with $d(x_1, x_2) < \delta$.
	Heine-Cantor Theorem: A continuous function on a compact metric space is uniformly continuous.
	<u><i>Pf.</i></u> Suppose else. For every $\varepsilon > 0$, we can find p_n, q_n so $d(p_n, q_n) < \frac{1}{n}$ but $d(f(p_n), f(q_n)) \ge \varepsilon$. By compactness, some subsequence p_{n_i} converges; then q_{n_i} converges to the same point p . They get arbitrarily close to p but $d(f(p_n), f(q_n)) \ge \varepsilon$, contradicting continuity at p .
	If $f: X \to Y$ is continuous and X is connected then $f(X)$ is also connected. <u><i>Pf.</i></u> If U_1, U_2 are open sets whose union is $f(X)$, then their inverses under f would be open sets whose union is X.
	 Intermediate Value Theorem: 1. Let f:X → R be continuous on a connected metric space. If f(x₁) < y < f(x₂) then there exists x ∈ X so that f(x) = y. 2. If f: [a, b] → R is continuous, then f has the intermediate value property: If min(f(a), f(b)) ≤ y ≤ max(f(a), f(b)) then there exists x ∈ [a, b] so that f(x) = y.
	X is pathwise connected if for any $x_0, x_1 \in X$ there exists a continuous function $f: [0,1] \to X$ so that $f(0) = x_0, f(1) = x_1$. Any pathwise connected set is connected. <u><i>Pf.</i></u> If X is a disjoint union of nonempty open sets, take $x_0 \in U_0, x_1 \in U_1$, let f connect them. Take f^{-1} of U_0, U_1 ; we get that [0,1] is disconnected, contradiction. (Topo) Counterexample to converse: Topologist's sine curve $\{(x, \sin(\frac{1}{2}))\} \cup \{(0, y) y \in [-1, 1]\}$ is

	connected but not pathwise connected.
4-4	Discontinuities
	 One-sided limits lim_{x→p+} f(x) = q if for every ε > 0 there exists δ > 0 such that for every x ∈ E with p < x < p + δ we have f(x) - q < ε. lim_{x→p-} f(x) = q if for every ε > 0 there exists δ > 0 such that for every x ∈ E with p - δ < x < p we have f(x) - q < ε.
	 Discontinuity of the first kind: (a) Jump discontinuity: f(x +) ≠ f(x -) (b) Removable discontinuity: f(x +) = f(x -) ≠ f(x) The function can be redefined at x to make it continuous. Discontinuity of the second kind: Everything else.
	Ex. 1. Dirichlet's function $f(x) = \int_{0}^{0} x \notin \mathbb{Q}$
	2. Riemann's function is continuous at irrational points, and has removable discontinuities at rational points. (denom(x) is the denominator of x in lowest terms) $R(x) = \begin{cases} 0, x \notin \mathbb{Q} \\ \frac{1}{\text{denom}(x)}, x \in \mathbb{Q} \end{cases}$
	3. $y = \sin\left(\frac{1}{x}\right)$ has a discontinuity of the second kind at $x = 0$.
	Monotonic functions Increasing: $x < y \Rightarrow f(x) \le f(y)$ Strictly increasing: $x < y \Rightarrow f(x) < f(y)$ Decreasing: $x < y \Rightarrow f(x) \ge f(y)$ Strictly decreasing: $x < y \Rightarrow f(x) > f(y)$ Monotonic: Increasing or decreasing
	• If f is increasing then $f(x +)$ and $f(x -)$ exist for all $x \in (a, b)$ and $f(x -) = \sup f(t) \le f(x) \le \inf_{t > x} f(t) = f(x+)$
	 Moreover, for all x < y, f(x +) ≤ f(y-). Reverse inequalities for f decreasing. The only discontinuities of a monotonous function are jump discontinuities. The set of discontinuities points of a monotonic function are at most countable. <u>Pf.</u> For each discontinuity point x, associate it with a rational number in (min(f(x -), f(x +)), max(f(x -), f(x +))).
	Given an at most countable set $S \subset (a, b), S = \{x_1, x_2,\}$, there exists a monotonic function $f: (a, b) \rightarrow \mathbb{R}$ such that f has discontinuities exactly at S. A: Take any positive convergent series; define $f(x) = \sum_{n, x_n < x} a_n$.

5	Differentiation
5-1	Derivative
	The derivative of $f:[a,b] \to \mathbb{R}$ at x is $\frac{d}{dx}f(x) = f'(x) = \lim_{t \to x} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{t \to x} \frac{f(t) - f(x)}{t - x}.$ Left and right-sided derivatives are defined with left and right-sided limits. If f' exists f is differentiable . Generalizes to vector-valued functions.
	If <i>f</i> is differentiable at <i>x</i> then <i>f</i> is continuous at <i>x</i> . <u><i>Pf</i>.</u> Multiply derivative by $t - x \rightarrow 0$.
	Rules: 1. $(f+g)' = f' + g'$ 2. $(fg)' = f'g + fg'$ (Pf. add and subtract $f(x)g(t)$.) 3. $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ (Prove for $f = 1$ and use product rule.) 4. $(g \circ f)' = g'(f(x))f'(x)$
	$(x^n)' = nx^{n-1}$ Tells us how to differentiate polynomials and rational functions.
	A local maximum (minimum) of $f: X \to \mathbb{R}$ is a point $p \in X$ such that there exists $\delta > 0$ such that $f(q) \le f(p)$ ($f(q) \ge f(p)$) for all $q \in X$ with $d(p,q) < \delta$. If f is defined on $[a, b]$ and has a local maximum or minimum at $x \in (a, b)$, and f' exists, then $f'(x) = 0$.
	<u>Mean Value Theorem:</u> If f, g are continuous real functions on $[a, b]$ which are differentiable in (a, b) , then there exists a point $x \in (a, b)$ such that [f(b) - f(a)]g'(x) = [g(b) - g(a)]f'(x). In particular, there exists a point $x \in (a, b)$ at which f(b) - f(a) = (b - a)f'(x). When $f(a) = f(b)$ this is called Rolle's Theorem. <u>Pf.</u> Let $h(x) = [f(b) - f(a)]g(t) - [g(b) - g(a)]f(t)$. Then $h(a) = h(b) = 0$, need to find $x \in (a, b)$ so that $h'(x) = 0$. Take the point x where h attains maximum or minimum.
	f is increasing if $f' \ge 0$, constant if $f' = 0$, and decreasing if $f' \le 0$.
	If f is differentiable on $[a, b]$ then f' satisfies the Intermediate Value Theorem, and cannot have any simple discontinuities.
	<u>L'Hospital's Rule:</u> Suppose <i>f</i> , <i>g</i> are real and differentiable in (<i>a</i> , <i>b</i>), $g'(x) \neq 0$ for all $x \in (a, b)$, and one of the following holds: 1. $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ 2. $\lim_{x \to a} g(x) = \pm \infty$ Then

Ī		$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$
		if the latter limit is defined. (This rule may need to be used multiple times, and is true for b .)
		Higher derivatives: $f^{(n+1)} = (f^{(n)})'$ $C^n[a, b]$ denotes the set of functions $f: [a, b] \to \mathbb{R}$ (or \mathbb{C}) with continuous <i>n</i> th derivatives. $C^{\infty}[a, b]$ denotes the set of functions with derivatives of all orders.
		For vector-valued functions: Suppose $f:[a,b] \to \mathbb{R}^n$ is continuous and differentiable in (a,b) . There exists $x \in (a,b)$ so that $ f(b) - f(a) \le (b-a) f'(x) $. <u><i>Pf.</i></u> Project onto line connecting $f(a)$ with $f(b)$.
ľ	5-2	Taylor and Power Series
		Power series (and Laurent series) are continuous in the open ball of convergence. <u><i>Pf.</i></u> If $r < R$ where R is the radius of convergence, then f is uniformly continuous on $(-r,r)$. Factor out $z - w$ from each term $z^n - w^n$ in $f(z) - f(w)$ and use Triangle Inequality and Root Test.
		If <i>f</i> has derivatives of all orders at α , the Taylor series of <i>f</i> around α is $P(t) = \sum_{k=1}^{\infty} \frac{f^k(\alpha)}{k!} (t - \alpha)^k.$
		<u>Taylor's Theorem</u> : Suppose <i>f</i> is a real function on [<i>a</i> , <i>b</i>], n is a positive integer, f^{n-1} is continuous on [<i>a</i> , <i>b</i>], $f^{(n)}(t)$ exists for every $t \in (a, b)$. Let α, β be distinct points of [<i>a</i> , <i>b</i>], and let
		$P(t) = \sum^{n-1} \frac{f^k(\alpha)}{k!} (t-\alpha)^k.$
		Then there exists a point <i>x</i> between α and β such that $f(\beta) = P(b) + \frac{f^n(x)}{n!}(\beta - \alpha)^n.$
		$\frac{Pf.}{Pf.} \text{Let } M = \frac{f(\beta) - P(\beta)}{(\beta - \alpha)^n}, \text{ so } f(\beta) = P(\beta) + M(\beta - \alpha)^n. \text{ Let } g(t) = f(t) - P(t) - M(t - \alpha)^n.$ Then $g^{(n)}(t) = f^{(n)}(t) - n! M$. Need $x \in (a, b)$ so that $g^{(n)}(x) = 0$. $g^{(k)}(\alpha) = 0$ for $0 \le x < n$ and $g(\beta) = 0$. By induction and the Mean Value Theorem, there exists $x = x_n$ such that $g^n(x) = 0$. <u>Remarks:</u> For $n = 1$ this is the Mean Value Theorem. Useful when there is a convenient upper bound for $f^{(n)}(x)$ on (a, b) .

6	Riemann Integration
6-1	Riemann-Stiltjes Integral
	A partition <i>P</i> of [<i>a</i> , <i>b</i>] is a finite collection of points $a = x_0 \le x_1 \le \dots \le x_n = b$. Define
	$\Delta x_i = x_i - x_{i-1}.$ Let <i>f</i> be bounded on [<i>a</i> , <i>b</i>], $M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$, $m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$. 1. The lower integral sum is $L(P, f) = \sum_{i=1}^n m_i \Delta x_i$. The lower integral is
	$\int_{a}^{b} f(x)dx = \sup_{P} L(P, f).$
	2. The upper integral sum is $U(P, f) = \sum_{i=1}^{n} M_i \Delta x_i$. The upper integral is
	$\int_{a}^{b} f(x)dx = \sup_{P} L(P, f).$
	(Exist when f bounded.) f is Riemann integrable on [a, b] if the lower and upper integral sums are equal. Then
	$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(x)dx = \overline{\int_{a}^{b}} f(x)dx.$
	(If $a = b$ the integral is 0.)
	More general context: Let α be a monotonically increasing function on $[a, b]$, and let $\Delta \alpha_i = \alpha(x_i) - \alpha(x_{i-1})$. Define sums and integrals $(d\alpha)$ similarly with Δx_i replaced by $\Delta \alpha_i$. The integral is called the Riemann-Stieltjes integral . The set of Riemann-Stieltjes integrable functions with respect to α is denoted $R(\alpha)$. Useful in probability- random variables. If α is the distribution function, $\int_{\alpha}^{b} f d\alpha$ is the
	expected value of $f(X)$.
	The integral of a vector (or complex) valued function is taken componentwise (real and imaginary parts separately).
	Integrability
	 A refinement of a partition obtained from adding a set of division points. Any two partitions have a common refinement. Preliminary Results: If P* is a refinement of P then L(P, f, α) ≤ L(P*, f, α)
	$\circ U(P, f, \alpha) \ge U(P^*, f, \alpha)$
	• $\int_{a} f(x) dx \le \int_{a} f(x) dx$. • $f \in B(\alpha)$ iff for every $s > 0$ there exists a partition P such that (*) $U(P, f, \alpha) =$
	$L(P, f, \alpha) < \varepsilon.$ $o \text{If (*) holds, then it holds for any refinement of P.}$ $o \text{If (*) holds for } P = \{x_0, x_1, \dots, x_n\} \text{ and } s_i, t_i \in [x_{i-1}, x_1] \text{ then } \sum_{i=1}^n f(s_i) - fti\Delta\alpha i < \varepsilon.$
	• If (*) holds and $f \in R(\alpha)$ then $\left \sum_{i=1}^{n} f(t_i) \Delta \alpha_i - \int_a^b f d\alpha\right < \varepsilon$.
	Main Results:

	•	Let <i>f</i> be continuous on [<i>a</i> , <i>b</i>]. Then <i>f</i> is Riemann-Stieltjes integrable for any α . Proof: • <i>f</i> is uniformly continuous. Given ε' choose δ , take partition so that all intervals are shorter than δ . Then (*) holds (choosing ε' depending on ε small enough)
	•	If <i>f</i> is monotonic and α is continuous then $f \in R(\alpha)$. Proof:
		• By IVT and continuity of α , we can choose a partition so that $\Delta \alpha_i = \frac{\alpha(b) - \alpha(a)}{n}$.
		Choose n large enough to make (*) hold.
	•	If f is bounded with only finitely many discontinuity points and α is continuous at all these points, then $f \in P(\alpha)$
		 Take very small intervals around discontinuity points: Surround the
		discontinuity points by nonoverlapping intervals $[u_i, v_i]$ where α changes by less than ε_i , where $\Sigma \varepsilon_i = \varepsilon$. Delete the intervals (and endpoints if they are discontinuity points). <i>f</i> is uniformly continuous on the resulting set (union of closed intervals), take a partition with intervals of length at most $\delta(\varepsilon)$, including $[u_i, v_i]$. Upper bound depends on ε and $M = \sup_{[a,b]} f $ (for the intervals
		$[u_i, v_i]$), and can be made small. (Sum consists of two parts.)
		• Counterexample when α not continuous: $\theta(x) = \begin{cases} 0, x \leq 0\\ 1, x > 0 \end{cases}$. $\int_{-1}^{1} \theta d\theta$ does not
		exist. A set $C \subseteq \mathbb{R}$ has measure 0 if for all $x > 0$ there exists a sourtable callection of energy
	•	A set $S \subseteq \mathbb{R}$ has measure 0 if for all $\varepsilon > 0$ there exists a countable collection of open intervals $(a_i, b_i), i = 1, 2,$ such that $S \subseteq \bigcup_i (a_i, b_i)$ and $\sum_i b_i - a_i < \varepsilon$. <i>f</i> is Riemann integrable on $[a, b]$ iff the set of discontinuity points of <i>f</i> has measure 0. \circ Let B_j be intervals of total length at most $\frac{\varepsilon}{4M}$ covering discontinuity points. Let
		V be the union of "bad balls," those where $\sup_{B_i} f - \inf_{B_i} f > \frac{\varepsilon}{2M}$.
		• Lemma: There exists $\delta > 0$ such that if $s < t$, $t - s < \delta$, $\sup_{[s,t]} f - \inf_{[s,t]} f > 0$
		$\frac{\varepsilon}{2M}$, then $[s, t] \subseteq V$, i.e. any small interval with large variation must be contained
		in V. Proof: Else take a sequence $z_i \in [x_i, y_i] \cap V^c$ that violate the lemma, for
		$\delta_i \to 0$. By sequential compactness, take a simultaneously convergent subsequence; it must be in V^c since V^c is closed, but must also be in V
		 Break Riemann sum into two parts: the intervals in V (bounded by
		$2M_{\text{max variation}} \underbrace{\left(\frac{\varepsilon}{4M}\right)}_{\text{max total length}} \text{) and others (bounded by } \underbrace{(b-a)}_{\text{max total length}} \underbrace{\left(\frac{\varepsilon}{2M}\right)}_{\text{max variation}} \text{).}$
		 Any subset of a set of measure 0 has measure 0.
		 A closed interval [a, b] doesn't have measure 0. (Use compactness) Sets of measure 0 can't contain an interval
		\circ Any countable set (ex. \mathbb{Q}) has measure 0. (Choose sequence of lengths to
		make sum converge to arbitrarily small number.)
		 Cantor set has measure 0. A countable union of cots of measure 0 has measure 0.
		\circ Baire Category Theorem: \mathbb{R} is not a countable union of nowhere dense sets
		(A set S is nowhere dense if \overline{S} does not contain an interval.) I.e. intervals are
		of the second category.
		 Nowhere dense set of measure >0: Like Cantor set but remove intervals whose sum of lengths is <1
	•	Let $f \in R(\alpha)$ on $[a, b], m \le f \le M$. and let $\phi: [m, M] \to \mathbb{R}$ be a continuous function.
		Then $h = \phi \circ f \in R(\alpha)$ on $[a, b]$.
1		

• ϕ is uniformly continuous, so can choose δ so $|y - z| < \delta \Rightarrow |\phi(y) - \phi(z)| < \delta$

	ε . Choose P so $U(P, f, \alpha) - L(P, f, \alpha) < \delta^2$. Let $M_i = \sup_{[x_{i-1}, x_i]} h, m_i =$
	$\inf_{[x_{i-1},x_i]} h$. Divide indices into 2 classes.
	• $M_i - m_i < \delta$: Bound this part of this sum by $\varepsilon(\alpha(b) - \alpha(a)) \to 0$.
	• $M_i - m_i \ge \delta$: Bound this part by $2(\sup_{[m,M]} f) \sum \Delta \alpha_i \le 2K\varepsilon \to 0$.
6-3	Properties
	$b \to b \to$
	1. Linearity: $\int_a^b (cf_1 + f_2) d\alpha = c \int_a^a f_1 d\alpha + \int_a^b f_2 d\alpha$.
	2. $f_1 \leq f_2 \Rightarrow \int_a^a f_1 d\alpha \leq \int_a^a f_2 d\alpha$.
	3. If $a < c < b$ then $\int_a^a f d\alpha = \int_a^a f d\alpha + \int_c^a f d\alpha$.
	4. $ f(x) \le M \Rightarrow \left \int_a^b f d\alpha \right \le M(\alpha(b) - \alpha(a)).$
	5. For $\int_a^b f d(c\alpha_1 + \alpha_2) = c \int_a^b f d\alpha_1 + \int_b^c f d\alpha_2$.
	More integrability: (Use composition theorem to prove.) 1. If $f \in \mathcal{P}(\alpha)$ then $f \in \mathcal{P}(\alpha)$
	2. If $f \in R(\alpha)$ then $ f \in R(\alpha)$ and $\left \int_{\alpha}^{b} f d\alpha \right \leq \int_{\alpha}^{b} f d\alpha$.
	$1 \times 1 \times 1$
	Ex. Let $I(x) = \begin{cases} 1, x \ge 0\\ 0, x < 0 \end{cases}$. $f \in R(I)$ iff f is right continuous at 0. Then $\int_a^b f dI = f(0)$.
	Let $\sum_{i=1}^{\infty} c_n$ be a convergent nonnegative series. Let $\alpha(x) = \sum_{n=1}^{\infty} c_n I(x - s_n)$. For any f continuous, $\int_a^b f d\alpha = \sum_{n=1}^{\infty} c_n f(s_n)$.
	Assume α is Riemann integrable on $[a, b]$ and f is bounded on $[a, b]$. Then $f \in R(\alpha)$ iff $f\alpha' \in R$, and if so, $\int_{\alpha}^{b} f d\alpha = \int_{\alpha}^{b} f \alpha' dx$. " $d\alpha = \alpha' dx$."
	<u><i>Pf.</i></u> By the Mean Value Theorem, there exists $t_i \in (x_{i-1}, x_i)$ such that $\Delta \alpha_i = \alpha'(t_i)\Delta x_i$. The upper (lower) sums of the two integrals can be made arbitrarily close; the upper and lower integrals are equal (use refinement).
	<u>Change of variable</u> : Let $\phi: [A, B] \to [a, b]$ be a strictly increasing continuous function. If $f \in R(\alpha)$ on $[a, b]$ then $f \circ \phi \in R(\alpha \circ \phi)$ and $\int_{a}^{b} f d\alpha = \int_{A}^{B} f \circ \phi d(\alpha \circ \phi)$.
	<u><i>Pt.</i></u> A partition of [a, b] induces a partition of [A, B]. Core if the differentiable and f $\subseteq B$ in [a, b] then $\int_{a}^{b} f(x) dx = \int_{a}^{B} f(t) dx$.
	strictly monotone then $\int_a^b f(x)dx = \int_A^B f(\phi(y)) \phi'(y) dy.$
	Integration and differentiation
	Fundamental Theorem of Calculus: Let $f \in R$ on $[a, b]$. For $a \le x \le b$ define $F(x) =$
	$\int_{a}^{b} f(t)dt$. Then F is continuous on [a, b] and it f is continuous at $x_0 \in [a, b]$, then F is
	differentiable at x_0 and $F'(x_0) = f(x_0)$.
	<u><i>Pf.</i></u> <i>F</i> is Lipschitz with constant sup <i>f</i> so F is uniformly continuous. Using continuity of <i>f</i> ,
	choose δ from ε ; using integral bounds the difference $\left \frac{f(x_0) - f(x_0)}{t-s} - f(x_0)\right $ is at most ε . Take
	Integration by Parts: If u, v are differentiable on $[a, b]$, then

$\int^{b} uv' dx = uv _{a}^{b} - \int^{b} vu' dx.$
<u>$Pf.$</u> $(uv)' = u'v + vu'$ is integrable.
Assuming the integrals are defined, for $f:[a,b] \to \mathbb{R}^n$ (or \mathbb{C}), $\left \int_a^b f d\alpha\right \le \int_a^b f d\alpha$. (Use Cauchy-Schwarz.)
 Rectifiable Curves
A curve in \mathbb{R}^n is a continuous function $\gamma: [a, b] \to \mathbb{R}^n$. If γ is injective it is an arc ; if $\gamma(a) = \gamma(b)$ it is closed.
Let $\Lambda(P, \gamma) = \sum_{i=1}^{n} \gamma(x_i) - \gamma(x_{i-1}) $ when $P = \{a = x_0 < \dots < x_n = b\}$. Define $\Lambda(\gamma) = \sup_{P} \Lambda(P, \gamma)$.
The curve is rectifiable if $\Lambda(\gamma)$ is finite. <i>Ex.</i> Nonrectifiable curve- Koch snowflake.
If γ' is continuous on $[a, b]$, then γ is rectifiable, and $\Lambda(\gamma) = \int_{a}^{b} \gamma'(t) dt$. <u><i>Pf.</i></u> By FTC, $ \gamma(x_i) - \gamma(x_{i-1}) \leq \int_{x_{i-1}}^{x_i} \gamma'(t) dt$. Summing, γ is rectifiable. Using uniform continuity of γ' , take a partition with distances less than $\delta(\varepsilon)$; bound the error by $2\varepsilon(b-a)$. (There are 2 parts to the error, sum of $\left \int_{x_{i-1}}^{x_i} \gamma'(x_i) - \gamma'(t) dt\right + \left \int_{x_{i-1}}^{x_i} \gamma'(t) dt\right $.

7	Sequences of Functions
7-1	Uniform Convergence
	A sequence of functions f_n converges to $f(f_n \to f)$ if $\lim_{n\to\infty} f_n(x) = f(x)$ for all x . In general, pointwise convergence does not preserve limits (continuity), derivatives, or integrals. Convergence for series of functions is defined similarly.
	f_n converges uniformly to $f: E \to X$ (X a complete metric space) if for every $\varepsilon > 0$ there exists <i>N</i> so that for every $n \ge N$ and $x \in E$, $d(f_n(p), f(p)) < \varepsilon$. <u>Cauchy Criterion for Uniform Convergence:</u> $\{f_n\}$ is uniformly convergent iff for all $\varepsilon > 0$ there exists <i>N</i> such that $d(f_n(x), f_m(x)) < \varepsilon$ for every $m, n \ge N; x \in E$. <u>Pf.</u> Choose <i>N</i> for $\frac{\varepsilon}{2}$ and use triangle inequality.
	$\frac{\text{Weierstrass M-Test for Uniform Convergence:}}{\text{Suppose } f_n \to f \text{ pointwise, and let } M_n = \sup_{x \in E} d(f_n, f). \text{ Then } f_n \to f \text{ uniformly iff } M_n \to 0 \text{ as } n \to \infty.}$ $\frac{Cor.}{Let} f_n: E \to \mathbb{R}, f_n \leq M_n. \text{ If } \sum_{n=1}^{\infty} M_n \text{ is convergent then } \sum_{n=1}^{\infty} f_n(x) \text{ converges uniformly.}}$ $\frac{Pf.}{Pf.} \text{ Use Cauchy criterion on difference of partial sums.}$
	Suppose $\{f_n\}$ converges uniformly to $f: E \to \mathbb{R}$. Let x be a limit point of E (subset of metric space). Then $\lim_{t \to x} f(t) = \lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} \lim_{t \to x} f_n(t).$
	$\begin{array}{l} \underline{Pf.} \mbox{ Let } A_n = \lim_{t \to x} f_n(t), A = \lim_{n \to \infty} f_n(t). \mbox{ Choose } n \mbox{ and } \delta \mbox{ so that} \\ 1. \ f_n(t) - f(t) < \frac{\varepsilon}{3} \mbox{ for all } t \mbox{ (use uniform continuity)}. \\ 2. \ A_n - A < \frac{\varepsilon}{3}. \\ 3. \ f_n(t) - A_n < \frac{\varepsilon}{2} \mbox{ for } 0 < d(t, x) < \delta. \end{array}$
	Then $ f(t) - A < \varepsilon$. <u>Cor.</u> If $f_n: E \to \mathbb{R}$ is continuous and $f_n \to f$ uniformly on E , then f is continuous on E .
	Suppose $\{f_n\}$ is a continuous real-valued functions on a compact set K , $f_{n+1} \le f_n$, and $f_n \to f$ pointwise. Then $f_n \to f$ uniformly. <u><i>Pf.</i></u> Consider $K_n = \{x \in K f_n(x) - f(x) < \varepsilon\}$. As closed subsets of K they are compact. By monotonicity, $K_n \supseteq K_{n+1}$. Since $\bigcap_{n \ge 1} K_n = \phi$, one of the sets, and all subsequent sets, are empty.
	Let $C(X)$ be the space of bounded continuous functions. For $f, g \in C(X)$ define $ f = \sup f(x) $ and $d(f,g) = f - g $. Then $f_n \to f$ with this metric iff $f_n \to f$ uniformly on X. $C(X)$ is complete because if $\{f_n\}$ is Cauchy, then it is uniformly convergent. Hence it is continuous (and bounded). Note continuity is not important. The space of continuous functions $C(K)$ on compact K is a complete metric space.
	Integration: Suppose α is a monotonically increasing on $[a, b]$, $f_n \in R(\alpha)$, and $f_n \to f$ uniformly. Then $f \in R(\alpha)$ and $\int_a^b f d\alpha = \lim_{n \to \infty} \int_a^b f d\alpha$. <u><i>Pf.</i></u> Let $\varepsilon = \sup f_n - f $. Then $f_n - \varepsilon_n \le f \le f_n + \varepsilon_n$; both sides go to f ; integrate.

	$f_n \to f$ uniformly does not imply $f'_n \to f'$. Suppose f_n are differentiable, f_n' converges uniformly, and $f_n(x_0)$ converges for some $x_0 \in [a, b]$. Then f_n is uniformly continuous to some function f , and $\lim_{n\to\infty} f'_n(x) = f'(x)$. <u>Pf.</u> Choose n so that for $m, n \ge N$, $ f_n(x_0) - f_m(x_0) < \frac{\varepsilon}{2}$ and $ f'_n(x) - f'_m(x) < \frac{\varepsilon}{2(b-a)}$. Use MVT for $f_m - f_n$ on t, x to get difference at most $\frac{\varepsilon}{2}$. Using Triangle Inequality and Cauchy criterion, $f_n \to f$ uniformly, f continuous. Let $\phi_n(t) = \frac{f_n(t) - f_n(x)}{t-x}$. Then $\phi_n(t)$ is uniformly convergent to $\phi(t)$ when $t \ne x$ so by exchanging limits $\lim_{n\to\infty} f'_n(x) = \lim_{t\to x} \phi(t) = f'(x)$.
	Everywhere continuous but nowhere differentiable function: Weierstrass: $W(x) = \sum_{n=0}^{\infty} 2^{-n} \cos(10^n \pi x)$ Or: Let $s(x) = x , x \le 1$ have period 2. $f_n(x) = \left(\frac{3}{4}\right)^n s(4^n x)$. $f(x) = \sum_{n=0}^{\infty} f_n(x)$ is nowhere differentiable because of increasing oscillations, but continuous by the M-Test (oscillations on smaller scale). In the difference quotient choose $h_m = \pm \frac{1}{2} 4^{-m}$ (direction so that don't hit cusps $\rightarrow s_m$ linear at this scale scale); f becomes a finite sum but the difference quotient increases as m increases (Δs_m is large; the smaller ones don't cancel out).
	Holder ½ (Differentiable functions have Baire category 2 in continuous functions.)
	Let X be compact (so continuous functions are bounded) and $C(X)$ be the space of continuous functions $f: X \to \mathbb{R}$ with the metric $d(f,g) = f - g _{\infty} = \sup f(x) - g(x) $. $C(X)$ is complete: \mathbb{R} is complete so a Cauchy sequence f_n converges uniformly. Since f_n are continuous, their limit is continuous.
	Heine-Borel fails: Take f_n to be a function with a spike of height 1 at $\left(\frac{1}{n+1}, \frac{1}{n}\right)$ and 0 elsewhere. $\{f_n\}$ is closed but the functions are all distance 1 from each other.
7-2	Equicontinuity
	A family \mathcal{F} of functions $X \to \mathbb{R}$ is equicontinuous if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $ f(x) - f(y) < \varepsilon$ for all x, y so that $d(x, y) < \delta$. For a finite collection, this is equivalent to all elements being uniformly continuous. \mathcal{F} is uniformly bounded if there exists M so that $f(x) \le M$ for all $f \in \mathcal{F}$ and $x \in X$.
	Suppose X is compact and $\{f_n\}$ is uniformly convergent in $C(X)$. Then $\{f_n\}$ is equicontinuous. (Holds if X is not compact but f_n are uniformly continuous. <u><i>Pf.</i></u> $\{f_n\}$ uniformly Cauchy. Choose N for $\frac{\varepsilon}{3}$ and then choose δ for $ f_N(x) - f_N(y) < \frac{\varepsilon}{3}$.
	<u>Arzela-Ascolli Theorem</u> : If <i>X</i> is compact and $\{f_n\}$ is a pointwise bounded equicontinuous sequence in $C(X)$ then $\{f_n\}$ has a uniformly convergent subsequence. (Separable X implies existence of pointwise convergent subsequence.) A closed and bounded equicontinuous family of functions C(X) is compact. <u><i>Pf.</i></u>
	1. Pointwise bounded implies uniformly bounded: Choose δ for equicontinuity for ε , the

	δ-neighborhoods form an open cover; take a finite subcover $O_{\delta}(x_i)$ and take $\max(f(x_i)) + \varepsilon$.
	2. Take a countable dense subset $\{p_1, p_2,\}$. $\{f_n(p_1)\}_{n=1}^{\infty}$ is bounded so has a convergent subsequence $\{g_{1,n}(p_1)\}_{n=1}^{\infty}$. Given $\{g_{i,n}\}$, take a convergent subsequence
	$\{g_{i+1,n}(p_{i+1})\}$. $\{g_{i,n}\}$ is row i. Take the diagonal $g_{n,n}$; by $\frac{\varepsilon}{2}$ -argument, $\{g_k(p)\}$ converges.
	3. For $\varepsilon > 0$, choose $\delta > 0$ for equicontinuity for $g_{n,n}$ for $\frac{\varepsilon}{3}$. $B_{\delta}(p)$ covers X; take a finite
	subcover $B_{\delta}(p_i)$. For each p_i take N_i so $ g_k(p_i) - g_l(p_i) < \frac{\varepsilon}{3}$ for $k, l \ge N_i$. Take
	$N = \max N_i$. For this N_i , compare $g_k(x), g_l(x)$ to $g_k(p_i), g_l(p_i)$ to show $ g_k(x) - g_k(x) < s$
	 4. A closed, bounded, and equicontinuous family in C(X) is sequentially compact so it is compact.
	<u><i>Cor.</i></u> If functions f_n defined on a compact set converge pointwise and are equicontinuous, then they converge uniformly.
	Application:
	Show the existence of the solution to a differential equation. Solution to $F(f, f') = 0$ is the minimizer of $G: C(X) \to \mathbb{R}$ given by $\int F(f, f') ^2 dx$. Restricting to a compact set of $C(X)$, if G is continuous there must be a minimum.
7-3	Approximation Theorems
	An algebra \mathcal{A} of functions is a set of functions closed under addition, multiplication, and scalar multiplication. \mathcal{A} is self-adjoint if $f \in \mathcal{A}$ implies $\overline{f} \in \mathcal{A}$. The uniform closure of \mathcal{A} is the set of limits of uniform convergent sequences in \mathcal{A} ; i.e. the closure of \mathcal{A} in the uniform metric. If \mathcal{A} is its own uniform closure, then \mathcal{A} is uniformly closed.
	<u>Weierstrass Approximation Theorem</u> : Let $[a, b]$ be a compact interval in \mathbb{R} , and let $f:[a, b] \rightarrow \mathbb{C}$ be continuous. Then there exists a sequence of polynomials P_n such that $ P_n - f_n \rightarrow 0$ on $[a, b]$. I.e. the uniform closure of the set of polynomials on $[a, b]$ is $C[a, b]$. <u>Pf.</u> WLOG $[a, b] = [0,1]$ and $f(0) = f(1) = 0$. Set $u_n(x) = c_n(1 - x^2)^n$.
	1. Choose c_n so that $\int_0^1 u_n(x) dx = 1$. $c_n \sim \sqrt{\frac{x}{\pi}}$.
	2. u_n converges to 0 uniformly on $\{x: x > \delta\}$ for $\delta > 0$. The polynomials "squish" to 0 and become higher at 0.
	Let $\bar{f}(x) = \begin{cases} f(x), 0 \le x \le 1\\ 0 \text{ otherwise} \end{cases}$. Let $P_n(x) = \int_{-x}^{1-x} \bar{f}(x+t)u_n(t) dt = \int_0^1 f(s)u_n(s-x) ds$ (a
	convolution). Let $u_n(s-x) = \sum_{k=0}^{2n} a_k(s) x^k$. Pick $\delta > 0$ so that $ x-y < \delta \Rightarrow \bar{f}(x) - 1$
	$ \bar{f}(y) < \frac{\varepsilon}{2}$. Then $P_n(x) - f(x) = \int_{-1}^1 [\bar{f}(x+t) - f(x)] u_n(t) dt$. Split into $\int_{-1}^{-\delta} \int_{\delta}^1 \int_{-\delta}^{\delta}$.
	<u>Cor</u> . There exists a sequence of polynomials $P_n(x)$ such that $P_n(0) = 0$ and $P_n(x) \rightarrow x $ uniformly on $[-a, a]$.
	Stone-Weierstrass Theorem: Let <i>K</i> be a compact metric space, and $\mathcal{A} \subseteq C(K, \mathbb{R})$ (\mathcal{A} is a subalgebra of the set of continuous function from <i>K</i> to \mathbb{R}). Suppose that \mathcal{A}
	 Does not vanish at any point: there does not exist x such that f(x) = 0 for all f ∈ A.

Then \mathcal{A} is dense in $\mathcal{C}(K)$; i.e. the uniform closure \mathcal{B} of \mathcal{A} is the set of all continuous functions.
If \mathcal{A} is a self-adjoint algebra of complex functions that separates points and does not vanish at any point then \mathcal{A} is dense in $C(K, \mathbb{C})$
$\frac{Pf_{.}}{Pf_{.}}$
1. For every $x_1, x_2 \in K$, $c_1, c_2 \in \mathbb{R}$ there exists $f \in \mathcal{A}$ such that $f(x_1) = c_1$, $f(x_2) = c_2$. 2. $f \in \mathcal{B} \Rightarrow f \in \mathcal{B}$. Let $a = \sup f(x) $. Take $P(y)$ so that $ P(y) - y < \varepsilon$ on $[-a, a]$.
Then $ P(f(x)) - f(x) < \varepsilon$ on <i>K</i> .
3. $f, g \in \mathcal{B} \Rightarrow \max(f, g), \min(f, g) \in \mathcal{B}. \max(f, g) = \frac{f+g+ f-g }{2}$.
4. For $f \in C(K)$, there exists $g_x \in \mathcal{B}$ such that $g_x(x) = f(x)$ and $g_x(t) > f(t) - \varepsilon$. From (1) take h_y so that $h_y(x) = f(x)$, $h_y(y) = f(y)$. There exists an open set U_y so that $h_y(t) > f(t) - \varepsilon$. Take a finite subcover $\bigcup U_{y_i}$; take $g_x = \max(h_{y_i})$.
5. For each x there exists V_x containing x so that $g_x(t) < f(t) + \varepsilon$. Take a finite subcover $\bigcup V_{x_i}$ and let $h(x) = \min(g_{x_i})$.
6. For complex: Use $\Re(f) = \frac{f+\bar{f}}{2}$.
<u>Corollary</u> : Functions $[0,2\pi) \rightarrow \mathbb{R}$ can be uniformly approximated by trigonometric polynomials (linear combinations of $\sin(nx)$, $\cos(nx)$, 1). Any complex continuous function on the unit circle can be uniformly approximated by Laurent polynomials.

8	Power Series
8-1	Analytic Functions
	A function <i>f</i> on $(-a, a)$ is analytic if it is representable as the sum of a convergent power series $\sum_{n=0}^{\infty} c_n x^n$.
	A power series with radius of convergence <i>b</i> is uniformly convergent on $[-b, b]$ for all $b < a$ and $_{\infty}$
	$f'(x) = \sum_{n \in A} nc_n x^{n-1}$ for all $x \in (-a, a)$.
	By induction, $f \in C^{\infty}$; i.e. all derivatives exist. <u><i>Pf.</i></u> $\sum_{n=1}^{\infty} nc_n x^{n-1}$ converges uniformly by the Root Test.
	An analytic function is determined completely by all its derivatives at 0, in particular by values of <i>f</i> in $(-\varepsilon, \varepsilon)$ for any $\varepsilon > 0$. We can define an analytic continuation .
	Suppose $\sum_{n=0}^{\infty} c_n$ is a convergent series. Let $f(x) = \sum_{n=0}^{\infty} c_n x^n$, $-1 < x < 1$. Then $\lim_{x \to 1} f(x) = \sum_{n=0}^{\infty} c_n$. $Pf_n f(x) - s = (1 - x) \sum_{n=0}^{\infty} (s_n - s) x^n \to 0$.
	$\frac{\underline{Cor.}}{\underline{Cor.}} \text{ Suppose } A = \sum_{n=0}^{\infty} a_n, B = \sum_{n=0}^{\infty} b_n, C = \sum_{n=0}^{\infty} c_n, c_n = \sum_{i=0}^{n} a_i b_{n-i}. \text{ Then } C = AB.$ This is true if A or B converges absolutely. Else, let $f(x) = \sum_{n=0}^{\infty} a_n x^n, g(x) = \sum_{n=0}^{\infty} b_n x^n, h(x) = \sum_{n=0}^{\infty} c_n x^n.$ Then $f(x)g(x) = h(x)$ for $x < 1$; take $x \to 1$.
	Inversion of order of sums: If $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} $ converges, then $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}$. <u><i>Pf.</i></u> Take $E = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$; let $f_i\left(\frac{1}{n}\right) = \sum_{j=1}^{n} a_{ij}$, $f_i(0) = \sum_{j=1}^{\infty} a_{ij}$. $f_i \to f$ uniformly on E so we can exchange double sums.
	<u>Taylor's Theorem</u> : Suppose that $\sum_{n=0}^{\infty} c_n x^n$ converges for $ x < R$. If $ a < R$ then f can be expanded into a power series about $x = a$ which converges for $ x - a < R - a $, and $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{a} (x - a)^n$.
	$\underline{Pf.} f(x) = \sum_{n=0}^{\infty} c_n ((x-a) + a)^n = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} c_n {n \choose m} (x-a)^m a^{n-m}.$ Change order of sum (legal since $ x-a < R - a $ gives absolute convergence by applying Binomial Theorem backwards): $\sum_{m=0}^{\infty} [\sum_{n=0}^{\infty} c_n {n \choose m} a^{n-m}] (x-a)^m$ converges since $ a < R$. The series must be its Taylor series.
	Suppose $\sum_{n=0}^{\infty} a_n x^n$ and $\sum_{n=0}^{\infty} b_n$ converge for $ x < R$, and let $E = \{x \sum a_n x^n = \sum b_n x^n\}$. If <i>E</i> is not discrete in $(-R, R)$ (i.e. has a limit point in \mathbb{R}) then $a_n = b_n$. Let <i>A</i> be the set of all limit points of <i>E</i> in $(-R, R)$ and $B = A^c$. <i>A</i> is closed so <i>B</i> is open. However <i>A</i> is open: Expanding $f(x) = \sum_{n=0}^{\infty} (a_n - b_n) x^n$ near $x_0 \in A$, we get either $f(x) \sim a(x - x_0)^n$ as $x \to x_0$ for some $n \Rightarrow f(x) \neq 0$ in a neighborhood of $f(x) \Rightarrow x_0 \notin E$, or $f(x) = 0$ in a neighborhood of $x_0 \Rightarrow x_0$ is internal point of <i>E</i> .
	Since A is both open and closed, either $A = (-R, R) \Rightarrow f(x) = 0$ or $A = \phi \Rightarrow E$ discrete.