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Topological Spaces

Topologies

A topology on a set X is a collection T of subsets, called open sets satisfying:
1. ,XET
2. The union of an arbitrary collection of sets in T isin 7.
3. The intersection of a finite number of sets in T isin T.

(X,T) is called a topological space.

Ais closed if X-A is open.
1. X, ¢ are closed.
2. Arbitrary intersections of closed sets are closed.
3. Finite unions of closed sets are closed.

If 7, 7' are two topologies for X, and
1. T €7’ then T is coarser than T".
2. T 27’ then T is finer than 7.
3. Either way, 7,7" are comparable.

Examples: (Collection of open sets)
1. Discrete topology: Collection of all subsets of X
2. Trivial topology: Collection only containing X, ¢.
3. Finite complement topology: Collection of all subsets U with X-U finite, plus ¢.

Bases

A base for a topology on X is a collection B of subsets, called base elements, of X such that
any of the following equivalent conditions is satisfied.
1. Both the following are true.
a. For each x € X, there is at least one base element containing x.
b. If x € B n B, for some By, B, € B, then x € B; € B; N B, for some B3 € B.
2. For each open set U of X and each x € U, there is an element B € B such that
xeEBcU.
3. T (the open sets) is the collection of all unions of elements of B. (Thus the base
determines the topology.)

Let B, B’ be bases for 7,7’ on X. Then the following are equivalent:
1. 7' isfiner than T.
2. For each x € X and each base element B € B containing X, there is a base element
B' € B' such that x € B' € B.

Examples:
1. The standard topology on the real line is generated by open intervals (a, b).
2. The lower limit topology R; is generated by half-open intervals [a, b).

A subbase § for a topology is a collection of subsets of X whose union equals X, and
where T consists of all unions of finite intersections of elements in §.

Let X be a totally ordered set, and define:
1. Openinterval: (a,b) = {x|a < x < b}




2. Half-open interval: (a, b] = {x|la < x < b},[a,b) = {x|a < x < b}
3. Closed interval: [a, b] = {x|a < x < b}
The order topology on X is the topology generated by the base containing...
1. Openintervals (a, b)
2. Intervals of the form [ay, b), a; = min X, if it exists
3. Intervals of the form (a, by], by = max X, if it exists

1-3 Limit Points and Convergence
Let A be a subset of X.
1. The interior Int(A) = A° of X is the union of all open sets contained in A.
2. The closure A = [A] of X is the intersection of all closed sets containing A.
If A'is open, Int(4) = A and if A is closed, A° = A.
Let Y be a subspace of X. Then the closure of AinYis ANnY.
A subset A € X is densein Xif A = X.
An open set containing x is a neighborhood of x.
1. x € Aiff any neighborhood of x intersects A.
2. Given a base for X, x € A iff every base element B containing x intersects A.
x is a limit point of A if every neighborhood of x intersects A in some point other than x. Let
A’ be the set of all limit points; then A = AU A'. A'is closed iff it contains all of its limit points.
{x,}m=1 converges to x if for any neighborhood U of x there exists N € N such that x,, € U
for n > N. Note that a sequence may converge to more than one point, since one-point sets
may not be closed.
1-4 Product and Subspace Topology

For topological spaces X, Y, the product topology on X x Y is the topology with base
consisting of all the subsets of the form U x V, where U, V are open subsets of X, Y,
respectively.
If B is a base for X and C a base for Y, then

D={BxC|BE€B,CEC}
Is a base for the topology for X x Y.
S ={n7*(U)|U openin X} U {m;1(V)|V open in Y} is a subbase for the product topology.
Ex. R? = R x R is the standard topology for R2.

If Y € X, the collection

Ty ={Ynu|U € T}
is the subspace topology. If A € X,B € Y, then the product topology A X B is the subspace
topology of AX Bin X XY.
A is closed in Y iff it is the intersection of a closed set in X with Y. If Y is closed in X, then
ACYisclosedinY iffitis closed in X.

Let X be a totally ordered set and Y be a subset. If Y is convex (i.e. a,b € Y imply (a,b) €Y)
then the order topology on Y is the same as the subspace topology.
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Infinite Product Topology, Tychonoff Theorem

Let {X,}4c; be an indexed family of sets. Consider their Cartesian product P = [[¢; X, (If
all the sets are the same, this is denoted X’.)
1. The box topology is generated by the base of sets [[,¢; U, where U, is open in X,,.
2. The product topology generated by the subbase

SZUSB

where Sp = {ngl(Uﬁ)wﬁ open in Xg} and g is the projection map P — Xz. In other
words, it is generated by the base of sets [],¢; U, where U, is open in X, and
U, # X, only for a finite number of «.
For finite products the two topologies are the same. The box topology is finer than the
product topology.
In either topology, [[4, = [[Ae-

Tychonoff Theorem: An arbitrary product of compact spaces X = [[,¢; X, is compact in the
product topology.

Pf. Let A be a collection of subsets of X having the finite intersection property; we need to
show NA # ¢. By Zorn’'s Lemma there is a maximal collection D of subsets of X with the
finite intersection property and which contains A. By compactness of X,, choose x, €

Npep T (D); let x = (x4)qe;- ANy subbase element containing x intersects every element of
D. By maximality of D, any finite intersection of elements of D, and any subset that
intersects every element of D, is an element of D. Then every subbase element n,}l(UB)
containing x, and every base element containing x, belongs to D. Then every base element
containing x intersects every element of D, i.e. any neighborhood of x intersects ND. Hence
X € nDEDE c ﬂc/q

(The proof for finite products does not need Axiom of Choice.)

1-6

Axioms of Separation

Axioms of separation:
1. For every pair x,y € X of distinct points, there exists a neighborhood of x not
containing y. Equivalently, every finite point set is closed.
2. For every pair x,y € X of distinct points, there exist neighborhoods 0,, 0, of x and y
that are disjoint.
A topological space X is a Ty space if it satisfies the first axiom of separation and a
Hausdorff (T,) space if it satisfies the second axiom of separation.
In aregular (T3) space, 1-point sets are closed and for x € X and closed B € X not
containing x, there exist disjoint open sets containing x and B.
In a completely regular (T35) space, 1-point sets are closed and for each x € X and
closed B € X not containing x, there exists a continuous function f: X — [0,1] such that
f(x) =0and f(4) = {0}.
In a normal (T,4) space, for every pair of disjoint closed sets F;, F, € X there exists disjoint
opensets 0; 2 F; and 0, 2 F,.
In a completely normal (Ts) space, every subspace is normal.

A space is completely regular iff it is the subspace of a normal space.

If X is a T, space, then x is a limit point of A € X iff every neighborhood of x contains




infinitely many points of A.

In a Hausdorff space, every sequence of points in X converge to at most 1 point (called the
limit).
The following are Hausdorff:
1. Simply ordered sets in the order topology
2. Product of Hausdorff spaces (with either the box or product topologies)
3. Subspace of Hausdorff spaces
A subspace of a regular space is regular and a product of regular spaces is regular.
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Countability Axioms

X has a countable neighborhood base at x if there is a countable collection B of
neighborhoods of x such that each neighborhood of x contains at least one of the elements
of B.
Countability axioms:

1. X has a countable neighborhood base at each point. (First-countable)

2. X has a countable base for its topology. (Second-countable)
Xis a Lindel6f space if every open cover of X contains a countable subcover.
X is separable if it has a countable dense subset.

A subspace of a 1% (2")-countable space is 1% (2")-countable, and a countable product of
2"%_countable space is 2™-countable.

If X is 2"%-countable (has a countable base) then it is Lindel6f and separable. All three
conditions are equivalent if X is a metric space.
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Continuous Functions

Let X, Y be topological spaces. f: X — Y is continuous if for each open subset V of Y,
f~1(V) is an open subset of X. It suffices to show that f~1(V) is open for every subbase
element. The following are equivalent:

1. fis continuous.

2. For every subset A of X, f(4) € f(4).

3. Foreveryclosed set B CY, f~1(B) is closed in X.

4. For each x € X and each neighborhood V of f(x), there is a neighborhood U of x

such that f(U) < V. (f is continuous at each point x)

If f is bijective and f, f~* are both continuous, then f is a homeomorphism. Here U € X is
open iff f(U) is open.

If f:X — Y is a homeomorphism when the range is restricted to f(X), then f is an
imbedding of X in Y.

Constructing continuous functions

Constant functions f(x) = y, are continuous.

If A € X the inclusion function i: A — X is continuous.

If f:X =Y and g:Y — Z are continuous, then sois g o f.

The restriction f|, of a continuous function f to a subspace A € X is continuous.

If f: X — Y is continuous, and f(X) € Z, then f: X — Z is continuous. (change range)
(Local formulation of continuity) f: X — Y is continuous if X can be written as the
union of open sets U, such that f|,_is continuous for each a.

ok wnpE




7. (Pasting lemma) Let X = AU B where A,B areclosedin X. Let f:A—->Yand g:B—->Y
be continuous. If f(x) = g(x) for every x € A n B then f and g combine to give a
continuous function h: X - Y:

_(flx),x€A
h(x) = {g(x),x €EB
8. Let f: A > [qe; X4 be given by f(a) = (f,(a@)) _ . Then f is continuous iff f,: A > X,

is continuous for all «.

a€g]’
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Quotient Topology

A surjective map p: X — Y is a quotient map when U C Y is open in Y iff p~1(U) is open in
X. (Equivalently, A € Y is closed in Y iff p~1(4) is closed in X.) An open map sends open
sets to open sets, and a closed map sends closed sets to closed sets.

If Ais asetand p:X — A is surjective, then the unique topology on A such that p is a
guotient map is the quotient topology induced by p. It consists of the subsets U € A such
that p~1(U) is open in X.

Let X* be a partition of X into disjoint subsets whose union is X, and let p: X — X* be the
map carrying x to the element of X* containing x. Then X* with the quotient topology is
called the quotient space of X. (X* is obtained by identifying equivalent points.)

A subset C of X is saturated with respect to p if C contains every set p~1({y}) that it
intersects. If A € X is saturated, then the restriction p|,: A — p(A) is a quotient map if A4 is
open or closed, or p is an open or closed map.

The composition of two quotient maps is a quotient map.
If each class in X* is closed, then X* is a T, space.

Let p: X = Y be a quotient map. Let g: X — Z be a map that is constant on each set
p~1({y}). Then g factors through Y, i.e. there exists amap f:Y - Zsothatfop =g. f is
continuous iff g is continuous; f is a quotient map iff g is a quotient map.

If g is surjective and Y = {g~1({z})|z € Z} is given the quotient topology, then f is bijective
and continuous; f is a homeomorphism iff g is a quotient map. If Z is Hausdorff, then so is
X",
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Topological Groups

A topological group G is a group that is also a T, space, such that the maps
e GXG-G:(x,y)—>xy
e G- G:ix—-x1
are continuous.
If H is a subgroup of G then collection of cosets G/H can be given the quotient topology.




Classification of Topological Spaces

Topological space X

Lindelof: Separable: (H)
Every open Contains a
cover contains countable dense
a countable subset

1% axiom of countability: (H)
Every point x has a countable
neighborhood base.

T, space (1% axiom of separation):
(H)

For every pair x,y € X of distinct
points, there exists a neighborhood

subcover. |

2" axiom of countability: (H)
A countable base exists.

Manifold: (metrizable)
Hausdorff, 2"-countable space

neighborhood homeomorphic

Ly| such that each point has a 1

of X not containing v.

A 4

T, (Hausdorff) space (2* axiom of separation):

: with an open subset of R" (H)
Sequentially compact: For every pair x,y € X of distinct points, there
every sequence of —— exist disjoint neighborhoods 0,, 0, of x and y.
points has a convergent Countably (limit point) compact: (3
subsequence equivalent definitions) v
e Every infinite subset of X has a T (Regular) space: (H)
Compactly generated: finite subcover at least 1 limit 1-point sets are closed and for x € X and
If An Cis openin C for | pointin X. closed B < X not containing x, there exist
each compact C, then A e Every countable open cover of X disjoint open sets containing x and B.
is openin X. Y has a finite subcover. ¥
| 4 e Every countable centered system
Locally compact: of closed subsets has a non- ;La)s (Completely regular, Tychonoff) space:
For each x there is some empty intersection. 1-point sets are closed and for each x € X
compact subspace C of  — ¥ [ | and closed B < X not containing x, there
X that contains a Compact: (2 equivalent definitions) exists a continuous function f: X — [0,1]
neighborhood of x (H-closed subset, 1) - o
2 e Every open cover of X has a finite such that f(x) = 0 and f(4) = {0}.
Paracompact: (H-closed tp»(  subcover. v
subset) e Every countable centered system T, (Normal) space: (H-closed subset)
Every open covering of | | of closed subsets has a non- For every pair of disjoint closed
X has a locally finite empty intersection. sets F;, F, € X there exists disjoint
open refinement that | open sets 0, 2 F, and 0, 2 F,.
covers X. T T
v i A v
Compactum: (H-closed subset, I) Topological group: Ts (Completely normal) space: (H)
Compact Hausdorff space Has group structure; Every subspace is normal.
multiplication and inverses ¢
’J are continuous.

Baire space:

Given any countable collection {4,} of
closed sets of X with empty interior,
their union U, 4,, has empty interior.

> Metric space (metrizable)

Every point has a

metrizable in the

x contained in U

Locally (path) connected: (NH)
For every neighborhood U of
an element x there is a (path)
connected neighborhood V of

Locally metrizable:
neighborhood that is

subspace topology.

v v

Totally bounded: || Complete:

Has a finite e-net || Every Cauchy
(can be covered sequence

with a finite converges to an
number of e-balls || elementin X.

forany € > 0)

e Regular + 2" countable = normal
¢ Urysohn metrization: Normal + 2

Path connected: (NH)
every pair of points in X can be
joined by a path in X

Connected: (NH)
No subsets other than ¢ and X are
both open and closed.

countable = metrizable

¢ Nagata-Smirnov metrization: regular + has
countably local base = metrizable

e Smirnov metrization: Locally metrizable +

paracompact = metrizable

¢ In a metric space, compact = countably
compact = sequentially compact.

e Paracompact + Hausdorff = normal

e Regular + Lindel6f = paracompact




Compactness

Compactness

An open cover of a set E in a topology X is a collection F of open subsets such that

E € Uger G. A subset K € X is compact if every open cover of K contains a finite
subcover. K is sequentially (or countably) compact if every infinite subset of K has a
limit point in K.

On subsets:

e Suppose K €Y € X. Then K is compact relative to X if it is compact relative to Y. In
other words, compactness is an intrinsic property.

1. Closed subsets of compact sets are compact.

2. Compact subsets of Hausdorff spaces are closed. (Pf. If Y is a compact subspace of
the Hausdorff space X and x, ¢ Y there exist disjoint open sets U and V containing
xo and Y, respectively.)

The image of a compact space under a continuous map is compact. (Pf. For an open cover
of f(X), take the inverse of each subset. They’re open since f is continuous; choose a
finite subcover and take the image.)

If f:X — Y is a bijective continuous function, X is compact, and Y is Hausdorff, then f is a
homeomorphism.

A collection C of subsets of X has the finite intersection property (or is centered) if for
every finite subcollection {C, ..., C,,} of €, N}%, C; is nonempty. (Pf. Prove the contrapositive
with the complements.)

X is compact iff for every collection C of closed sets with the finite intersection property,
Ncee C is nonempty.

In particular, any nested sequence of closed nonempty sets in a compact set X has a
nonempty intersection. For R this gives the Nested Intervals Theorem.

In a simply ordered set with the least upper bound property, each closed interval is
compact. In particular, closed intervals are compact in R. (Pf. Consider the set of points
y > a such that [a, y] can be covered by finitely many elements of the open cover A.)
Extreme Value Theorem: If X is compact, f is compact, and Y has the order topology,
f:X =Y attains its maximum and minimum.

A point x of X is an isolated point if {x} is open in X.

A nonempty compact Hausdorff space with no isolated points is uncountable. Therefore
any closed interval in R is uncountable.

Pf. Given a countable sequence of points {x,}, build a nested sequence of open sets
V; 2V, 2 -+ such that x,, & V,. x € NV, (honempty by compactness) cannot be in {x,,}.
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Limit Point Compactness

Xis limit point compact if every infinite subset of X has a limit point. X is sequentially
compact if every sequence of points of X has a convergent subsequence.
Compactness implies limit point compactness.

All three notions of compactness are equivalent for a metric space (see analysis notes).




Local Compactness and Compactification

Xis locally compact at x if there is some compact subspace C of X that contains a
neighborhood of x. X is said to be locally compact if it is locally compact at every point.

A compactification of a space X is a compact Hausdorff space Y containing X such that
X =Y. Two compactifications Y;, Y, are equivalent if there is a homeomophism h:Y; - Y,
such that h(x) = x for every x € X.

X is locally compact Hausdorff iff it has a one-point compactification, i.e. a
compactification Y such that Y — X consists of a single point. Y is unique up to equivalence.
Pf.
e Uniqueness: Let h:Y — Y’ be the map that is the identity on X and sends p € Y — X
to g € Y' — X. Check that it maps an open set to an open set; if U contains p note Y-
U is closed and hence compact; its image is compact and hence closed.
e Existence: Adjoin an object o to X. Let the open sets be
1. Open setsin X, and
2. All sets of the form Y — C, C compact subspace of X.C
Check that X does have the subspace topology. If A is an open cover of Y, then A
must contain a set of type 2. Finitely many of the other subsets cover C; add C. Y is
compact: just note if y = oo then take a compact set C containing a neighborhood U
of x; U and Y-C are disjoint neighborhoods.
e Converse: Choose disjoint U,V containing x,p. Y —V is compact and contains U in
X.

Let X be Hausdorff. X is locally compact iff given x € X and a neighborhood U of x, there is
a neighborhood V of x such that V is compact and V € U.

An open or closed subset of a locally compact Hausdorff set is locally compact.

A space is homeomorphic to an open subspace of a compact Hausdorff space iff it is
locally compact Hausdorff.
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Stone-Cech Compactification

Let X be completely regular. There exists an unique compactification (called the Stone-
Cech compactification 8(X)) Y of X such that every bounded continuous map f:X —» R
extends uniquely to a continuous map of Y into R.

Pf.

1. Let {f,}4e; be the collection of all bounded continuous real-valued functions on X; let
I, = [inf £,(X), sup f,(X)]. Define h: X - [1ae; 1o by h(x) = (f,(x)) _ . By Tychonoff,
[1ae; I is compact. h is an imbedding by the Imbedding Theorem.

2. The compactification Y of X can be identified with h(X). Let H:Y — [1,¢; I, be its
imbedding into [y /4.

3. Any bounded continuous function f, can be extended to m, o H.

4. (Uniqueness of extension) Let A € X, let Z be Hausdorff, and let f: A - Z be
continuous. There is at most one extension of f to a continuous function 4 - Z. Pf.
Suppse there were two g, g’ with g(x) # g'(x). Take disjoint neighborhoods U, U’
containing g(x), g'(x) and by continuity take 0, so g(0,) < U, g'(0,) € U'. But some
point in A is in 0,, contradiction.

5. (Uniqueness of compactification)

a. Given any continuous map f: X — C into compact Hausdorff space C, f

a€j’




extends uniquely to a continuous map g: B(X) — C. (Pf. Since C is completely
regular it can be imbedded in [0,1]/.)

b. Suppose Y,,Y, are compactifications. Using (a) on i,: X — Y,, there is a
continuous map f,:Y; = Y,, and vice versa. The composition is the identity on
X; by uniqueness of extension it must be the identity.
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Paracompactness

Xis paracompact if every open cover of X has a locally finite open refinement that covers
X.
Every paracompact Hausdorff space is normal. (first show it's regular)
Every closed subspace of a paracompact space is paracompact.
Let X be regular. The following conditions are equivalent: Every open cover of X has a
refinement that is...

1. An countably locally finite open cover of X.

2. Alocally finite cover of X.

3. A locally finite closed cover of X.

4. A locally finite open cover of X.
(1)=(2): Write B = U,, B,, where B, is locally finite. Define S,(U) = U — Ujcnyrep, U’ (tO
make sets in different C,, disjoint—shrinking trick). Let C,, = {S,,(U)|U € B,,}; take C =
Un Cr.
(2)=(3): Let A be an open cover. Let B = {U open|U € A for some A € A}. By regularity, B
covers X. Refine B to locally finite C by (2); take D = {C|C € C}.
(3)=(4): Let A be open cover. Take locally finite refinement B that covers X. Introduce an
auxiliary locally finite closed cover C and use it to expand elements of B into open sets: By
local finiteness of B, the collection of all open sets that intersect finitely many elements of
B is an open cover. Use (3) to get a closed locally finite refinement € covering X. Let
C(B)={C|CecCandC < X —B}and E(B) = X — Uceep) C. To make {E(B)} a refinement,
for each B € B choose F(B) € A containing B. Let D = {E(B) n F(B)|B € B}.

Every metrizable space is paracompact. (Pf. Get a countably locally finite refinement cover
and use above.)
Every regular Lindel6f space is paracompact.




Metric Topologies and Continuous Functions

Metric Spaces

A set X with a real-valued function (a metric) d(p, q) on pairs of points in X is a metric
space if:
1. d(p,q) = 0 with equality iff p = q.
2. d(p,q) =d(q,p)
3. d(p,q) <d(p,r) +d(r,q) (Triangle inequality)
A metric space is a topology with base consisting of e-neighborhoods
N(p,e) = {p € X|d(p,q) < &}.

X is metrizable if there exists a metric d on X that induces the topology of X. X is
topologically complete if there exists a metric so that it is a complete metric space.

Let d, d’ be metrics on X inducing topologies 7,7"'. Then T is finer than T iff for each x € X
and each ¢ > 0, there exists § > 0 such that N, (x,8) S Ng(x, €).

3-2

Metrics for R/

The metric space R", with the Euclidean metric
1
n 2
d(x,y) = (Zm - yk|2>

i=1

d(x,y) = max|x, — yyl

or with the square metric
induce the product topology.

Let d(x,y) = min(]x — y|,1), and define the uniform metric p(x,y) = sup {d(x, V.)|a € J}
on R’. The uniform topology is finer than the product topology but coarser than the box
topology. (They are all different if J is infinite.)

If J is countable then the metric
d(x;,v;
D(x,y) = sup {(x%yl)}

induces the product topology on R®. When J is infinite, R/ is not metrizable when J is
uncountable or when the box topology is used.
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Continuous Functions in Metric Spaces

The topological and analytic definitions of continuity are equivalent: let X,Y be metric
spaces; continuity of f: X — Y is equivalent to the requirement that for any x € X and € > 0
there exists § > 0 such that dy(x,y) < & implies dy (f (x), f(y)) < «.

Sequence lemma: Let X be a topological space and A € X. If there is a sequence of points
of A converging to x then x € A; the converse holds if X has a countable basis at x (in
particular, it holds when X is metrizable).

Let f: X = Y. If f is continuous, then for every convergent sequence x,, = x in X the
sequence f(x,) converges to f(x). The converse holds holds if X has a countable basis at
X.




Uniform limit theorem: Let X be a topological space, Y be a metric space, and f,,: X - Y be a
sequence of continuous functions. If (f,,) converges uniformly to f, then f is continuous.

Urysohn Metrization Theorem

Urysohn Lemma: Let X be a normal space and A, B be disjoint closed subsets of X. For any
a < b there exists a continuous map f: X — [a, b] such that f(x) = a for every x € A and
f(x) = b for every x € B. (Any two closed sets can be separated by a continuous function.)
Pf. Order the rational numbers in [0,1]: {a,}»s0 = 1,0, ... By normality, given any set S and
open T such that § c T there exists an open set U suchthatS c U,U c T. Let U; = X — B,
A c U, and inductively define open sets U,, such that U, c U, when p < q. Set U, = ¢ for

p <0and U, = X for p > 1. Let f(x) = inf{p|x € U,}. This gives f:X - [0,1].

Imbedding Theorem: Let X be a space in which one-point sets are closed. Suppose that
{f2}ae; is an indexed family of continuous functions X — R such that for each point x, and
each neighborhood of x, there is an index a such that f,(x,) > 0 and f(X — U) = {0}. Then
the function F: X - R/ defined by

F() = (fa(0)

a€j
is an imbedding of X in R/.

Pf. Need to show the inverse of F is continuous; i.e. if U is open then F(U) is open. Let

2o € F(U). Choose N so that fy(x,) > 0, fy(X — U) = {0}. Let W = my*((0,)) n F(X); then
zo €W S F(U).

Urysohn Metrization Theorem: Every regular space X with a countable base (i.e. X is 2™
countable) is metrizable.

Pf. There exists a countable collection of continuous functions as in the Imbedding
Theorem: Take a countable base {B,}; for every pair (m,n) so that B, € B,,,, use Urysohn to
get continuous g, , with g, m(B,) = {1} and g, m(X — B,,) = {0}. Use the Imbedding
Theorem.
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Tietze Extension Theorem

Tietze Extension Theorem: Let X be normal and let A be a closed subspace of X. Any
continuous map f: A - Y where Y = [a, b] or R may be extended to a continuous map of all
XintoY.

Pf. First prove it for [-1,1]. Let I; = [—r,—%r] I = [—gr,ér],@ = Er 1]. By Urysohn

Lemma, there is a continuous function g: X — [—irér] with g(x) = —%r forx € f~1(1,) and
gx) = ér for x € f~1(13). (g is not too large but approximates f.) Apply this result for r = 1

n
and f to get g4, then inductively for r = (g) and f — g, — - — g, t0 get g1 (Approximate

the error in the previous approximation). Then Y>>, g, (x) is the desired function; it is equal
to f on A and continuous by the Weierstrass M-test.

For R, consider the homeomorphic space (—1,1). Define g as above; let D = g 1({-1}) U
g~ r({1}). By Urysohn, there is continuous ¢: X — [0,1] such that ¢(D) = {0} and ¢(4) = {1}.
The desired function is ¢(x)g(x). (it's equal to g on A, and doesn’t take the value 1.)




Nagata-Smirnov Metrization

A collection A of subsets of X is locally finite in X if every point of X has a neighborhood
intersecting only finitely many elements of A.
If A is locally finite, then {A|A € A} is locally finite, and Ugcs A = Ueq A.

B is countably locally finite if B can be written as the countable union of collections B,,,
each of which is locally finite.

Let A be a collection of subsets of X. A collection B refines A if for each element B € B,
there is an element A of A containing B. B is open/ closed if all sets in B are open/ closed.

Let X be a metric space. If A is an open cover of X, then there is an open cover B of X
refining A that is countably locally finite.
Pf. Well-order A. For U € X define S,,(U) = {x|N(x, 1/n) € U} (shrinking by 1/n). Define

T, = 8, - | Jv.
V<u
(Exclude other sets for local finiteness.) Let E,(U) = Uxer,w) N (x, i) (expand T, (U) by i;
we have E,(U), E,(V) disjoint when U # V; note E, (U) is open). Let B,, = {E,(U)|U € A}.
A subset A € X is a Gs-set if it is the intersection of a countable collection of open subsets
of X.

Let X be a regular space with countably locally finite base. Then X is normal, and every
closed set in X is a Gs-set in X.
Pf.

1. Let W be open. We show there is a countable collection of open sets U,, so W =
Uu, = UU,. Write B = U,, B,, as a union of locally finite collections. Let C,, = {B €
B,|B € W}. LetU, = Ugec, B-

Given closed C, write X — C = UU,, by (1). Then € = N,, X — U,,.
3. Xis normal: Let C, D be disjoint closed sets. By (1) write X — D = UU,, = UU,, and

X —C=UV, = Ul then U = Us_, (U, — UL, %) and V = U5y (V, — UL, 0,) are

disjoint open sets around C, D.

N

Let X be normal and A a closed Gs-set in X. Then there is a continuous function f:[0,1]
such that f(x) = 0 for x € A and f(x) > 0 for x & A.
Pf. Write A = UU,,.By Urysohn Lemma choose f,;: X — [0,1] so f(x) = 0 for x € A and

f(x) > 0for x € X — Uy. Take f(x) = ¥, 222,
Nagata-Smirnov Metrization Theorem: X is metrizable iff X is regular and has a countably
locally finite base B.
Pf.
1. Xis normal and every closed set in X is a Gs-set.
2. Write B = UB,,. Let ] be the set of pairs (n, B € B,,). For each pair choose continuous
fop:X = [0,1/n] so f, p(x) > 0 for x € B and f,, g(x) = 0 for x € B. Then {f, z}
separates points from closed sets in X.

3. Define F: X - [0,1]) by F(x) = (fn,B(x))
topology.

. F is an imbedding in the product
(n,B)EJ]




4. To show F is an imbedding in the uniform topology, we need to show F is continuous.
Note on [0,1]/, p((xs), (o)) = sup{lx, — y.|}. Take x, € X. By local finiteness,
choose a neighborhood U, of x, intersecting finitely many sets in B,,. Then only
finitely many of the f,, 5 are nonzero. By continuity, choose neighborhood V;, of x so

that the nonzero functions vary by less than €. Choose N so % <eletW=nL,V.
Then for x € W, |f5(x) — frus(xe)| < & (for n < N, this is from x € Vj,, for n > N, this
is from f,, p(x) < %).

5. (Converse) Let A, = {N(x,1/m)|x € X} . There is an open covering B,, of X refining
A that is countably locally finite. Let B = U,,, B,
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Smirnov Metrization

Smirnov Metrization Theorem: X is metrizable iff it is a locally metrizable paracompact
Hausdorff space.

Pf. Cover X by metrizable open sets; choose a locally finite open refinement C that covers
X. Take metrics d¢: C X C = R. Let A,,, = {N-(x,1/m)|x € C and C € C}. By
paracompactness let D,, be a locally finite open refinement covering X; then D = U,, D, isS
a countably locally finite base. By Nagata-Smirnov, X is metrizable.
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Topologies on Function Spaces, Arzela-Ascoli Theorem

Xis compactly generated if whenever A n C is open for every compact subspace C, we
have that A is open in X. If X is locally compact, or X is 1¥-countable, then X is compactly
generated.

If X is compactly generated then f: X — Y is continuous iff for each compact subspace C of
X, f|¢ is continuous.

On YX (the set of functions from X to Y), the topology of pointwise convergence is the
topology generated by the subbase S(x,U) = {f|f(x) € U} where U is an open setin Y.
e A sequence of functions converges to f in the topology of pointwise convergence iff
the sequence converges pointwise (i.e. f,(x) - f(x) for each x)).
For a metric space Y, the topology of compact (or uniform) convergence on Y¥ is the
topology generated by the base B.(f, €) = {g| sup{d (£ (x), g(x))|x € C} < &}.
e A sequence f,: X — Y converges to f in this topology iff for each compact subspace
C < X, the sequence f;, |, converges uniformly to f|.
e The space of continuous functions C(X,Y) is closed in the topology of compact
convergence. (Pf. uniform limit theorem.)
A generalization of the topology of compact convergence to arbitrary X, Y is the compact-
open topology on C(X,Y), generated by the subbase S(C,U) = {f|f(C) < U}.
e [f Y is a metric space, then the compact-open topology and the topology of compact
convergence coincide.
Let Y be a metric space. For the function space Y*, the inclusions of topologies is
(pointwise convergence)<(compact convergence)<(uniform)
If X is compact, the right two coincide; if X is discrete, the first two coincide.

Note the compact convergence topology does not depend on the metric of Y.
Let X be locally compact Hausdorff, and let C(X,Y) have the compact-open topology. Then
the evaluation map e: X X C(X,Y) — Y defined by e(x, f) = f(x) is continuous.




Let Y be a metric space, and let F € C(X,Y). F is equicontinuous at x, if given € > 0 there
is a neighborhood U of x, such that for all x € U and all f € F, d(f (x), f(xp)) < &. If F is
equicontinuous at every point of X, it is said to be equicontinuous.

Arzela-Ascoli Theorem: Let Y be a metric space. Give C(X,Y) the topology of compact
convergence and let F be a subset of C(X,Y).
1. If F is equicontinuous and the set F, = {f(a)|f € F} has compact closure for each
a € X, then F is contained in a compact subspace of C(X,Y).
2. The converse holds if X is locally compact Hausdorff.

1. G = F is a compact subspace of (Hausdorff) YX under the product (pointwise
convergence) topology. Indeed, G is closed and contained in [[,cx F,, compact by
Tychonoff.

G is equicontinuous. (e argument)

The product topology on Y* and the compact convergence topology on C(X,Y)
coincide on §G. Suffices to show product topology is finer than the compact
convergence topology. Given B;(g, €), cover C by finitely many open sets U; so that
d(g(x),g(xi)) < § foreach x € U;, g € G. Let B = {h € YX|Vi, d(h(xi),g(xi)) < 2} (a
base element for YX); then BN G € B;(g,¢) N G.

4. (part 2) Let H be a compact subspace of C(X,Y) containing F. It suffices to show
is equicontinuous and #, is compact for each a € X. H, is compact because it is the
image of a continuous map from A (via the evaluation map). The restriction map
r:C(X,Y) - C(4,Y) is continuous; thus R = {f|,: f € H} is compact. The compact
convergence and uniform topologies on C(4,Y) coincide.

a. A metric space is compact iff it is complete and totally bounded.
Let X be a space and (Y, d) be a metric space. If F € C(X,Y) is totally bounded under the
uniform metric corresponding to d then F is equicontinuous under d.
By (a), R is totally bounded in the uniform metric on C(4,Y); by (b), R is equicontinuous
relative to d.

w N

! Warning: This is different from the analysis definition.




Connectedness

Connectedness

A separation of X is a pair U,V of disjoint nonempty open subsets of X whose union is X. X
is connected if it satisfies any of the two equivalent conditions:

1. There is no separation of X.

2. The only subsets of X that are both empty and closed are ¢ and X.
If Y is a subspace of X, a separation of Y is a pair of disjoint nonempty sets A and B whose
union is Y, neither of which contains a limit point of the other. Y is connected if there is no
separation of Y (under this definition).

Basic results:

1. If C and D form a separation of X, and Y € X is connected, then Y lies entirely within
CorD.

2. The union of a collection of connected subspaces of X with a point in common is
connected.

3. If Ais connected and A € B € A then B is connected.

4. The image of a connected space under a continuous map is connected.

5. A finite Cartesian product of connected spaces is connected.

Define x~y if there is a connected subspace of X containing both x and y. The equivalence
classes are the connected components of X.

Equivalently, for x € E, the connected component of x is the union of all connected subsets
containing X.

The connected components form a partition of E, they are all closed sets, and every
connected subset of X is entirely within one of them.

A simply ordered set L having more than one element is a linear continuum if
1. L has the least upper bound property.
2. If x < ythereexistszsuchthat x < z < y.

If L is a linear continuum in the order topology, then L is connected, as are intervals and
rays in L. In particular, R and its intervals and rays are connected.

Intermediate Value Theorem: Let f: X — Y be a continuous map where X is connected and
Y has the order topology. If a,b € X and c is between f(a), f(b), then there exists a point
c € X with f(c) =r.
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Path connectedness

A path in X from x to y is a continuous map f: [a, b] = X such that f(a) = x, f(b) = y. X is
path connected if every pair of points in X can be joined by a path in X.
Any path connected space is connected, but not vice versa.

Ex. Topologist’s sine curve {(x sin (i)) |0 <x< 1} is connected but not path connected.

Defining x~ if there is a path from x to y, the equivalence classes are the path
components of X. Each nonempty path connected subspace is entirely within one path
component.




Local connectedness

Xis locally (path) connected at x if for every neighborhood U of x there is a (path)
connected neighborhood V of x contained in U. If X is locally (path) connected at every
point, it is simply said to be locally (path) connected.

X is locally (path) connected iff for every open set U of X, each (path) component of U is
open in X.

Each path component of X lies in a component of X. If X is locally path connected, then the
components and path components coincide.




Manifolds and Dimension

Baire Spaces

Xis a Baire space if any of the two following conditions hold:
1. Given any countable collection {4,,} of closed sets of X with empty interior, their
union U, 4, has empty interior.
2. Given any countable collection {U,} of dense open sets of X, their intersection N,, U,
is dense in X.
A subset of a space X is of the first category if it is contained in the union of a countable
collection of closed sets having empty interior, and of the second category otherwise. In a
Baire space, every nonempty open set is of the second category.

Baire Category Theorem: If X is a compact Hausdorff space or a complete metric space
(such as R) then X is a Baire space.

Pf. Given a countable collection {4,,} of closed sets and a nonempty open set U, € X we
find x € U, not in any of the A4,,. Inductively define U,,: choose a point of U,_; notin A4,,, then
choose U,, to be a neighborhood of this point so that U,, n 4,, = ¢, U,, € U,_;, and in the

metric case, diam(U,) < % If compactness is assumed, then N,, U, is nonempty. In the
metric case, get a Cauchy sequence.

Any open subspace of a Baire space is a Baire space.
Let Y be a metric space. Let f,: X = Y be a sequence of continuous functions converging
pointwise to f. If X is a Baire space the set of points at which f is continuous is dense in X.

5-2

Imbeddings of Manifolds

A m-manifold is a Hausdorff space with countable basis such that each point x € X has a
neighborhood homeomorphic with an open subset of R™. A 1-manifold is a curve and a 2-
manifold is a surface.

For ¢: X - R, the support of ¢ is defined as Supp(¢) = ¢~1(R — {0}). Let {U,, ..., U,} be a
finite open covering of the normal space X. An indexed family of continuous functions
¢;: X — [0,1] is said to be a partition of unity dominated by {U;} if

1. Supp(¢;) <€ U; for each i

2. Y, ¢i(x) =1 for each x
Pf. of existence. We can shrink {U;} to an open covering {V;} of X such that V; € U;, by
normality. (Define V; inductively.) Shrink {V;} to {W;} by the same method. By Urysohn’s
Lemma choose y;: X — [0,1] so that y;(W;) = {1} and y;(X — V;) = {0}. Scale to get

' P
$i(0) =

If X is a compact m-manifold, then X can be imbedded in R" for some N.
Pf. Cover X by finitely many open sets {U;}, where U; can be imbedded in R™ via g;. Let
¢4, ..., P be a partition of unity dominated by U;. Let
_ [¢i(x)gi(x) for x € U;
hi(X) = —
Oforx € X —A4;
Define F: X > (R)™® X (R™™) by F(x) = (¢1(x), ., pn(x), hy (), ..., hp(x)). F is injective (g;
is injective on U;; for each x some ¢;(x) is positive) so this works.




Dimension Theory

A collection of subsets of X has order n if some point of X lies in n elements of A and no
point of X lies in more than n elements of A.

X is finite dimensional if there is some integer m such that for every open cover A of X,
there is an open cover B of X refining A with order at most m + 1. The topological
dimension dim(X) of X is the smallest value of m for which this statement holds.

If Y is a closed subspace of X then dim(Y) < dim(X).
If X =Y UZ where Y, Z are closed, then dim(X) = max{dim(Y), dim(Z)}.
Pf.
1. If A is an open cover, there is an open cover refining A and has order at most
m + 1 = max{dim(Y),dim(Z)} + 1 at points of Y. Consider {ANY|A € A}; take a
open cover refinement B. For B € B, choose open Uz so Ug N'Y = B and choose
Ap € A SO B C Ap; take the cover C = {Ug N Ap}.
2. Let C' be arefinement of C with order at most m + 1 at points of Z. Define f:C' - C
sothat C € f(C) € B. Let D(B) = Ucee,r(c)=p C- Take D = {D(B)}.

Every compact subspace of RV has topological dimension N.
Pf. (thatit's < N)
1. Break RY into unit cubes. Let J = {(n,n + 1)|n € Z} and K = {{n}|n € Z}. A M-cube
is in the form A; X --- X Ay where exactly M of the sets are in J and the rest are in K.
Expand each cube into an open set so for given M, no two expanded M-cubes
intersect. This is a open cover of order at most m+1.
2. Given an open covering {4,,} of compact subspace X, shrink the cover above so unit

cubes become %—cubes, where § is a Lebesgue number of X (a number such that

every subset with diameter less than % inside X entirely inside some 4,,), and
intersect the sets in the two covers.

Points {v,, ..., v} in RN are affinely independent if ¥¥ , a;v; = 0,¥¥, a; = 0 imply each
a; = 0. A set A of points is in general position in RY if every subset containing at most N + 1
points is affinely independent.

Imbedding Theorem: Every compact metrizable space X of topological dimension m can be
imbedded in R?™*1, (Ex. Graphs can be imbedded in R3.)
Pf.
1. Use the square metric on R?™*1: |x — y| = max{|x; — y;|}. Use the sup metric on
C(X,RM): p(f, g) = sup{|f(x) — g(x)|; x € X}. Given continuous f:X — R?™*1 define
A(f) = sup{diam f~1({z})|z € f(X)} (how far f deviates from being injective). Define
U, = {f € C(X,RZ™D)|A(f) < €}
2. U, is open and dense. To show it’s open, given f € U, bound |f(x) — f(y)| on
A = {(x,y)|d(x,y) = b}. To show it's dense, given f € C(X,R?™*1), cover X with
finitely many open sets {U;} so that
a. diam(U;) < g in X
b. diam f(U;) < g in R?m+1
c. {U;} has order at most m + 1.
Take a partition of unity ¢; dominated by {U;}. For each i choose x; € U; and a point

z; € R?™*1 within g of the point f(x;) such that {z,, ..., z,} is in general position in




R2™*1 (possible by induction and fact that R?™*1 is Baire space). Define g(x) =

¢ ¢i(x)z;. We have p(f,g) < and g € Ug: If g(x) = g(y) then Xi_;[¢;(x) —
¢;(y)]z; = 0. Since {U;} has order at most m + 1, at most 2(m + 1) of the coefficients
are nonzero. Since z; are in general position in R?™+1 this forces all coefficients to be
0. Theny € U;.

By Baire, N, Uy, is dense in €(X, R*™*1) and nonempty. Any function in this
intersection gives an imbedding.

Cor. Every compact m-manifold has dimension equal to m so can be imbedded in R?™*1_ |f

X is compact metrizable, X can be imbedded in some R iff X has finite topological
dimension.




