Combinatorial Proofs:
Counting in Two Ways
ERHS Math Club

1. Three Ways to Find a Total (*) There are 30 kids in your math class. You want to find out how many pets the students own altogether. For convenience, we label the students from 1 to 30.

a. You give a survey to each student asking them how many pets they own, and find out that student #i owns f(i) pets, for 1≤i≤30. Write an expression, using sum notation, for the total number of pets N.
b. You decide to count the number of pets a different way: You first say “Raise your hand if you have 0 pets,” record the number of students that raise their hand, then ask “Raise your hand if you have 1 pet,” and so on, until all students are accounted for. Assuming all students have at most P pets, and that g(i) students have i pets, for 1≤i≤30, express N in terms of the g(i).
c. This time you say “Raise your hand if you have at least i pets” (0≤i≤P), and h(i) students raise their hands. Express N in terms of the h(i).
2. Determining Average Class Size (*) A math professor and a statistics professor are trying to find the average class size at a university. Let c be the total number of classes and s be the total number of students. For simplicity, assume each student has only one class.
The math professor asks each professor for the size of each of his or her classes, adds up all the numbers, and divides by n. The statistics professor asks each student how many students are in his/her class, adds up the numbers, and divides by s.
a. Do they get the same answer? If not, in general whose result will be larger? (You don’t have to prove this.)

b. Which method is more accurate?

3. Good Arrays and Bad Arrays (**)
a. Write any matrix in the space below.
A=[     ]


b. Find the total of each row, and add these numbers together.

c. Find the total of each column, and add these numbers together.

d. How do your totals in b and c compare? Explain.

e. Let aij be the element in the ith row and jth column. Suppose A has m rows and n columns. Write the totals in b and c using double sums.

f. Let m and n be positive integers, and let A={a1,a2,…am} and B={b​1, b2,…bn} be two finite sets. Then the direct product of A and B is defined as [image: image1.png]Ax B=1{(a.b)la € A.b € B}




Let S be a subset of AxB. For [image: image2.png]


, define [image: image3.png]


. We define [image: image4.png]


 analogously. Show that [image: image5.png]L
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 (Hint: they are both counting the same thing. What is it?) Compare this to (d).
g. Come up with a real-world example to illustrate this concept.

h. 49 integers are written in a 7x7 table. We add the numbers in each row and each column. Among these 14 sums a are even and b are odd. Determine, with proof, if it is possible that a=b.

i. Let n be a positive integer. An nxn array of numbers is good if all of the entries in the array are equal to +1 or -1, and the sum of the products of the entries in each row and column is equal to 0. Determine whether there exists a good array for n=4 and n=5.
4. Counting more complicated ordered pairs (***)
a. n students are in a class. Each week the teacher chooses exactly 3 students, who have to do a project together. No pair of students may work together more than once (that is, no 2 groups of 3 may have a pair of students in common). Prove that this process can continue for at most [image: image6.png]n(n —1)



 weeks. (Hint: Count the number of pairs of students who have worked together in a group of 3 in two ways. One way, you should get equality, another way, you should get an inequality.)
b. Is this maximum attainable for n=10? (hint: divisibility/parity considerations)

c. A1, A2,…Ak are k distinct subsets of {1,2,…,n}, each with exactly m members, such that [image: image7.png]A;NA; <1



 whenever i≠j. Prove that [image: image8.png]A

Sl



. (Can you see why this is a generalization of (a)?)
d. Show that if m is prime and n=m2 then the maximum in (c) is attainable. (hint: addition modulo m)
5. Sending and receiving letters (**)
a. Several friends sent letters to each other. What can you say about the number of letters that are sent compared to the number of letters received?

b. What type of number do you get if you add up the two numbers in (a)?
c. 7 students write postcards to each other. Is it possible that every student sends one and receives two, or sends two and receives one?

d. A graph (V, E) is a set of vertices V and edges E. Each edge connects exactly 2 distinct vertices. The degree d(P) of a vertex P is the number of edges incident to that vertex. Find the sum of the degrees of the vertices, [image: image9.png]


, in terms of the number of edges |E|.
e. A graph drawn on a plane divides it into disjoint regions called faces. Find the average number of edges in a face of the graph, given that there are |E| edges and F faces.

f. [UM 2003/4] Gigafirm is a large corporation with many employees. 
(a) Show that the number of employees with an odd number of acquaintances is even. (b) Suppose that each employee with an even number of acquaintances sends a letter to each of these acquaintances. Each employee with an odd number of acquaintances sends a letter to each non-acquaintance. So far, Leslie has received 99 letters. Prove that Leslie will receive at least one more letter. 
(Notes: “acquaintance” and “non-acquaintance” refer to employees of Gigafirm. If A is acquainted with B, then B is acquainted with A. However, no one is acquainted with himself.) 

6. Sum it all up (***)
a. [Vandermonde’s Convolution] Prove that[image: image10.png]


. (Hint: rewrite the left-hand sum as [image: image11.png]1) ("



. Show both sides are equal to the number of ways to choose n people from n boys and n girls.)
b. Suppose the set A has n elements. Show that [image: image12.png]2. |BNC|=n4"""
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, where the sum is taken over all ordered pairs of subsets of A. (Hint: see 3f)

c. Two squares on an 8x8 chessboard are called touching if they have at least one common vertex. Determine if it is possible for a king to begin in some square and visit all the squares exactly once in such a way that all moves except the first are made into squares touching an even number of vertices. (Hint: look at the parity of a sum)
7. The Probabilistic Method (***)
a. b boys and g girls line up randomly in a straight line. Find the expected number of places in the row where a boy and girl are standing next to each other.
i. What is the probability that a given pair of adjacent positions is occupied by people of opposite genders?

ii. How many pairs of adjacent positions are there?
iii. Multiply your answers in (i) and (ii) to get the average value. (Why does this work?)
b. A complete graph is one where every 2 vertices are connected by an edge. Let R(k,k) be the least integer n with this property: no matter how we color with 2 colors the edges of a complete graph with n vertices (Kn), there exists a monochromatic complete graph with k vertices (Kk). Prove R(k,k) ≥2k/2.
i. Suppose we color the edges of the graph randomly. Given k vertices, what is the probability (in terms of k) that all edges between them are the same color?

ii. How many ways are there to select k vertices from n?

iii. What is the expected number of monochromatic Kk?

iv. If n ≤2k/2, what can you say about the expected value? (Do some algebra here) What can you conclude?
c. Prove that it is possible to color the integers from 1 to 2008 in 2 colors such that there is no monochromatic arithmetic sequence with 18 terms.
8. Partitions and Bijections (***)- For positive integers m and n, an ordered m-tuple of nondecreasing positive integers (a1,…am) is called an m-partition of n if their sum is n. The numbers ai are called the parts of the partition, am is called the height of the partition, and m is called the length of the partition. The partition is an increasing partition if a1<a2…<am. A Young’s diagram represents a partition: the number of the circles in the columns are the parts. Ex. 4=1+1+2 is . . :
a. Draw the Young’s diagrams for the partitions of 5.
b. Let p(n) denote the number of partitions of n, let p(n,m) be the number of partitions of n with length m, and let h(n,m) be the number of partitions of n with height m. Prove that p(n,m)=h(n,m). (Hint: Draw Young’s diagrams. How can you associate a partition with length m with a partition of height m, and vice versa?)

c. [USAMO 1986/5] For a partition p, let f(p) = the number of 1s in p, and g(p) = the number of distinct integers in the partition. Show that ∑ f(p) = ∑ g(p), where the sum is taken over all partitions of n. (Hint: Let P(k) be the number of partitions of k. Show that both sums are equal to P(0)+P(1)+…P(n-1))
9. (A nice problem that doesn’t fit anywhere else) In an nxn array, each of the numbers 1,2,…n appear exactly n times. Show that there is a row or a column in the array with at least √n distinct numbers.
Olympiad Problems
All problems are from actual contests!

Easy: Level 1/4

1. [USAMO 2001/1] Each of eight boxes contains six balls. Each ball has been colored with one of [image: image13.png]


colors, such that no two balls in the same box are the same color, and no two colors occur together in more than one box. Determine, with justification, the smallest integer [image: image14.png]


for which this is possible.

2. [IMO 2001/4] 
Let be an odd integer greater than 1 and let [image: image16.png]Cl1.C2....



be integers. For each permutation [image: image17.png]a=(ai,az,...,an)



of [image: image18.png]


, define [image: image19.png]S(a) =



. Prove that there exist permutations [image: image20.png]


of [image: image21.png]


such that [image: image22.png]


is a divisor of [image: image23.png]S(a) — S(b)



.
3. [UM 2004/5] There are 6 members on the Math Competition Committee. The problems are kept in a safe. There are ℓ locks on the safe and there are k keys, several for each lock. The safe does not open unless all of the locks are unlocked, and each key works on exactly one lock. The keys should be distributed to the 6 members of the committee so that each group of 4 members has enough keys to open all of the ℓ locks. However, no group of 3 members should be able to open all of the ℓ locks.
(a) Show that this is possible with ℓ = 20 locks and k = 60 keys. That is, it is possible to use 20 locks and to choose and distribute 60 keys in such a way that every group of 4 can open the safe, but no group of 3 can open the safe.
(b) Show that we always must have ℓ ≥ 20 and k≥60.
4. [China 1996] Eight singers participate in an art festival where m songs are performed. Each song is performed by 4 singers, and each pair of singers performs together in the same number of songs. Find the smallest m for which this is possible.

5. [HMMT 2006] Somewhere in the universe, n students are taking a 10-question math competition. Their collective performance is called laughable if, for some pair of questions, there exist 57 students such that either all of them answered both questions correctly or none of them answered both questions correctly. Compute the smallest n such that the performance is necessarily laughable.
6. [APMO 2006/5] In a circus, there are [image: image24.png]


clowns who dress and paint themselves up using a selection of 12 distinct colours. Each clown is required to use at least five different colours. One day, the ringmaster of the circus orders that no two clowns have exactly the same set of colours and no more than 20 clowns may use any one particular colour. Find the largest number [image: image25.png]


of clowns so as to make the ringmaster's order possible.
7. [China 1993] Ten students ordered books. Each student ordered 3 different books. Each pair of students had ordered at least one same book. The book Mathematical Olympiads was the one which most (a tie being allowed) students ordered. What was the minimum number of students who ordered Mathematical Olympiads?
Medium: Level 2/5

1. [IMO 1998/2] In a contest, there are [image: image26.png]


candidates and [image: image27.png]


judges, where [image: image28.png]


is an odd integer. Each candidate is evaluated by each judge as either pass or fail. Suppose that each pair of judges agrees on at most [image: image29.png]


candidates. Prove that [image: image30.png]



2.  [BAMO 2000/5] Alice plays the following game of solitaire on a 20 x 20 chessboard. She begins by placing 100 pennies, 100 nickels, 100 dimes, and 100 quarters on the board so that each of the 400 squares contains exactly one coin. She then chooses 59 of these coins and removes them from the board. After that, she removes coins, one at a time, subject to the following rules:
• A penny may be removed only if there are four squares of the board adjacent to its square (up, down, left, and right) that are vacant (do not contain coins). Squares “off the board” do not count towards this four: for example, a non-corner square bordering the edge of the board has three adjacent squares, so a penny in such a square cannot be removed under this rule, even if all three adjacent squares are vacant.

• A nickel may be removed only if there are at least three vacant squares adjacent to its

square. (And again, “off the board” squares do not count.)

• A dime may be removed only if there are at least two vacant squares adjacent to its square (“off the board” squares do not count).

• A quarter may be removed only if there is at least one vacant square adjacent to its square (“off the board” squares do not count).

Alice wins if she eventually succeeds in removing all the coins. Prove that it is impossible for her to win.
3. [USAMO 198?/4] Prove that in a party attended by n people, there are 2 people for which at least [n/2]-1 of the remaining n-2 people attending the party know both or neither of the two. (If person A knows person B, then person B knows person A)

4. [Russia 1999] In a class, each boy is friends with at least one girl. Show that there exists a group of the students, such that each boy in the group is friends with an odd number of girls in the group.
5. [MOSP 2007] Sets A1,…A35 are given with the property that |Ai| = 27 for each 1≤i≤35, such that the intersection of any three has exactly 1 element. Show there is an element belonging to all the given sets.

6. [ISL 1999/C4] Let [image: image31.png]


be a set of [image: image32.png]


residues [image: image33.png](mod N*)



. Prove that there exists a set [image: image34.png]


of  [image: image35.png]


residues [image: image36.png](mod N*)



such that [image: image37.png]


contains at least half of all the residues [image: image38.png](mod N*)



.
7. [China 1995] A mathematics exam consists of 15 true-or-false problems. There are 21 students who took the exam. It is known that for every pair of students solved at least one common problem correctly. For i=1,2,…15 let Pi denote the number of contestants who solved the ith problem correctly. We define P=max{Pi, i=1,2,…15}. Determine, with justification, the minimum value of P.
Hard: Level 3/6

1. [IMO 2005/6] In a mathematical competition, in which [image: image39.png]


problems were posed to the participants, every two of these problems were solved by more than [image: image40.png]


of the contestants. Moreover, no contestant solved all the [image: image41.png]


problems. Show that there are at least [image: image42.png]


contestants who solved exactly [image: image43.png]


problems each.

2. [USAMO 2002/6] 
I have an sheet of stamps, from which I've been asked to tear out blocks of three adjacent stamps in a single row or column. (I can only tear along the perforations separating adjacent stamps, and each block must come out of the sheet in one piece.) Let [image: image45.png]b(n)



be the smallest number of blocks I can tear out and make it impossible to tear out any more blocks. Prove that there are real constants [image: image46.png]


and [image: image47.png]


such that [image: image48.png]n? —en <b(n) < %n2+dn



for all [image: image49.png]


.
3. [IMO 1989/3] Let [image: image50.png]


and [image: image51.png]


be positive integers and let [image: image52.png]


be a set of [image: image53.png]


points in the plane such that 
i.) no three points of [image: image54.png]


are collinear, and 
ii.) for every point [image: image55.png]


of [image: image56.png]


there are at least [image: image57.png]


points of [image: image58.png]


equidistant from [image: image59.png]



Prove that: [image: image60.png]1
k< +vV2n




4. [TST 2001/3] For a set [image: image61.png]


, let [image: image62.png]


denote the number of elements in [image: image63.png]


. Let [image: image64.png]


be 
a set of positive integers with [image: image65.png]


. Prove that there exists a 
set [image: image66.png]


such that 
(i) [image: image67.png]


; 
(ii) [image: image68.png]


; 
(iii) for any [image: image69.png]u.ve s



(not necessarily distinct), [image: image70.png]



5. [IMO 2001/3] Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that each contestant solved at most six problems, and for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy. Show that there is a problem that was solved by at least three girls and at least three boys.
6. [ISL 2000/C5] A number of [image: image71.png]


rectangles are drawn in the plane. Each rectangle has parallel sides and the sides of distinct rectangles lie on distinct lines. The rectangles divide the plane into a number of regions. For each region [image: image72.png]


let [image: image73.png]


be the number of vertices. Take the sum [image: image74.png]


over the regions which have one or more vertices of the rectangles in their boundary. Show that this sum is less than [image: image75.png]


.
7. [USAMO 1995/5] Suppose that in a certain society, each pair of persons can be classified as either amicable or hostile. We shall say that each member of an amicable pair is a friend of the other, and each member of a hostile pair is a foe of the other. Suppose that the society has [image: image76.png]


persons and [image: image77.png]


amicable pairs, and that for every set of three persons, at least one pair is hostile. Prove that there is at least one member of the society whose foes include [image: image78.png]g(1 — 4q/n*)



or fewer amicable pairs.
Further study

Other Combinatorics Topics and Strategies
Box Principle

Principle of Inclusion and Exclusion

Bijections

Catalan numbers

Combinatorial Identities (working with binomial coefficients)

Generating functions

Recurrence relations (solving linear recurrences)

Sperner’s Theorem

Permutations (derangements, etc.)

Reinterpretation (reinterpret sum, reinterpret in terms of graph theory)

Coloring
Graph Theory:


Euler and Hamiltonian walks/cycles


Bipartite/n-partite graphs


Hall’s Theorem (Marriage lemma)


Coloring (Ramsey Theory)


Zaranckiewicz’s Lemma and Turan’s Theorem


Planar Graphs, Euler’s Formula (for fun, Art Gallery Problem

Dilworth’s Theorem

Additive sets: Cauchy-Davenport Theorem, Erdos-Ginsburg-Ziv Theorem
Combinatorial geometry: Minkowski’s Theorem, Helly’s Theorem

Using linear algebra (esp. determinants and rank) to solve combinatorial problems

Recommended Books:

102 Combinatorial Problems from the Training of the USA IMO Team by Titu Andreescu and Zuming Feng
Problems from The Book by Titu Andreescu and Gabriel Dospinescu
