AMSP 2010 Algebra 3.5: Day 10 Problems

Inequalities

Rearrangement and Chebyshev Inequalities

Theorem 1 (Rearrangement). Let x1, 2z, ..., 2, and yi, ¥, ..., Yy, be real numbers (not
necessarily positive) with

1 <X <o Sy, and yp <y < c- <y,
and let o be a permutation of {1,2,...,n}. Then the following inequality holds:

T1Yn + ToYn—1 + -+ TnY1 S T1Yo1 + T2Yo2 + -+ TnYon < 11 + T2Y2 +- 4+ TnYn-

Proof. We prove the inequality on the right by induction on n. The statement is obvious
for n = 1. Suppose it true for n — 1. Let m be an integer such that om = n. Since
Tp = Ty a0 Y > Yon,

(l’n - xm)(?/on - yn> Z 0 =
TmYn + TnYon = TmYon + Tnln.

Hence
T1Yor +  + ToYom 4+ + TnYon < T1Yo1 + -+ + TomYon + * +  + TnYn.
By the induction hypothesis,
1Yol T+ Tlon +  F Tn-1Yon-1) S T11+ -+ Tp¥Ym + -+ Tn1Yn—1.

Combining these two we get the desired inequality.
To prove the LHS, apply the above with —y; instead of v;. O

Theorem 2 (Chebyshev). Let a3 < as <--- < a, and by < by < --- < b, be two similarly
sorted sequences. Then

albn—l—agbn,l%—---—i—anbl < a1+a2+---+an'bl—i—bg—i—-“—i—bn < albl+---+anbn

n n n n

Proof. Add up the following inequalities (which hold by the Rearrangement Inequality):

Cllbl +a2b2+"'+anbn § a1b1+agbg+"'+anbn
arby + aghs + - - - + a,by < ayby + asby + -+ - + a,b,

albn + agbl + -+ anbn_l § (Ilb1 + CLQbQ + -+ anbn

This gives the right-hand inequality.
By replacing y; with —y; and using the above result we get the left-hand inequality. [

Problems

1. Powers: For a,b,c > 0 prove that
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(a) a®’ct > a’bec?.
(b) a®’ct > (abe) e

2. Prove the following for x,y, 2z > 0:

|

(@) Z+L+5>24842
() B+ 5 425> 40z

<

3. (IMO 1978/2) Let a4, ..., a, be pairwise distinct positive integers. Show that

an>1
——|——+ +_2_I+

1
ERT ety

N | —

4. (modified ISL 2006/A4) Prove that for all positive a, b, c,

ab bc ac 3(ab + bc + ca)
+ + <
a+b b+c a+c 2(a+b+c)

5. (MOSP 2007) Let k be a positive integer, and let xy,zs,...,x, be positive real
numbers. Prove that

(35w) () = (555) ()

6. Prove that for any positive real numbers a, b, ¢ the following inequality holds:

a?+be b +ac A +ab
+ +

>a+b+c
b+c c+a a+b

Convexity, Jensen’s and Karamata’s Inequalities

Definition 1. A function f : I — R (where I C R is an interval) is said to be convex if
for any t € [0,1] and x,y € I, the following inequality holds:

fltz 4+ (1 —t)y) <tf(z)+ (1 —1)f(y).

We say that f(x) is strictly convez if equality holds only when ¢t = 0,1 or = y. If the
inequalities are reversed, we say that f(x) is concave or strictly concave.

You may think of convexity as meaning that the line segment joining two points of
the graph of f is always greater than the graph itself. Note that if you know something
is convex, you do not know that it is necessarily increasing or decreasing! However, the
absolute maximum of a convex function (if it exists) never occurs on the interior of the
interval of definition.

We have a number of examples of convex functions:

o f(x)=2a"forr>1and x> 0.

o f(z)=—logu.
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o f(x)=1/z for x > 0.
o f(x)=1/(z>+1) for x > 1/V2.

We have other characterizations of convex functions:

Theorem 3. A function f(z) is convex if and only if for any 27 < y; < x9 < yo (where
[1, 2] is in the domain of f) we have

f(x2) — f(1) < fy2) — f(y1)7

To — 1 Y2 — U1

and strictly convex if and only if this inequality is always strict. A function f(x) which
is differentiable everywhere is convex if and only if f’(x) is an nondecreasing function
of x, and strictly convex if and only if f’(x) is increasing. A function f(z) which is
twice differentiable everywhere is convex if and only if f”(x) > 0, and strictly convex if
f"(x) > 0 (though not conversely in general).

It is easy to find the maximum of a convex function:

Theorem 4. If f is convex, then the maximum value of f(z) on the interval [a,b] is
attained when = = a or when x = b. If f is concave, then the minimum value of f(x) on
the interval [a, ] is attained when x = a or when = = b.

Jensen’s inequality essentially extends the elementary notion of convexity to any num-
ber of variables:

Theorem 5. Let f(x) be convex on an interval I, let x1, zo,...,x, € I, and let Ay, Ao, ..., A\,
be nonnegative real numbers (weights) with Ay + Xy + -+ + A\, = 1. Then
>\1f(131> + /\Qf(l’g) + -+ Anf(xn) Z f()\ll’l + )\2.I2 +--- 4+ /\n.In)

If f(x) is strictly convex, then equality holds if and only if \; = 1 for an ¢ or all the z;
are equal.

Proof. Induct on n. O

Karamata’s inequality is a generalization of Jensen’s.

Definition 2. The sequence x1 > x9 > --- > x, majorizes the sequence y; > yo > -+ + >
Yn, denoted

('rl"rQ;"‘?xn) - <y17y27”'7yn)
if
T1 > U
1+ T2 > Y1+ Yo
>

T+ T+t T 2 Y2t Y
Ty + Tyt Tt T =y1tY2+ o+ Y1+ Un
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Theorem 6 (Karamata Majorization). Let f : I — R be convex on I and suppose that
(x1,...,xn) > (Y1, -, Yn), where x;,y; € I. Then

flan) + -+ flan) 2 fyn) + -+ fun).

The reverse inequality holds if f is concave.

Proof. Let
k k
i=1 i=1

Then

The last expression is positive since convexity implies ¢; > ¢; 41 and the majorization
condition implies S; > T;. O

Jensen’s and Karamata’s inequalities are related to the idea of smoothing, which allows
you to make moves like Jensen without necessarily the assumption of convexity. More
precisely, given a desired inequality f(x1,s,...,2,) > 0 say, if ; and z; may both
be replaced by values x; and 2’ (often the same) such that f takes on a lesser value
than before, the problem may be reduced to that case (which may for example allow an
induction).

Problems

1. Trig: Let A, B, C be the angles of a triangle. Prove that
(a) sin A+sin B +sinC < %g
(b

)

) cos A+ cosB+cosC < 3.
(c) cot A4 cot B + cot C > /3.
)
)

(d) tan A 4 tan B + tan C' > /3.
(e) sin Asin BsinC < %3.

2. Let 0 < a,b,c < 1. Prove that

a b . c S 3vabc
l—a 1-b 1—c¢~1—abe
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3. Let n > 2 and x4y, x9,...,x, positive numbers whose sum is 1. Prove that

X1 i To 1 i Tn > n
VIi—z1 V1—1, Vi—z, \Vn—-1
4. (USAMO 1977/5) If a, b, ¢, d, e are positive reals bounded by p and ¢ with 0 < p < g,
prove that

1 1 1 1 1 D 7\°
(atbtctdte)(—+7+-+5+-]<254+6( /= — /=
a b ¢ d e q P

and determine when equality holds.

5. Let f(x) be a convex function defined on an interval I, and let xq, 9, 23 € I. Prove
that

1) + flxa) + flzs) +3F (W)

() (52) (5]

Conclude that for a,b,c > 0,

1 1 1 3 2 2 2
-+ -4+ -+ > + + )
a b ¢ a+b+c a+b b+c a-+c

6. (Poland) Given ay,...,a, € [0, 1], prove that
ai+-4ad<la+-tan]+{ag++an}

7. (based off Vietnam 1998) Let x1,xs, ..., x,, n > 2 be positive real numbers with

1 1 1 1
+ _|_ e _|_ —
r1 + 2010 x5+ 2010 Ty +2010 2010

Prove that
—W > 2010.

n—
8. (USAMO 1998/3) Let ag,ay,...,a, € (0,7/2) be numbers such that
tan(ag — w/4) + tan(a; — w/4) + - - - + tan(a,, — 7/4) > n — 1.
Prove that tanagtanay - - - tana,, > n"*.
9. (Romania 1999) Show that for all positive reals x1, ..., z, with zy25-- 2, = 1, we

have
1 1

_ e — < 1.
n—14x; n—1+x,

Cauchy-Schwarz, Holder’s, and More

5
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Theorem 7 (Weighted Power Mean). Let a4, ...,a, and wy,...,w, be positive numbers.
Define the weighted power mean to be

. . -\ 1/
(w1a1+w2(12+"'+"""a") if r € R\{0}

w1ttwn
e w1 W2 ; _
Bai,az,...,an;7) = TR/ arag” - agn ifr=20
max(ay, ag, . .., ay) if r=+4o00
min(ay, as, ..., a,) if r = —o0.
Let aq,as, ..., a, be positive real numbers and r, s € R U {+oo} with r > s. Then

Bai,az,...,an;1r) > Play,as, ..., a,;s)

with equality if and only if a; = ay = -+ - a,.
In particular, QM-AM-GM-HM says

- > > Yajas - apn >

\/a%+a§+~--+a2 ai+as+ - +a, n
z z TrEroE

Theorem 8 (Cauchy-Schwarz). Let (ay,aq,...,a,) and (by,bs,...,b,) be two n-tuples of
real numbers. Then

(a1by + agby + - + apby)? < (af + a3 + -+ a2) (b} + b3 + - +b2)

with equality if and only if the two n-tuples are proportional, i.e. either every a; = 0 or
there is a real number \ with b; = A\a; for each 1.

Theorem 9 (Titu’s Lemma). Let aq,as, ..., a, be real numbers and by, by, . .., b, positive
real numbers. Then

a?  a? a? ai +as + - +a,)?
_1_|__2_|_..._|__"2(1 2 )
by by bn = bitbad---+by

Holder’s inequality is a generalization of Cauchy-Schwarz; it allows an arbitrary num-
ber of sequences of variables, as well as different weights. First we need the following:

Theorem 10 (Young). For a,b > 0 and p, ¢ > 0 such that % + % =1,

al  b?
ab < — + —.
p q

This is a special case of the weighted AM-GM inequality.

Theorem 11 (Holder). Let a1, ..., an;b1,...,by;...; 21, ..., 2, be sequences of nonnegative
real numbers, and let A\, ..., A, be positive reals summing to 1. Then

<a1+...+an))‘a<b1_|_...+bn))‘b...<zl+...+zn>/\z Zai‘abi\b...zi‘z_i_azab?)f;b...zz‘z.

Proof. First we prove that

3=
Q=

(@ +---+a)r (b +---+al)s > arby + -+ + apby, (1)

6
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when p,q > 0 and 713 + %, which is equivalent to the theorem statement for 2 variables.

Let A= (a] +---+ aﬁ)% (also denoted ||al|,) and B = (b +--- + bg)i. Let a; = %
and b} = %. Now that we've “normalized” (ai,...,a,) and (by,...,b,) so that (af+---+
a;’f)% =1land (b +-- -+ b;f)% =1, we can apply Minkowski’s inequality.

1 1 11
A+ -+ dlb, < —( ’{’+---+ag’)i+E(b’1q+---+b;3) =+

Q=

i)

Multiplying by AB gives (1).
The general inequality follows by induction on the number of sequences. For example,
passing from 2 to 3 sequences, apply Holder to with weights s Ao then with

. >\a+>\b ’ >\a+>\b ’
weights A\, + Ay, Ac. O

Theorem 12 (Minkowski). Let p > 1 and let ay,...,a,,b1,...,bpn,...,21,..., 2, be posi-
tive numbers. Then

(Jar? + -+ |anP)7 + (b1 + - + [Bal?)? + - + (|17 + - - + |2a]?)
> [(Jar 4+ 21|)P + (Jag + -+ 2[)P + -+ (Jan + - - - + 2,])7]

Bl= Y=

Proof. We first prove Minkowski for 2 sequences. We have

n

D lan+ 0P = (] + by + bl
k=1

k=1

= allar + bl + > [bellar + b7
k=1 k=1

1 1 p—1
: (Z ‘ak|p> ’ (Z |bk’p> <Z jar. + bk\“’_l)(pfl)>
k=1 k=1 k=1
(Socsnr) < (S + (L)
k=1 k=1 k=1
The general case follows by induction. O]

As a corollary, ||z||, = ¢/|x1]P + - - - + |2, P is a valid norm in n-dimensional space for
p=>1

Theorem 13 (Schur). Let a,b,¢ > 0 and r > 0. Then
a(a=b)(a—c)+b"(b—c)(b—a)+"(c—a)(c—b) >0
with equality iff @ = b = ¢ or some two are equal and the other is 0.
Proof. Suppose WLOG a > b > c. Rewrite the inequality as
(a=b)(a"(a—c)=b"(b—c))+"(a—c)(b—rc).

Both terms are positive. O
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Theorem 14 (Muirhead). Suppose (aq, . ..,a,) = (b1,...,b,). Then for any positive reals
T1y.--, Ty

thlllxgz R Zx?xgz .. :L.Zn

sym sym
where the sum is taken over all permutations of n variables.

Problems
1. (Nesbitt) Let a,b,c > 0. Prove that

a n b n c >3
b+c¢c c+a a+b 2

2. Prove Aczel’s Inequality: If a? > a3 + - -+ + a2 then

(arby — agby — -+ — apb,)* > (a3 — a3 — -+~ —a2)(b? — b3 — -+ — b2).

Hint: Consider the determinant of the quadratic

(@12 — b1)* — (agx — by)? — - -+ — (ax, — b,)>.
3. Prove that for all reals a, b, c,
(a®b + b*c + c2a)(ab® + bc® + ca®) < (a® + b* + ) (a®b* + b* + a?).
4. The numbers —1 < @y, 29, ..., 2z, < 1 satisfy 23 + 23 + --- + 23 = 0. Prove that
n
r1+za+--+a, < 3
5. Let x,y, 2 be nonnegative real numbers. Prove that
@+ DA+ D +1) > (2 +y+ 2 —ay2)’

6. Let a, b, c be positive reals such that a + b+ ¢ = 1. Prove that

Vab+ ¢+ Vbe+a+ Vea+b > 1+ Vab+ Ve + ea.

7. (TST 2000/1) Let {a,}n>0 be a sequence of real numbers such that a,1 > a2 +
for all n > 0. Prove that \/a, 5 > ai_5 for all n > 5.

8. (IMO 2004/4) Let n > 3 be an integer. Let t1,...,t, be positive real numbers such
that

) 11 1
n+1>t+to+-Fty) | —+—++— .
ti o to tn

Prove that for all ¢, j, k, the numbers ¢;,t;,t; are sides of a triangle.

8
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9.

10.

11.

12.

13.

14.

15.

16.

17.

(USAMO 2009/4) For n > 2 let ay, as, ..., a, be positive real numbers such that
11 1 1\?
(an+a+-+a,) | —+—++— )< (n+5] .
a; A an, 2
Prove that max(aq, as, . ..,a,) < 4min(ay, as, ..., a,).
(TST 2010/2) Let a, b, ¢ be positive reals such that abc = 1. Show that

1 1 |
ST 207 Blet2a)? | Blat2b)?

1
> —.
— 3

(Crux Mathematicorum) a, b, ¢, d, e are positive reals multiplying to 1. Prove that

a + abe b+ bed ¢+ cde d + dea e+ eab S 10
1+ab+abed 1+bec+bede 1+ cd+cdea 14 de+deab 14 ea+ eabec — 3

(IMO 2000/2) Positive reals a, b, ¢ have product 1. Prove that

o) o) D) e

(IMO 2003/5) Let n be a positive integer and let z; < --- < z,, be real numbers.

Prove that )
2(n*—1)
( > - l’j|> S—3 > (=)’
1<i,5<n 1<i,5<n
Show that equality holds if and only if x4,...,z, is an arithmetic sequence.

(IMO 2008/2) Prove that if z,y, z are three real numbers, all different from 1, such
that xyz = 1, then
2 2 2
* Y : > 1.

CEV RN UES IR CESE
et a, b, c be positive reals. Prove that
USAMO 2004/5) L b,cb it Is. P h

(@®—a®>+3)(B° = b +3) (" = +3) > (a+b+c)

(USAMO 1997/5) Prove that for all positive reals a, b, c,

1 1 1 1
+ + <
a4+ +abe B+ +abe A+ ad+ abe

abe’
(MOSP 2007) Let a, b, and ¢ be a nonnegative real numbers with

P SR B
az2+1 B2+1 e2+1

Prove that
ab + be + ba <

DN o
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18. (USAMO 2003/5) Let a, b, ¢ be positive real numbers. Prove that

(2a+b+c)?  (2b+c+a)> (2c+a+b)?
202+ (b+ )2 202+ (c+a)? 202+ (c+a)? —

19. (ISL 2004/A5) Let a,b,c > 0 and ab + bc + ca = 1. Prove the inequality

1 1 1 1
i/—+6b+§/—+60+§/—+6a§—.
a b c abe

20. (ISL 2006/A5) Let a,b, ¢ be the sides of a triangle. Prove that

Vb+c—a N ve+a—b n va+b—c >3
Vb+ve—va  Vetva-vbo Vatvh-ye o o

21. (TST 2007/3) Show that for reals x,y, z which are not all positive,

16
g(xQ —z+ D) —y+ 1) —2+1) > (vy2)® —ayz + 1.

22. (IMO 2005/3) Prove that for all positive a, b, ¢ with product at least 1,

a® — a? b — b? e —c

+ + >
a®+02+c2 P42+ ar A+ a2

5 2

23. (IMO 2006/3) Determine the least real number M such that for all reals a, b, c,
la*b + bc + Pa — a’c — bPa — b < M - (a® + b* + ).
24. Consider any sequence aq, as, ... of real numbers. Show that
= 2 o= /Tp\1/2
e 25

where 7, = >"° ai.

25. (ISL 2004/AT) Let aq,...,a, be positive real numbers, n > 1. Denote by g, their
geometric mean, and by Ajp,...A, the sequence of arithmetic means defined by
A = w,k =1,2,...,n. Let G, be the geometric mean of A;,..., A,. Prove
that
n/GrA, + g—” <n+1

and establish the cases of equality.

Reference: Olympiad Inequalities by Thomas Mildorf
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