Functional Equations Solutions

Solutions to Problems

1. Let \mathbb{R}^* denote the set of nonzero real numbers. Find all functions $\mathbb{R}^* \to \mathbb{R}^*$ such that

$$f(x^2 + y) = f(f(x)) + \frac{f(xy)}{f(x)}.$$

Solution. Suppose $f(x) = x^2$ for all x. Then

$$(x^2 + y)^2 = x^4 + \frac{x^2 y^2}{x^2},$$

or $2x^2y = 0$, an abject contradiction. We conclude that there is some x_0 with $f(x_0) \neq x_0^2$. Letting $y = f(x_0) - x_0^2$, we obtain

$$f(f(x_0)) = f(f(x_0)) + \frac{f(x_0y)}{f(x_0)},$$

so that the fraction would be zero, contradicting the given range.

2. Find all functions $f : \mathbb{R} \setminus \{0, 1\} \to \mathbb{R}$ such that

$$f(x) + f \left(\frac{1}{1-x} \right) = 1 + \frac{1}{x(1-x)}.$$

Solution. We employ the facts that

$$\frac{1}{1-x} = 1 - \frac{1}{x} \quad \text{and} \quad 1 - \frac{1}{(1-x)} = x$$

to obtain

$$f \left(\frac{1}{1-x} \right) + f \left(1 - \frac{1}{x} \right) = 3 - x - \frac{1}{x} \quad \text{and} \quad f \left(1 - \frac{1}{x} \right) + f(x) = 2 + x - \frac{1}{1-x},$$

which gives us three equations in three unknowns. Subtracting the second equation from the third, we obtain

$$f(x) - f \left(\frac{1}{1-x} \right) = 2x - 1 + \frac{1}{x} - \frac{1}{1-x}.$$

Finally, adding this to the first and dividing by 2 we get

$$f(x) = x + \frac{1}{x},$$

the only solution.
3. Find all functions \(f : \mathbb{Z} \to \mathbb{Z} \) such that for all \(x, y \in \mathbb{Z} \),
\[f(x - y + f(y)) = f(x) + f(y). \]

Solution. We will define \(g(x) = f(x) - x \), so that our equation becomes
\[g(x + g(y)) = g(x) + y. \]

Fixing \(x \) and letting \(y \) run through the integers we see that \(g \) is surjective. Let \(t \) be such that \(g(t) = 0 \); then
\[g(x) = g(x + g(t)) = g(x) + t, \]
so \(t = 0 \) and \(g(0) = 0 \). We may also find \(k \) with \(g(k) = 1 \). Setting \(y \) to be this \(k \) we obtain
\[g(x + 1) = g(x) + k \]
for any \(x \), so that \(g(x) = kx \) for all \(x \). Surjectivity forces \(k = \pm 1 \), and we immediately see that \(g(x) = \pm x \) (or \(f(x) = 0 \) or \(2x \)) are the only solutions.

4. Find all functions \(f : \mathbb{R} \to \mathbb{R} \) such that
\[f(f(x) + y) = 2x + f(f(y) - x) \]
for all real \(x \) and \(y \).

Solution. Setting \(y = -f(x) \) we obtain
\[f(0) = 2x + f(f(-f(x)) - x), \]
so that as we run \(x \) through all the reals we obtain surjectivity for \(f(x) \). Let \(r \) be such that \(f(r) = 0 \); then
\[f(y) = f(f(r) + y) = 2r + f(f(y) - r), \]
or \(f(f(y) - r) = (f(y) - r) - r. \)

However \(f(y) - r \) runs through all the reals, so for any \(x \) we may say \(f(x) = x - r \), and all such solutions work in the original equation.

5. Determine all functions \(f : \mathbb{R} \to \mathbb{R} \) such that
\[f((x + y)^2) = (x + y)(f(x) + f(y)). \]

Solution. Setting \(y = 0 \) we obtain \(f(x^2) = xf(x) \), so \(f(0) = 0 \) and also
\[(x + y)(f(x) + f(y)) = f((x + y)^2) = (x + y)f(x + y). \]

If \(x + y \neq 0 \) this immediately gives Cauchy’s equation \(f(x) + f(y) = f(x + y) \). If \(x + y = 0 \) with \(x \neq 0 \), then
\[xf(x) = f(x^2) = (-x)f(-x) \]
so that
\[f(x) + f(-x) = 0 = f(0); \]
the case \(x = y = 0 \) is clear. We conclude that for any \(x, y \),
\[
(x + y)(f(x) + f(y)) = f((x + y)^2) = f(x^2 + 2xy + y^2) = f(x^2) + f(2xy) + f(y^2) = xf(x) + f(2xy) + yf(y),
\]
so that
\[f(2xy) = xf(y) + yf(x). \]
Setting \(y = 1 \) we obtain
\[2f(x) = f(2x) = xf(1) + f(x), \]
so \(f(x) = kx \) where \(k = f(1) \), and these are all solutions.

6. Let \(\mathbb{N} = \{0, 1, 2, \ldots \} \) be the set of nonnegative integers. Determine whether or not there exists a bijective function \(f : \mathbb{N} \to \mathbb{N} \) such that for each \(m, n \in \mathbb{N} \),
\[f(3mn + m + n) = 4f(m)f(n) + f(m) + f(n). \]

Solution. There exist infinitely (even uncountably) many such.

Let us rewrite the given equation as
\[f\left(\frac{(3m+1)(3n+1) - 1}{3}\right) = \frac{(4f(m)+1)(4f(n)+1) - 1}{4}. \]

Then what we seek is a bijection \(g : S \to T \) where \(S \) is the set of \(3k+1 \) integers and \(T \) is the set of \(4k+1 \) integers, such that
\[g(xy) = g(x)g(y). \]

Let \(\Pi_{a,m} \) denote the set of primes congruent to \(a \) mod \(m \). It is an elementary fact that \(\Pi_{1,3}, \Pi_{2,3}, \Pi_{1,4}, \) and \(\Pi_{3,4} \) are all infinite, so we may choose bijections \(\Pi_{1,3} \to \Pi_{1,4} \) and \(\Pi_{2,3} \to \Pi_{3,4} \). From these we may define a function \(g : S \to T \) mapping prime factorizations to their image under the two bijections. This works because an integer is of the form \(3k+1 \) if and only if it is factored into some number of \(3k+1 \) primes and an even number of \(3k+2 \) primes, and similarly for an integer of the form \(4k+1 \). Therefore we have obtained our solution (and the uncountably many bijections between the sets of primes yield the claimed uncountably many solutions).

7. Find all functions \(f : \mathbb{R}^+ \to \mathbb{R} \) satisfying
\[f(x) + f(y) \leq \frac{f(x+y)}{2} \quad \text{and} \quad \frac{x}{f(x)} + \frac{y}{f(y)} \geq \frac{x+y}{x+y}, \]
for all \(x, y > 0 \).

Solution. To avoid confusion we set \(g(x) = -f(x)/x \), and look for solutions to
\[xg(x) + yg(y) \geq \left(\frac{x+y}{2}\right) g(x+y) \] and \(g(x) + g(y) \leq g(x+y) \).
Substituting \(y = x \) we obtain
\[
2xg(x) \geq xg(2x) \text{ and } 2g(x) \leq g(2x),
\]
so that \(g(2x) = 2g(x) \). From this we obtain \(g(2^n x) = 2^n g(x) \) for any \(x \). What’s more,
\[
g(nx) \geq g(x) + g((n-1)x) \geq 2g(x) + g((n-2)x) \geq \cdots \geq ng(x)
\]
for any positive integer \(n \). Additionally,
\[
5xg(x) = xg(x) + 2xg(2x) \geq \frac{3}{2} xg(3x) \geq \frac{9}{2} xg(x),
\]
so \(10g(x) \geq 9g(x) \) and \(g(x) \geq 0 \) for all \(x \). Finally, whenever \(y > x \) we have \(g(y - x) \leq g(y) \), and so \(g(x) \) is nondecreasing.

Let \(x \) be a positive real. Suppose we have positive integers \(n, n', m, m' \) with
\[
\frac{2n'}{m'} \geq x \geq \frac{m}{2^n}.
\]
Then
\[
\frac{2n'}{m} g(1) = \frac{1}{m'} g \left(\frac{2n'}{m} \right) \geq g \left(\frac{2n'}{m'} \right) \geq g(x) \geq g \left(\frac{m}{2^n} \right) \geq mg \left(\frac{1}{2^n} \right) = m g(1).
\]
Since these fractions may be chosen arbitrarily close to one another, we conclude that \(g(x) = g(1)x \). The given inequalities work as well; the first is Titu’s Lemma and the second is an equality. Thus \(f(x) = -ax^2 \) for \(a \geq 0 \) are the only solutions.

8. Let \(\mathbb{R} \) denote the set of real numbers. Find all functions \(f : \mathbb{R} \to \mathbb{R} \) such that
\[
f(x + y) + f(x)f(y) = f(xy) + 2xy + 1.
\]

Solution. Setting \(x = y = 0 \), we obtain \(f(0)^2 = 1 \), if \(f(0) = \pm 1 \). However, if \(f(0) = 1 \) then we may take \(y = 0 \) and obtain \(2f(x) = f(x) + 1 \), or \(f(x) = 1 \) for all \(x \), a contradiction. Therefore we conclude that \(f(0) = -1 \).

Next, we look at \((x, y) = (-1, 1) \), obtaining
\[
-1 + f(1)f(-1) = f(-1) - 1,
\]
or
\[
f(-1)(f(1) - 1) = 0.
\]

Case (a). If \(f(1) = 1 \) then using \((x, y) = (x - 1, 1) \) we obtain
\[
f(x) + f(x - 1) = f(x - 1) + 2x - 1,
\]
or \(f(x) = 2x - 1 \), our first solution.
Case (b). If $f(-1) = 0$, we may take $(x, y) = (-1, -1)$ and get $f(-2) = f(1) + 3$, and then with $(x, y) = (-2, 1)$ we get

$$f(-2)f(1) = f(-2) - 3.$$

Combining these, we obtain

$$f(-2)(f(1) - 1) = 0.$$

Case (bi). Suppose $f(1) = 0$. We obtain

$$f(x) = f((x - 1) + 1) = f(x - 1) + 2x - 1 = f(-x) - 2x + 1 + 2x - 1 = f(-x),$$

so that $f(x)$ is an even function. Finally, taking $(x, y) = (x, \pm x)$, we get

$$-1 + f(x)^2 = f(x - x) + f(x)f(-x) = f(-x^2) - 2x^2 + 1$$

and

$$f(2x) + f(x)^2 = f(x^2) + 2x^2 + 1 = f(-x^2) + 2x^2 + 1,$$

so we get $f(2x) = 4x^2 - 1, f(x) = x^2 - 1$, a solution.

Case (bii). Suppose $f(1) = -2$. In this case we get

$$f(x + 1) - 2f(x) = f(x) + 2x + 1, \text{ or } f(x) = 3f(x - 1) + 2x - 1.$$

As $f(-1) = 0$, we have

$$f(x) = 3f(-x) - 2x + 1 + 2x - 1 = 3f(-x) - 4x + 2.$$

Swapping the roles of x and $-x$ here, we get $f(-x) = 3f(x) + 4x + 2$, a system of two equations in two unknowns that we may use to solve for $f(x)$, getting $f(x) = -x - 1$, the third solution.

9. Let \mathbb{R}^+ denote the set of positive real numbers and let $k \in \mathbb{R}^+$ be a constant. Determine all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that

$$f(x)f(y) = kf(x + yf(x))$$

for all positive real numbers x and y.

Solution. Suppose that $f(x)$ is injective. Setting $x = a$ and $y = 1$, we obtain

$$f(a)f(1) = kf(a + f(a)).$$

Setting $x = 1$ and $y = a$, we get

$$f(1)f(a) = kf(1 + af(1)).$$

We conclude by injectivity that $a + f(a) = 1 + af(1)$, or

$$f(a) = 1 - a(f(1) - a),$$

where $f(x)$ is an odd function and $f(1) = 1$. Thus $f(x)$ is of the form $f(x) = 1 - x$. Since $f(x)$ is injective, we must have $f(1) = 1$. Therefore, $f(x) = 1 - x$ is a solution.
or in other words \(f(x) = 1 + cx \) for some constant \(c \). In order for this to be a solution, we need

\[
(1 + cx)(1 + cy) = k(1 + c(x + y(1 + cx))) = k(1 + cx)(1 + cy).
\]

Therefore this is a solution if and only if \(k = 1 \).

Now suppose that \(f(x) \) is not injective, so \(f(a) = f(b) = c \) for some \(a < b \in \mathbb{R}^+ \). We claim that \(f(x) = c \) for all positive \(x \).

First, for all \(y \) and \(f \) we have

\[
f(a)f(y) = kf(a + yf(a)) = kf(a + cy)
\]

and

\[
f(b)f(y) = kf(b + yf(b)) = kf(b + cy),
\]

so

\[
f((a - b) + b + cy) = f(a + cy) = f(b + cy).
\]

We conclude that \(f(x) \) is periodic of period \(a - b \) for all \(y \geq b \).

Now suppose we have \(x_1 \) and \(x_2 \) with \(f(x_1) > f(x_2) \). We conclude that for any \(y \), \(f(x_1)f(y) \neq f(x_2)f(y) \). However we may choose \(y \) so large that both \(x_1 + yf(x_1) \) and \(x_2 + yf(x_2) \) are greater than or equal to \(b \), and also that

\[
[x_1 + yf(x_1)] - [x_2 + yf(x_2)] = (x_1 - x_2) + y(f(x_1) - f(x_2)) = n(a - b)
\]

for some positive integer \(n \), so that in fact

\[
f(x_1)f(y) = f(x_1 + yf(x_1)) = f(x_2 + yf(x_2)) = f(x_2)f(y),
\]

a contradiction so that in fact \(f(x) \) is a constant. Finally, if \(f(x) = c \) then \(c^2 = kc \) shows that \(f(x) = k \). These families comprise all solutions.

10. Find all functions \(f : \mathbb{R} \to \mathbb{R} \) such that

\[
f(f(x + f(y)) - 1) = f(x) + f(x + y) - x.
\]

Solution. Let us first prove that \(f(x) \) is injective. If \(f(y) = f(y') \) for some \(y \neq y' \), we have

\[
f(x) + f(x + y) - x = f(f(x + f(y)) - 1) = f(f(x + f(y')) - 1) = f(x) + f(x + y') - x,
\]

so that \(f(x + y) = f(x + y') \) and \(f \) is periodic with period \(y - y' = p \). However,

\[
f(x) + f(x + y) - x = f(f(x + f(y)) - 1) = f(f(x + p + f(y)) - 1) = f(x + p) + f(x + p + y) - x - p = f(x) + f(x + y) - x - p,
\]

which is a contradiction.
so \(p = 0 \), a contradiction so that \(f \) is injective.

Now let \(y \) be arbitrary and set \(x = f(y) - f(0) \). We obtain

\[
\begin{align*}
f(x) + f(x + 0) - x &= f(f(x + f(0)) - 1) \\
&= f(f(0 + f(y)) - 1) \\
&= f(0) + f(0 + y) - 0 \\
&= f(0) + f(0) + x,
\end{align*}
\]

so that

\[
f(y) = f(0) + x = f(x).
\]

By injectivity, \(x = y \), and so \(f(y) = y + f(0) = y + c \). Now we plug back into our original equation with \(x = y = 0 \):

\[
2c = f(f(c) - 1) = f(2c - 1) = 3c - 1,
\]

so \(c = 1 \) and \(f(x) = x + 1 \) is the only solution.

11. Determine all functions \(f : \mathbb{R} \to \mathbb{R} \) such that

\[
f(xf(y)) = (1 - y)f(xy) + x^2y^2f(y)
\]

for all real numbers \(x \) and \(y \).

Solution. We observe that \(f(x) = 0 \) is a solution, and assume that \(f(x) \) is not identically 0 from now on. Setting \(x = 1 \) we get

\[
f(f(y)) = (1 - y)f(y) + y^2f(y) = (1 - y + y^2)f(y),
\]

and setting \(y = 1 \), we obtain \(f(xf(1)) = x^2f(1) \). If \(f(1) \neq 0 \), we are forced to have \(f(x) = x^2/f(1) \) for all \(x \), so \(f(1) = 1/f(1) \) and \(f(x) = \pm x^2 \). This directly contradicts our first equation:

\[
\pm y^4 = (1 - y + y^2)(\pm y^2).
\]

We conclude that \(f(1) = 0 \). Setting \(y = 1 \) in the first equation, we get

\[
f(0) = f(1) = 0,
\]

so \(f(0) = 0 \).

We claim these are the only two values of 0. Indeed, if \(f(y) = 0 \), then we have

\[
0 = f(xf(y)) = (1 - y)f(xy) + x^2y^2f(y) = (1 - y)f(xy),
\]

so that either \(y = 0, 1 \) or \(f(x) \) is identically 0, contradicting our assumptions.

Next we use \(y = 1/x \).

\[
f(xf(1/x)) = (1 - 1/x)f(1) + f(1/x) = f(1/x),
\]

so for any \(x \neq 0 \) we obtain \(f(f(x)/x) = f(x) \).
Suppose now we have two values \(f(x) = f(y) \neq 0 \). We argue

\[
(1 - x + x^2)f(x) = f(f(x)) = f(f(y)) = (1 - y + y^2)f(y) = (1 - y + y^2)f(x).
\]

So \(y = x, 1 - x \). However then we have

\[
\frac{f(x)}{x} = x, x - 1,
\]

so for each \(x \) either \(f(x) = x^2 \) or \(f(x) = x - x^2 \). The latter case is a solution if it holds for all \(x \).

Suppose now that some \(f(x) = x^2 \). We know

\[
f(x^2) = f(f(x)) = (1 - x + x^2)f(x) = x^2 - x^3 + x^4.
\]

If \(f(x^2) = x^4 \), then \(x^2 - x^3 = 0 \) in which case \(x = 0, 1 \). If \(f(x^2) = x^2 - x^4 \), then \(2x^4 - x^3 = 0 \), so \(x = 0, \frac{1}{2} \). We already know that \(f(1) = 0 \), and moreover \(0^2 = 0 - 0^2 \) and \((\frac{1}{2})^2 = \frac{1}{2} - (\frac{1}{2})^2 \), so actually we may conclude that \(f(x) = x - x^2 \) in any case. Thus (in the nonzero case) this is the only solution.

12. Find all functions \(f : (0, \infty) \to (0, \infty) \) such that

\[
\frac{f(p)^2 + f(q)^2}{f(r)^2 + f(s)^2} = \frac{p^2 + q^2}{r^2 + s^2}
\]

for all \(p, q, r, s > 0 \) with \(pq = rs \).

Solution. Setting \(p = q = r = s = 1 \) we obtain \(f(1)^2 = f(1) \) and so \(f(1) = 1 \). Now let \(x > 0 \) and \(p = x, q = 1, r = s = \sqrt{x} \) to obtain

\[
\frac{f(x^2) + 1}{2f(x)} = \frac{x^2 + 1}{2x}.
\]

This rearranges into

\[
xf(x)^2 + x = x^2 f(x) + f(x),
\]

or

\[
(xf(x) - 1)(f(x) - x) = 0.
\]

Therefore either \(f(x) = x \) or \(f(x) = 1/x \) for every \(x > 0 \).

The functions \(f(x) = x \) and \(f(x) = 1/x \) both satisfy the conditions of the problem; we claim these are the only solutions. Suppose not; then there are \(a, b > 0 \) with \(f(a) \neq a \) and \(f(b) \neq 1/b \). We set \(p = a, q = b, \) and \(r = s = \sqrt{ab} \) and obtain \((a^2 - b^2)/2f(ab) = (a^2 + b^2)/2ab \), or

\[
f(ab) = \frac{ab(a^2 + b^2)}{a^2 + b^2}.
\]

However, we know that \(f(ab) = ab \) or \(1/ab \). In the first case, \(a^2 + b^2 = a^{-2} + b^2 \), so \(a = 1 \) and \(f(1) = 1 \) contradicts our assumption on \(a \). Likewise, if \(f(ab) = 1/ab \), then \(a^2b^2(a^{-2} + b^2) = a^2 + b^2 \), so that \(b = 1 \), again a contradiction. We conclude that \(f(x) = x, 1/x \) are the only solutions.
13. Consider those functions \(f : \mathbb{N} \to \mathbb{N} \) (here \(\mathbb{N} \) denotes the positive integers) which satisfy the condition
\[
f(m + n) \geq f(m) + f(f(n)) - 1
\]
for all \(m, n \in \mathbb{N} \). Find all possible values of \(f(2009) \).

Solution. First notice that \(f(m + n) \geq f(m) + f(f(n)) - 1 \geq f(m) \), so \(f \) is nondecreasing.

We claim that \(f(n) \leq n + 1 \). To the contrary, suppose that \(f(n) = m + n \) where \(m > 1 \). We write
\[
\begin{align*}
f(2n) & \geq f(n) + f(f(n)) - 1 \geq 2(m + n) - 1 = 2(m + n - 1) + 1, \\
f(4n) & \geq f(2n) + f(f(2n)) - 1 \geq 2(m + n - 1) + 1 + 2(m + n - 1) = 4(m + n - 1) + 1, \\
& \vdots \\
f(2^k n) & \geq 2f(2^{k-1} n) - 1 \geq 2^k (m + n - 1) + 1.
\end{align*}
\]
Notice that \(f(k + 1) \geq f(1) + f(f(k)) - 1 \geq f(f(k)) \), so that
\[
f(2^k n + 1) \geq f(f(2^k n)) \geq f(2^k (m + n - 1) + 1),
\]
and so
\[
f(2^k n + 1) = f(2^k n + 1) = f(2^k n + 2) = \cdots = f(2^k (m + n - 1) + 1).
\]
For some \(k \) we have \(2^k (m - 1) \geq n \). Then
\[
\begin{align*}
f(2^k n + 1) & = f(2^k (m + n - 1) + 1) \\
& \geq f(2^k (m + n - 1) + 1 - n) + f(f(n)) - 1 \\
& = f(2^k n + 1) + f(f(n)) - 1 \\
& \geq f(2^k n + 1) + m + n - 1,
\end{align*}
\]
so \(m + n \leq 1 \), a contradiction. This proves the claim.

We prove that any value from 1 to 2010 may be obtained by \(f(2009) \). Indeed, for any value less than or equal to 2009, we may choose a real number \(0 < \alpha \leq 1 \) and set \(f(n) = \lfloor n \alpha \rfloor \), because
\[
f(m + n) = \lfloor (m + n) \alpha \rfloor \geq \lfloor m \alpha \rfloor + \lfloor n \alpha \rfloor > \lfloor m \alpha \rfloor + \lfloor \lfloor n \alpha \rfloor \alpha \rfloor - 1 = f(m) + f(f(n)) - 1.
\]

To obtain \(f(2009) = 2010 \), consider
\[
f(n) = \begin{cases}
n, & 2009 \mid n \\
n + 1, & 2009 \nmid n
\end{cases}
\]
Then \(2009 \mid f(n) \), so \(f(f(n)) = f(n) \). Then \(f(m + n) \geq f(m) + f(n) - 1 \) because \(f(m + n) \geq m + n \) and if \(f(m) + f(n) - 1 > m + n \) then \(2009 \) divides both \(m \) and \(n \) and \(f(m + n) = m + n + 1 = f(m) + f(n) - 1 \). Thus any value from 1 to 2010 may be achieved by such functions.
14. Suppose \(f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0. \) Then
\[
f(x) = \left(x + \frac{a_{n-1}}{n}\right)^n + g(x)
\]
for some polynomial \(g(x) \) of degree at most \(n - 2 \). For large enough \(x \),
\[
0 \leq |g(x)| < \left(x + \frac{a_{n-1} - 1}{n}\right)^n - \left(x + \frac{a_{n-1}}{n}\right)^n
\]
since the RHS has degree \(n - 1 \). Then
\[
\left(x + \frac{a_{n-1} - 1}{n}\right)^n < f(x) < \left(x + \frac{a_{n-1} + 1}{n}\right)^n
\]
for large enough \(x \) so we must have \(f(x) = \left(x + \frac{a_{n-1}}{n}\right)^n \) for large enough \(x \), and this must be true for all \(x \). Hence \(f(x) = (x+c)^n \) for some integer \(c \).

15. From (a) it follows that \(f(xf(x)) = xf(x) \) for all \(x > 0 \). By induction on \(n \), we have that if \(f(a) = a \) for some \(a > 0 \), then \(f(a^n) = a^n \) for all \(n \in \mathbb{N} \). Note also that \(a \leq 1 \), since otherwise
\[
\lim_{n \to \infty} f(a^n) = \lim_{n \to \infty} a^n = \infty,
\]
in contradiction to (b).

On the other hand, \(a = f(1 \cdot a) = f(1 \cdot f(a)) = af(1) \). Hence
\[
1 = f(1) = f(a^{-1}a) = f(a^{-1}f(a)) = af(a^{-1}),
\]
implicating \(f(a^{-1}) = a^{-1} \). Thus we have (as above) \(f(a^{-n}) = a^{-n} \) for all \(n \in \mathbb{N} \) and \(a^{-1} \leq 1 \). In conclusion, the only \(a > 0 \) such that \(f(a) = a \) is \(a = 1 \). Hence the identity \(f(xf(x)) \) implies \(f(x) = \frac{1}{x} \) for all \(x > 0 \). It is easy to check that this function satisfies (a) and (b) of the problem.

16. Yes. We verify that \(f(n) = \left[\frac{1 + \sqrt{5}}{2}n + \frac{1}{2}\right] \) is a function with all the required properties. We can compute \(f(1) = 2 \), and note that \(|x| < |x+1| \) and \(\frac{1 + \sqrt{5}}{2} > 1 \) imply that \(f(n) < f(n+1) \).

Now we verify the second part. Let \(c = \frac{1 + \sqrt{5}}{2} \). Noting that \(c > 1 \), we have
\[
\frac{cn}{2} + \frac{c}{2} > cn + \frac{1}{2} \geq \left[\frac{cn + 1}{2}\right] > cn - \frac{1}{2} > cn - \frac{c}{2}.
\]
Multiplying by \(\frac{1}{c} = \frac{\sqrt{5} - 1}{2} \) we get
\[
n + \frac{1}{2} > \frac{\sqrt{5} - 1}{2} \left[\frac{cn + \frac{1}{2}}{2}\right] > n - \frac{1}{2}.
\]
Adding \(\left[\frac{cn + \frac{1}{2}}{2}\right] + \frac{1}{2} \) we get
\[
\left[\frac{cn + \frac{1}{2}}{2}\right] + n + 1 > c \left[\frac{cn + \frac{1}{2}}{2}\right] + \frac{1}{2} > \left[\frac{cn + \frac{1}{2}}{2}\right] + n.
\]
Thus
\[
\left[\frac{cn + \frac{1}{2}}{2}\right] + n + 1 > \left[\frac{cn + \frac{1}{2}}{2}\right] + \frac{1}{2} > \left[\frac{cn + \frac{1}{2}}{2}\right] + n.
\]
or \(f(n) + n + 1 > f(f(n)) \geq f(n) + n \), implying \(f(f(n)) = f(n) + n \).