
Lecture 23 — Rearrangement Inequality
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1 The Inequalities

We start with an example. Suppose there are four boxes containing $10, $20, $50 and
$100 bills, respectively. You may take 2 bills from one box, 3 bills from another, 4 bills
from another, and 5 bills from the remaining box. What is the maximum amount of
money you can get?

Clearly, you’d want to take as many bills as possible from the box with largest-value
bills! So you would take 5 $100 bills, 4 $50 bills, 3 $20 bills, and 2 $10 bills, for a grand
total of

5 · $100 + 4 · $50 + 3 · $20 + 2 · $10 = $780. (1)

Suppose instead that your arch-nemesis (who isn’t very good at math) is picking the
bills instead, and he asks you how many bills he should take from each box. In this
case, to minimize the amount of money he gets, you’d want him to take as many bills as
possible from the box with lowest-value bills. So you tell him to take 5 $10 bills, 4 $20
bills, 3 $50 bills, and 2 $100 bills, for a grand total of

5 · $10 + 4 · $20 + 3 · $50 + 2 · $100 = $480. (2)

The maximum is attained when the number of bills taken and the denominations are
similarly sorted as in (1) and the minimum is attained when they are oppositely sorted as
in (2). The Rearrangement Inequality formalizes this observation.

Theorem 1.1 (Rearrangement): Let x1, x2, . . . , xn and y1, y2, . . . , yn be real numbers
(not necessarily positive) with

x1 ≤ x2 ≤ · · · ≤ xn, and y1 ≤ y1 ≤ · · · ≤ yn,

and let σ be a permutation of {1, 2, . . . , n}. (That is, σ sends each of 1, 2, . . . , n to a
different value in {1, 2, . . . , n}.) Then the following inequality holds:

x1yn + x2yn−1 + · · ·+ xny1 ≤ x1yσ1 + x2yσ2 + · · ·+ xnyσn ≤ x1y1 + x2y2 + · · ·+ xnyn.

Proof. We prove the inequality on the right by induction on n. The statement is obvious
for n = 1. Suppose it true for n − 1. Let m be an integer such that σm = n. Since
xn ≥ xm and yn ≥ yσn,

0 ≤ (xn − xm)(yn − yσn) (3)

=⇒ xmyn + xnyσn ≤ xmyσn + xnyn.
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Hence

x1yσ1 + · · ·+ xm yσm︸︷︷︸
yn

+ · · ·+ xnyσn ≤ x1yσ1 + · · ·+ xmyσn + · · ·+ xnyn. (4)

By the induction hypothesis,

x1yσ1 + · · ·+ xmyσn + · · ·+ xn−1yσ(n−1) ≤ x1y1 + · · ·+ xmym + · · ·+ xn−1yn−1.

Thus the RHS of (4) is at most x1y1 + · · ·+ xn−1yn−1 + xnyn, as needed.
To prove the LHS, apply the above with −yi instead of yi (noting that negating an

inequality reverses the sign).

Remark 1.2: Equality is attained on the RHS if and only if, for every r, the following
are equal as multisets:

{ym | xm = r} = {yσm | xm = r}.

To see this, note that otherwise, using the procedure above, at some time we will have to
switch two unequal numbers y′k, y

′
m with unequal corresponding x’s, xk 6= xm, and we get

inequality (see (3)). Similarly, equality is attained on the LHS if and only if for every r,

{yn+1−m | xm = r} = {yσm | xm = r}.

In particular, if the a1, . . . , an are all distinct and b1, . . . , bn are all distinct, then
equality on the right-hand side occurs only when σ(m) = m for all m, and equality on
the left-hand side occurs only when σ(m) = n+ 1−m for all m.

The rearrangement inequality can be used to prove the following.

Theorem 1.3 (Chebyshev): Let a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn be two
similarly sorted sequences. Then

a1bn + a2bn−1 + · · ·+ anb1
n

≤ a1 + a2 + · · ·+ an
n

· b1 + b2 + · · ·+ bn
n

≤ a1b1 + · · ·+ anbn
n

Proof. Add up the following inequalities (which hold by the Rearrangement Inequality):

a1b1 + a2b2 + · · ·+ anbn ≤ a1b1 + a2b2 + · · ·+ anbn

a1b2 + a2b3 + · · ·+ anb1 ≤ a1b1 + a2b2 + · · ·+ anbn
...

a1bn + a2b1 + · · ·+ anbn−1 ≤ a1b1 + a2b2 + · · ·+ anbn

After factoring the left-hand side and dividing by n2, we get the right-hand inequality.
By replacing bi with −bi and using the above result we get the left-hand inequality.

2 Problems

1. Given that a, b, c ≥ 0, prove a3 + b3 + c3 ≥ a2b+ b2c+ c2a.

2. Powers: For a, b, c > 0 prove that

2
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(a) aabbcc ≥ abbcca.

(b) aabbcc ≥ (abc)
a+b+c

3 .

3. Suppose a1, a2, . . . , an > 0 and let s = a1 + · · ·+ an. Prove that

a1
s− a1

+ · · ·+ an
s− an

≥ n

n− 1
.

In particular, conclude Nesbitt’s Inequality

a

b+ c
+

b

a+ c
+

c

a+ b
≥ 3

2

for a, b, c > 0.

4. Prove the following for x, y, z > 0:

(a) x2

y
+ y2

x
≥ x+ y.

(b) x2

y2
+ y2

z2
+ z2

x2
≥ x

z
+ y

x
+ z

y
.

(c) xy
z2

+ yz
x2

+ zx
y2
≥ x

y
+ y

z
+ z

x
.

5. (IMO 1978/2) Let a1, . . . , an be pairwise distinct positive integers. Show that

a1
12

+
a2
22

+ · · ·+ an
n2
≥ 1

1
+

1

2
+ · · ·+ 1

n
.

6. (modified ISL 2006/A4) Prove that for all positive a, b, c,

ab

a+ b
+

bc

b+ c
+

ac

a+ c
≤ 3(ab+ bc+ ca)

2(a+ b+ c)
.

7. Prove that for any positive real numbers a, b, c the following inequality holds:

a2 + bc

b+ c
+
b2 + ac

c+ a
+
c2 + ab

a+ b
≥ a+ b+ c.

8. (MOSP 2007) Let k be a positive integer, and let x1, x2, . . . , xn be positive real
numbers. Prove that(

n∑
i=1

1

1 + xi

)(
n∑
i=1

xi

)
≤

(
n∑
i=1

xk+1
i

1 + xi

)(
n∑
i=1

1

xki

)
.

9. The numbers 1 to 100 are written on a 10× 10 board (1–10 in the first row, etc.).
We are allowed to pick any number and two of its neighbors (horizontally, vertically,
or diagonally—but our choice must be consistent), increase the number with 2 and
decrease the neighbors by 1, or decrease the number by 2 and increase the neighbors
by 1. At some later time the numbers in the table are again 1, 2, . . . , 100. Prove
that they are in the original order.

3
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3 Solutions

1. The sequences a, b, c and a2, b2, c2 are similarly sorted. Therefore, by the rearrange-
ment inequality,

a2 · a+ b2 · b+ c2 · c ≥ a2 · b+ b2 · c+ c2 · a.

2. Since ln is an increasing function, we take the ln of both sides to find that the
inequalities are equivalent to

a ln a+ b ln b+ c ln c ≥ b ln a+ c ln b+ a ln c

a ln a+ b ln b+ c ln c ≥ a+ b+ c

3
(ln a+ ln b+ ln c).

Note the sequences (a, b, c) and (ln a, ln b, ln c) are similarly sorted, since ln is an
increasing function. Then the first inequality follows from Rearrangement and the
second from Chebyshev.

3. Since both sides are symmetric, we may assume without loss of generality that
a1 ≤ · · · ≤ an. Then s− a1 ≥ · · · ≥ s− an and 1

s−a1 ≤ · · · ≤
1

s−an . By Chebyshev’s

inequality with (a1, . . . , an) and
(

1
s−a1 , . . . ,

1
s−an

)
, we get

a1
s− a1

+ · · ·+ an
s− an

≥ 1

n
(a1 + · · ·+ an)

(
1

s− a1
+ · · ·+ 1

s− an

)
=

1

n

(
s

s− a1
+ · · ·+ s

s− an

)
=

1

n

(
a1

s− a1
+ · · ·+ s

s− an
+ n

)
.

This gives

n− 1

n

(
a1

s− a1
+ · · ·+ an

s− an

)
≥ 1 =⇒

a1
s− a1

+ · · ·+ an
s− an

≥ n

n− 1
.

4. (a) Without loss of generality, x ≥ y. Then x2 ≥ y2 and 1
y
≥ 1

x
, i.e. (x2, y2) and

( 1
y
, 1
x
) are similarly sorted. Thus

x2 · 1

y
+ y2 · 1

x
≥ x2 · 1

x
+ y2 · 1

y
.

(b) Letting a = x
y
, b = y

z
, c = z

x
, the inequality is equivalent to

a2 + b2 + c2 ≥ ab+ bc+ ca.

This is true by the rearrangement inequality applied to the similarly sorted
sequences (a, b, c) and (a, b, c).

4
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(c) Let a = x
1
3 y

1
3

z
2
3

, b = x
1
3 z

1
3

y
2
3

, and c = y
1
3 z

1
3

x
2
3

. Then the inequality to prove becomes

a3 + b3 + c3 ≥ a2b+ b2c+ c2a

which was proved in problem 1.

5. Let b1, . . . , bn be the numbers a1, . . . , an in increasing order. Since b1 ≤ · · · ≤ bn
and 1

12
≥ · · · ≥ 1

n2 , by the rearrangement inequality,

a1
12

+
a2
22

+ · · ·+ an
n2
≥ b1

12
+
b2
22

+ · · ·+ bn
n2
.

However, since the positive integers bm are distinct and in increasing order, we must
have bm ≥ m. This gives the RHS is at least 1

1
+ 1

2
+ · · · 1

n
.

6. Since the inequality is symmetric we may assume a ≤ b ≤ c. Then

a+ b ≤ a+ c ≤ b+ c. (5)

We claim that
ab

a+ b
≤ ac

a+ c
≤ bc

b+ c
. (6)

Indeed, the two inequalities are equivalent to

a2b+ abc ≤ a2c+ abc

abc+ ac2 ≤ abc+ bc2

both of which hold.

Thus by Chebyshev applied to (5) and (6), we get(
ab

a+ b
+

ac

a+ c
+

bc

b+ c

)
((a+ b) + (a+ c) + (b+ c)) ≤ 3(ab+ bc+ ca). (7)

Dividing by 2(a+ b+ c) gives the desired inequality.

(Note: The original problem asked to prove∑
i<j

aiaj
ai + aj

≤ n

2(a1 + · · ·+ an)

∑
i<j

aiaj

when a1, . . . , an. This can be proved by summing (7) over all 3-element subsets
{a, b, c} of (the multiset) {a1, . . . , an}, then dividing. This is a rare instance of a
general inequality following directly from the 3-variable case!)

7. Since the inequality is symmetric, we may assume without loss of generality that
a ≤ b ≤ c. Then

a2 ≤ b2 ≤ c2

1

b+ c
≤ 1

a+ c
≤ 1

a+ b
.

5
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Hence by the rearrangement inequality,

a2

b+ c
+

b2

c+ a
+

c2

a+ b
≥ b2

b+ c
+

c2

c+ a
+

a2

a+ b
.

Adding bc
b+c

+ ac
c+a

+ ab
a+b

to both sides gives

a2 + bc

b+ c
+
b2 + ac

c+ a
+
c2 + ab

a+ b
≥ b2 + bc

b+ c
+
c2 + ac

c+ a
+
a2 + ab

a+ b

=
b(b+ c)

b+ c
+
c(c+ a)

c+ a
+
a(a+ b)

a+ b

= a+ b+ c.

8. We apply Chebyshev’s inequality twice:(
n∑
i=1

1

1 + xi

)(
n∑
i=1

xi

)
≤

[
1

n

(
n∑
i=1

1

xki

)(
n∑
i=1

xki
1 + xi

)](
n∑
i=1

xi

)

=

(
n∑
i=1

1

xki

)[
1

n

(
n∑
i=1

xki
1 + xi

)(
n∑
i=1

xi

)]

≤

(
n∑
i=1

1

xki

)(
n∑
i=1

xk+1
i

1 + xi

)
.

Indeed, without loss of generality x1 ≤ · · · ≤ xn. In the first application of Cheby-
shev we use that the following are oppositely sorted:

1

xk1
≥ · · · ≥ 1

xkn
xk1

1 + x1
≤ · · · ≤ xkn

1 + xn
.

The second inequality comes from the fact that f(x) = xk

1+x
is an increasing function

for k ≥ 1, x ≥ 0: if x ≤ y then xk ≤ yk and xk−1 ≤ yk−1 together give

xk + xky ≤ yk + xyk

xk

1 + x
≤ yk

1 + y
.

(A simple derivative calculation also does the trick.)

In the second application of Chebyshev we use that the following are similarly
sorted:

xk1
1 + x1

≤ · · · ≤ xkn
1 + xn

x1 ≤ · · · ≤ xn.

9. Look for an invariant! Let aij = 10(i − 1) + j, the original number in the (i, j)
position in the array. Let bij be the numbers after some transformations. Then

P =
∑

1≤i,j≤10

aijbij

6
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is invariant. (Indeed, two opposite neighbors of aij are aij ± d for some d; the sum
changes by ±(2aij − (aij − d)− (aij + d)) = 0 at each step.)

Initially, P =
∑

1≤i,j≤10 a
2
ij. Suppose that bij are a permutation of the aij’s. Then∑

1≤i,j≤10

a2ij =
∑

1≤i,j≤10

aijbij.

By the equality case of the rearrangement inequality, since the aij are all distinct
and the bij are all distinct, the aij and bij must be sorted similarly, i.e. aij = bij for
all i, j.
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