CCA (Canonical correlation analysis)
Posted: 2016-06-28 , Modified: 2016-06-28
Tags: CCA
Posted: 2016-06-28 , Modified: 2016-06-28
Tags: CCA
Goal: Find the linear combination of \((X_i)\) and \((Y_j)\) with maximum correlation.
Let \(\Si_{XY} = \Cov(X,Y)\) (i.e., \(XY^T\)).
We want to maximize (let \(\ve{v}_M=v^TMv\)) \[\max_{a,b} \fc{a^T\Si_{XY}b}{\ve{a}_{\Si_{XX}}\ve{b}_{\Si_{YY}}}.\] Let \(c=\Si_{XX}^{\rc 2}a\) and \(d=\Si_{YY}^{\rc 2}b\). Then this is \[\fc{c^T \Si_{XX}^{-\rc2} \Si_{XY} \Si_{YY}^{-\rc2}d}{\ve{c}_2\ve{d}_2}.\] Thus, find the SVD of \[\Si_{XX}^{-\rc2} \Si_{XY} \Si_{YY}^{-1} \Si_{YX} \Si_{XX}^{-\rc 2}.\] Change coordinates back to find \(a,b\).
More generally, to find the top \(k\) dimensions, we want \[\max_{M_X \in \mathcal{O}^{d_a\times r}, M_Y\in \mathcal{O}^{d_b\times r}} \Tr(M_X^T \Si_{XX}^{-\rc2} \Si_{XY} \Si_{YY}^{-\rc2}M_Y).\] Find the rank \(k\) SVD, the matrices consist of the top \(k\) SV’s.