Factor analysis

Posted: 2016-06-28 , Modified: 2016-06-28

Tags: factor analysis

Reference

If \(n\gg m\), and we have data points \(x^{(i)}\in \R^n\), \(1\le i\le m\), how can we find Gaussian structure? We don’t have enough data points to even fit a single Gaussian.

Solution 1: Assume independence

If the covariance matrix \(\Si\) is diagonal, minimize the negative log likelihood \[\sum\pa{\pf{\pa{x_j^{(i)}-\mu_j}^2}{2\si_j^2} + \ln \si_j}\] to get \(\Si_{jj} = \EE_{i=1}^m (x_j^{(i)}-\mu_j)^2\). If \(\Si=\si I\), then \(\si^2 = \EE_{i,j}(x_j^{(i)}- \mu_j)^2\).

Solution 2: Factor analysis

Break the coordinates into 2 parts \(x\) and \(z\) and assume \[\begin{align} z&\sim N(0,I)\\ \ep &\sim N(0,\Psi)\\ x &= \mu+ \La z + \ep. \end{align}\]

Calculate \[\coltwo zx \sim N\pa{\coltwo 0\mu, \matt{I}{\La^T}{\La}{\La\La^T+\Psi}}.\] Now do EM on the log likelihood with respect to \(z\) and \(\La\). (details…)