Hierarchies of convex relaxations

Posted: 2016-12-28 , Modified: 2016-12-28

Tags: convex relaxation, Sherali-Adams, Lasserre

See also SoS.

Sherali-Adams

The \(k\)-level Sherali-Adams hierarchy \(SA(k)\) is a LP with variables \(\mu_S(x_S)\), \(x_S\in \{-1,1\}^{|S|}\) specifying marginals over all \(S\subeq [n]\), \(|S|\le k\). \(\mu_S\) satisfies consistency: \[ \forall |S\cup T|\le k, \mu_S[\{x_{S\cap T}=\al\}] = \mu_T[\{x_{S\cap T} = \al\}]. \]

The conditioning operation - sampling according to \(\mu_{\{v\}}\) - defines a map from solutions of the \(k\)th level to solutions of the \(k-1\)th level. \[ \mu_S(x_S) = \mu_{S\cup \{v\}}(x_{S\cup v}). \]

Lasserre

LAS(\(k\)). This is a SDP: \[ \forall |S\cup T|\le k, \mu_{S\cup T}(x_S=\al, x_T=\be) = \an{v_{S,\al}, v_{T,\be}}. \]