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In many ways, polynomials are similar to integers. Like integers, polynomials admit
division with remainder, existence of greatest common divisors, and unique factorization.
In Section 1 we will state the main theorems concretely. In Section 2 we do some problem
solving involving polynomials with integer or rational coefficients, and in Section 3 we
give some surprising applications to number theory. For the more advanced reader, in
the last section we restate the results of Section 1 more abstractly and prove them. We
will see that the core reason behind unique factorization for integers and for polynomials
are the same.

Note this is a continuation of Lecture 8; in particular, we assume knowledge of the
basic definitions, etc. given there.

1 Main Theorems

In this section K will stand for C (the complex numbers), R (the real numbers), Q (the
rational numbers), or Z/pZ (the integers modulo p), while R will stand for any one of the
before sets or Z (the integers). Note that the sets we label with K all have multiplicative
inverses, i.e. are fields.

Our first result is that when we divide polynomials, we can be assured to get a
remainder with degree smaller than our divisor.

Theorem 1.1 (Division with remainder): If f, g ∈ K[x], then there exist polynomials
q, r ∈ K[x] such that deg r < deg g and

f = qg + r.

If f, g ∈ Z[x] and g is monic, then there exist q, r ∈ Z[x] such that deg r < deg g and

f = gq + r.

Proof. This is the division algorithm familiar from high school algebra class. Namely, if
f has leading term axn and g has leading term bxm with n ≥ m, then f − a

b
xn−m has

degree less than f . Thus we can keep subtracting multiples of g from f until the result
has degree less than deg g.

If g is monic, then b = 1 so at each stage we subtracted an integer polynomial multiple
of g, and both the quotient q and the remainder r will have integer coefficients.

Theorem 1.2 (Bézout): Given f, g ∈ R[x], there exists a polynomial h, called the
greatest common divisor and denoted gcd(f, g), such that the following hold:



OMC 2011 Polynomials and Number Theory Lecture 13

1. h divides both f and g.

2. If p divides both f and g then p divides h.

Let f, g ∈ K[x]. There exist polynomials u, v ∈ K[x] so that uf + vg = gcd(f, g).

(Note that h is only determined up to a unit. We’ll “sweep this under the rug” and
allow any choice of h up to that constant.)

To calculate the gcd, we often use the Euclidean algorithm. Given polynomials f and
g, for any polynomial q we have

gcd(f, g) = gcd(g, f − qg).

Supposing deg f ≥ deg g, take q so that f − qg = r has degree less than g, as in the
division algorithm; this reduces the degree of f . Repeating this process decreases the
degrees of the polynomials; we eventually get to gcd(h, 0) in which case the answer is
seen to be h.

Theorem 1.3 (Unique factorization): Every polynomial in R[x] factors uniquely in
R[x], up to constants. In fact, every polynomial in R[x1, . . . , xn] factors uniquely in
R[x1, . . . , xn], up to constants.

We give two more useful results.

Theorem 1.4 (Chinese Remainder Theorem): If polynomials Q1, . . . , Qn ∈ K[x] are
pairwise relatively prime, then the system P ≡ Ri (mod Qi), 1 ≤ i ≤ n has a unique
solution modulo Q1 · · ·Qn.

Theorem 1.5 (Rational Roots Theorem): Suppose f(x) = anx
n+· · ·+a0 is a polynomial

with integer coefficients and with an 6= 0. Then all rational roots of f are in the form

factor of a0
factor of an

.

In particular, if an = ±1, then all rational roots of f are integers.

Here’s a cute application of Bézout’s Theorem:

Example 1.6: Let f, g be polynomials with integer coefficients and with no common
factor. Prove that gcd(f(n), g(n)), n ∈ Z can only attain a finite number of values.

Solution. By Bézout’s Theorem, we have u(x)f(x)+v(x)g(x) = 1 for some u, v ∈ Q[x]
and nonzero. Clearing denominators of u and v, we get u′(x)f(x) + v′(x)g(x) = k for
some u′, v′ ∈ Z[x] and nonzero k ∈ Z. Hence gcd(f(n), g(n)) | k.

1.1 Problems

1. [1] Show by example we cannot always carry out division with remainder in Z[x]
and that Bézout’s Theorem does not hold for Z[x].

2. [1] Compute the greatest common divisors in Z[x]:

(a) gcd(x6 − x5 − x2 + 1, x3 − 2x2 + 2x− 1).

(b) gcd(x12 − 1, x8 + 1).

3. Find the greatest common divisor in Z[x]:

2
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(a) [2] gcd(xn − 1, xm − 1).

(b) [2.5] gcd(xn + 1, xm + 1).

Are your answers the same if we work in (Z/pZ)[x]?

4. [1.5] Let n > 0 be an integer. Find the remainder upon division of xn+xn−1+· · ·+1
by:

(a) x2 + 1.

(b) x2 + x+ 1.

(c) x2 − x+ 1.

5. [2.5] Let f, g be relatively prime polynomials with integer coefficients. Prove that
there exist nonzero polynomials u, v with integer coefficients such that uf + vg = k
where k is a nonzero integer.

Suppose that u1f+v1g = k0 and u1, v1 are integer polynomials with u1 =
∑m

i=0 aix
i, v =∑n

i=0 bix
i, deg(u1) < deg(g), gcd(a0, . . . , am, b0, . . . , bn) = 1. Prove that k0 | k.

6. [3] Let f : Q→ Q satisfy f(f(f(x)))+2f(f(x))+f(x) = 4x. and f(f(· · · f(x))) = x
where f is taken 2009 times. Prove that f(x) = x.

7. [3] (BAMO 2004) Find all polynomials f with integer coefficients taking irrationals
to irrationals.

8. [5] (USAMO 1997/3) Prove that for any integer n, there exists a unique polynomial
Q with coefficients in {0, 1, . . . , 9} such that Q(−2) = Q(−5) = n.

9. [2] For how many integers n is n3+1000
n−10 an integer?

10. [2] Suppose that f and g are integer polynomials such that f(n)/g(n) is an integer
for infinitely many n ∈ Z. Show that as polynomials, g(x) divides f(x).

11. [5] (IMO 2002/3) Find all pairs of integers m > 2, n > 2 such that there are
infinitely many positive integers a for which an + a2 − 1 divides am + a− 1.

2 Arithmetic Properties

In this section we concentrate on polynomials with integer coefficients. The following is
a simple but very useful idea.

Theorem 2.1: If P has integer coefficients, then a− b | P (a)−P (b) for all integers a, b.

Proof. Let m = a− b. Then a ≡ b (mod m). Let P = cnx
n + · · ·+ c1x+ c0. Then

cna
n + · · ·+ c1a+ c0 ≡ cnb

n + · · ·+ c1b+ c0 (mod m)

giving P (a) ≡ P (b) (mod m), as needed.

Here is a typical application. Note the use of the extremal principle.

3
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Example 2.2 (USAMO 1974/1): P (x) is a polynomial with integral coefficients. If a, b, c
are integers so that P (a) = b, P (b) = c, P (c) = a, prove that a = b = c.

Proof. If not, then no two are equal. Without loss of generality, assume that c is between
a and b. Then

|P (a)− P (b)| = |c− b| < |b− a|.

However, b− a | P (b)− P (a), a contradiction.

Example 2.3: Let P be a nonconstant polynomial with integer coefficients. Prove that
there is an integer x so that P (x) is composite.

Proof. Take n so that P (n) is nonzero. Suppose it is prime. For all k ∈ Z, we have
P (n) | P (n+ kP (n))− P (n), and hence P (n) | P (n+ kP (n)) . If P (x) is not composite
for any integer x, then P (n+ kP (n)) is ±P (n) or 0 for all k ∈ Z. P attains one of these
values infinitely many times, so must be constant, a contradiction.

One question we could ask is what values a polynomial can take modulo a given
integer m as x ranges over the residues modulo m. (From Theorem 2.1 we know that the
value modulo m depends only on x modulo m.) We know by the Lagrange Interpolation
formula that we can manufacture a polynomial taking arbitrary values at a given set of
points if we’re allowed to divide—so it works for R,Q, and even Z/pZ. However Lagrange
Interpolation will not work modulom form composite because in general we cannot divide
modulo m (for example, 2 has no inverse modulo 4). For instance, Theorem 2.1 already
tells us that given P (x), P (x+ p) cannot be any residue modulo p2; it can only be those
residues that are congruent to x modulo p.

Example 2.4 (TST 2007/6): For a polynomial P (x) with integer coefficients, r(2i− 1)
(for i = 1, 2, 3, . . . , 512) is the remainder obtained when P (2i − 1) is divided by 1024.
The sequence

(r(1), r(3), . . . , r(1023))

is called the remainder sequence of P (x). A remainder sequence is called complete if it
is a permutation of (1, 3, 5, . . . , 1023). Prove that there are no more than 235 different
complete remainder sequences.

Solution. Step 1
For i ∈ N, let

Pi(x) =
i∏

k=1

(x− (2k − 1)).

(Define P0(x) = 1.) By Problem 7, any polynomial with integer coefficients can be writ-
ten in the form

∑
0≤i≤n ciPi(x).

Step 2
Let ai =

∑∞
k=0

⌊
i
2k

⌋
. We claim that 2ai | Pi(x) for all i ∈ N and all odd x. For a

prime p and n ∈ Z, denote by vp(n) the exponent of the highest power of p dividing
n (by convention vp(0) = ∞). For given odd x let f(α) be the number of values of k
(0 ≤ k ≤ i− 1) where 2α | x− 1− 2k. Then

v2(Pi(x)) =
i−1∑
k=0

v2(x− 1− 2k) =
∞∑
α=1

f(α)

4
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since each k with 2α || x− 1− 2k is counted α times in either sum.
Since any set of 2α−1 consecutive even integers has one divisible by 2α, any set of

i consecutive even integers has at least
⌊

i
2α−1

⌋
integers divisible by 2α. Hence f(α) ≥⌊

i
2α−1

⌋
, and v2(Pi(x)) ≥

∑∞
α=0

⌊
i
2α

⌋
as desired.

Note a0 = 0, a1 = 1, a2 = 3, a3 = 4, a4 = 7, a5 = 8, and ai ≥ 10 for i ≥ 6.

Step 3
Next, we claim that if P (x) =

∑
0≤i≤n ciPi(x) has a complete remainder sequence then

c1 is odd. (c0 obviously needs to be odd.) We have 4 | P (4k+ i)−P (i) for any integer i;
hence r(4k+1) ≡ r(1) (mod 4) and r(4k+3) ≡ r(3) (mod 4) for each k. In order for the
remainder sequence to be complete, we need r(1) 6≡ r(3) (mod 4). But noting that ai ≥ 2
and Pi(x) ≡ 0 (mod 4) for odd x and i ≥ 2, we have P (3)−P (1) ≡ c1(P1(3)−P1(1)) ≡ 2c1
(mod 4). Hence c1 is odd.

Step 4
Since for any odd x, Pi(x) is divisible by 2ai , if we mod out ci by 210−ai , and delete the

terms with Pi for i ≥ 6 (where ai ≥ 10), we get a polynomial with the same remainder
sequence as Pi. If P (x) gives a complete remainder sequence, then c0 is odd, so there
are 29 choices for it; c1 is odd, so there are at most 28 choices for c1 (mod 29) (a1 = 1);
for 2 ≤ i ≤ 5 there are at most 210−ai choices for ci (mod 210−ai). Hence the number of
complete remainder sequences is at most

29 · 28 ·
5∏
i=2

210−αi = 29 · 28 · 27 · 26 · 23 · 22 = 235.

�
Rather than ask about polynomials with integer coefficients, we could ask about

polynomials with integer values, that is P such that P (n) is an integer whenever n is an
integer. It turns out that there is a nice description of such polynomials, as the following
example shows.

Theorem 2.5: Let f(x) ∈ C[x]. Then the following are equivalent:

a. For every x ∈ Z, f(x) ∈ Z.

b. For n+ 1 consecutive integers x, where n is the degree of f , f(x) ∈ Z.

c. There are a0, a1, . . . , an ∈ Z with

f(x) = an

(
x

n

)
+ an−1

(
x

n− 1

)
+ · · ·+ a0

(
x

0

)
.

Here
(
x
n

)
is defined as

xn

n!
=
x(x− 1) . . . (x− (n− 1))

n!

Proof. The assertions (a)⇒ (b) and (c)⇒ (a) are clear (
(
x
i

)
are integers for all integers

x and nonnegative integers i, by combinatorial argument).

5



OMC 2011 Polynomials and Number Theory Lecture 13

Suppose (b) holds. First assume that f(x) takes on integer values at 0, 1, . . . , n. We
inductively build the sequence a0, a1, . . . so that the polynomial

Pm(x) = am

(
x

m

)
+ am−1

(
x

m− 1

)
+ · · ·+ a0

(
x

0

)
matches the value of f(x) at x = 0, . . . ,m. Define a0 = f(0); once a0, . . . , am have been
defined, let

am+1 = f(m+ 1)− Pm(m+ 1).

Noting that
(

x
m+1

)
equals 1 at x = m+ 1 and 0 for 0 ≤ x ≤ m, this gives Pm+1(x) = f(x)

for x = 0, 1, . . . ,m + 1. Now Pn(x) is a degree n polynomial that agrees with f(x) at
x = 0, 1, . . . , n, so they must be the same polynomial.

Now if f takes on integer values for any n+ 1 consecutive values m, . . . ,m+ n, then
by the argument above on f(x−m), f(x) takes on integer values for all x; in particular,
for x = 0, 1, . . . , n. Use the above argument to get the desired representation in (c).

The key idea here in both examples that once we know that P (x) = R(x) at some
points x1, . . . , xn, then we can write

P (x) = R(x) + (x− x1) · · · (x− xn)Q(x). (1)

When we’re working over Q or R, (1) doesn’t put a restriction on other values of P , but
when we’re working over Z or Z/mZ, then it does. For instance, if we’re working over Z
and x1, . . . , xn are integers, then we know P (x) and R(x) have to differ by a multiple of
(x− x1) · · · (x− xn).

2.1 Problems

1. [1] Suppose P is a polynomial with integer coefficients such that P (0) and P (1) are
both odd. Show that P has no integer root.

2. [2] (Schur) Let P be a nonconstant polynomial with integer coefficients. Prove that
the set of primes dividing P (n) for some integer n is infinite.

3. [2] Polynomial P (x) has integer coefficients, and satisfies P (2) = 18 and P (3) = 20.
Find all possible integer roots of P (x) = 0.

4. [3] (Putnam 2008) Let p be prime. Let h(x) be a polynomial with integer co-
efficients such that h(0), h(1), . . . , h(p2 − 1) are distinct modulo p2. Show that
h(0), h(1), . . . , h(p3 − 1) are distinct modulo p3.

5. [4] (IMO 2006/5) Let P (x) be a polynomial of degree n > 1 with integer coefficients
and let k be a positive integer. Consider the polynomial

Q(x) = P (P (· · ·P (P︸ ︷︷ ︸
k times

(x)))).

Prove that there are at most n integers such that Q(t) = t.

6
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6. [4] (MOSP 2001) Let f be a polynomial with rational coefficients such that f(n) ∈ Z
for all n ∈ Z. Prove that for any integers m,n, the number

lcm[1, 2, . . . , deg(f)] · f(m)− f(n)

m− n
is an integer.

7. [2] (Helpful for the next few problems) Let f(x) ∈ R[x], and let p0, p1, . . . be a se-
quence of polynomials whose leading coefficients u0, u1, . . . are units (i.e. invertible),
and deg(pi) = i. Show that f can be uniquely written in the form

f(x) = anpn(x) + . . .+ a1p1(x) + a0p0(x).

In particular, this is true for pi(x) = xi = x(x− 1) · · · (x− i+ 1).

8. [2.5] How many polynomials of degree at most 5 with integer coefficients satisfy
0 ≤ P (x) < 120 for x = 0, 1, 2, 3, 4, 5?

9. [4] (USAMO 1995/4) Suppose q0, q1, q2, . . . is an infinite sequence of integers satis-
fying the following two conditions:

(a) m− n divides qm − qn for m > n ≥ 0,

(b) there is a polynomial P such that |qn| < P (n) for all n.

Prove that there is a polynomial Q such that qn = Q(n) for each n.

10. [5] (TST 2008/9) Let n be a positive integer. Given an integer coefficient polynomial
f(x) define its signature modulo n to be the ordered sequence f(1), . . . , f(n) modulo
n. Of the nn such n-term sequences of integers modulo n, how many are the
signature of some polynomial f(x) if n is a positive integer not divisible by the
cube of a prime? (Easier variant: if n is not divisible hy the square of a prime)

11. [5] (variant of TST 2005/3) For a positive integer n, let S denote the set of poly-
nomials P (x) of degree n with positive integer coefficients not exceeding n!. A
polynomial P (x) in set S is called fine if for any positive integer k, the sequence
P (1), P (2), P (3), . . . contains infinitely many integers relatively prime to k. Prove
that the proportion of fine polynomials is at most∏

prime p≤n

(
1− 1

pp

)
.

(Original statement: Prove that between 71% and 75% of the polynomials in the
set S are fine.)

12. [5] Suppose f(x) is a polynomial of degree d taking integer values such that

m− n | f(m)− f(n)

for all pairs of integers (m,n) satisfying 0 ≤ m,n ≤ d. Is it necessarily true that

m− n | f(m)− f(n)

for all pairs of integers (m,n)?

7
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3 Polynomials in Number Theory

We give an interesting application of polynomials to number theory. Recall the following.

Theorem 3.1 (Vieta’s Theorem): Let r1, . . . , rn be the roots of
∑n

i=0 aix
i, and let

sj =
∑

1≤i1<...<ij≤n

ri1 · · · rij .

Then sj = (−1)j
an−j
an

.

Theorem 3.2 (Wolstenholme): Prove that
(
pa
pb

)
≡
(
a
b

)
(mod p3) for prime p ≥ 5.

Proof. By Fermat’s Little Theorem, xp−1 ≡ 1 (mod p). Thus in Z/pZ,

xp−1 − 1 ≡
p−1∏
i=1

(x− i) (mod p). (2)

Write (x− 1)p−1 =
∑p−1

i=0 aix
i. Then matching coefficients on both sides of (2) gives

ai ≡ 0 (mod p) for all 1 ≤ i < p− 1. (3)

Since p ≥ 5, letting x = p gives

(p− 1)! = (x− 1)p−1 = pp−1 +

(
p−2∑
i=2

aip
i

)
+ a1p+ (p− 1)!

since (−1)(−2) · · · (−p + 1) = (−1)p−1(p − 1)! = (p − 1)!. Subtracting (p − 1)! on both
sides,

0 = pp−1 +

(
p−2∑
j=2

aip
i

)
+ a1p.

Using (3), p3 | aipi for 2 ≤ i < p− 1. Hence, since p ≥ 5, p3 | pp−1 +
∑p−2

i=2 aip
i. Since p3

divides the LHS, p3 | a1p and p2 | a1. Now p3 | (kp)p−1 +
(∑p−2

i=2 ai(kp)
i
)

as well and we
get

(kp− 1)p−1 = (x− 1)p−1|x=pk

= (kp)p−1 +

(
p−1∑
j=2

ai(kp)
i

)
+ a1kp+ (p− 1)!

≡ (p− 1)! (mod p3). (4)

Now, (
pa

pb

)
=

(pa)pb

(pb)!

=

∏a
i=a−b+1[(pi)(pi− 1)p−1]∏b
i=1[(pi)(pi− 1)p−1]

=
ab

b!

[
b∏
i=1

[p(i+ a− b)− 1]p−1

(pi− 1)p−1

]
(5)

By (4), [p(i + a− b)− 1]p−1 ≡ (pi− 1)p−1 (mod p3). Hence (5) becomes
(
a
b

)
modulo p3,

as needed.

8
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3.1 Problems

1. [3] Prove that for prime p ≥ 5,

p2|(p− 1)!

(
1 +

1

2
+ · · ·+ 1

p− 1

)
.

2. [3.5] (APMO 2006/3) Prove that for prime p ≥ 5,
(
p2

p

)
≡ p (mod p5).

3. [3.5] (ISL 2005/N3) Let a, b, c, d, e, f be positive integers. Suppose that the sum
S = a+ b+ c+ d+ e+ f divides both abc+ def and ab+ bc+ ca− de− ef − fd.
Prove that S is composite.

4. [5] (China TST 2009/3) Prove that for any odd prime p, the number of positive

integers n satisfying p | n! + 1 is less than or equal to cp
2
3 , where c is a constant

independent of p.1

5. [4-5] (TST 2002/2) Let p be a prime number greater than 5. For any positive integer
x, define

fp(x) =

p−1∑
k=1

1

(px+ k)2
.

Prove that for all positive integers x and y the numerator of fp(x) − fp(y), when
written in lowest terms, is divisible by p3.

4 Unique Factorization

We prove that when K be a field, unique factorization holds in K[x]. It is the same
strategy used to prove that integers can be factored uniquely. (For definitions of ring,
field, and integral domain, see Lecture 8.)

First, we define what exactly unique factorization means. Let R be an integral domain.

Definition 4.1: An element a ∈ R is irreducible if it is not a unit, and its only factors
are units and associates. A unit is an invertible element in R, while an associate of a is
a unit times a.

For the positive integers we often just say a is irreducible if a 6= 1, and its only factors
are 1 and itself. However, if we work with the integers, then there will also be the factors
−1 and −a, and we don’t want to view these as different. For example, 5 is irreducible
over the integers because its only factors are units, ±1, and associates, ±5.

Definition 4.2: A unique factorization domain (UFD) is a integral domain where
factoring terminates and every nonzero, nonunit element factors uniquely into irreducible
elements. That is, if

a = p1 . . . pm = q1 . . . qn,

and p1, . . . , pm, q1, . . . , qn are irreducible elements, then m = n and we can reorder the
qi’s so that pi is an associate of qi, for each i.

1Hint: A polynomial of degree n over a field (such as Z/pZ) can have at most n zeros.

9
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For example, we regard 6 = 2 · 3 = −2 · −3 as the same factorization.
Unique factorization doesn’t hold for all domains—for example, consider Z[

√
−5], that

is, numbers of the form a+ b
√
−5. Then

(1 +
√
−5)(1−

√
−5) = 6 = 2 · 3

are two factorizations of 6 into irreducible elements.
The notion of a prime is related to that of an irreducible element. People use them as

synonyms in elementary math—because they coincide for the integers—but the distinc-
tion between them will be quite important for us.

Definition 4.3: A prime in R is an element p, not a unit, such that if p|ab then p|a or
p|b.

This tells us that if a prime p divides a, then no matter how we factor a, we can’t
avoid p dividing one element of a. The connection between primes, irreducibles, and
unique factorization is given by the following.

Lemma 4.4: If R is a ring where factoring terminates, and every irreducible element is
prime, then R is a UFD. Conversely, in a UFD, every irreducible element is prime.

Proof. Suppose a = p1 . . . pm = q1 . . . qn are two factorizations into irreducible elements.
Since p1 is irreducible, it is prime, and hence must divide one of the qi. Since qi is
irreducible, its only factors are units and associates, so p1 must be associated with qi.
Then we can cancel them, leaving a unit. Repeating this process, every factor in the left
factorization is paired with one in the right factorization.

For the converse, suppose p is irreducible and p|ab. Then pd = ab for some d. Factoring
a, b, and d shows that p must divide one of the factors of a or b by unique factorizaton.

(Note that primes are always irreducible, because if p = ab were a proper factorization,
then p - a and p - b.)

The main strategy for proving unique factorization is the following.

1. Show that the ring R in question (here, K[x]) admits division with remainder,
with some measure of size so that the remainder is smaller than the quotient.

2. Show that if we have division of remainder, then greatest common divisors exist,
and moreover that they have the nice property given by Bézout’s Theorem.

3. Show that this implies that all irreducible elements are prime, and hence R is a
UFD.

The advantage of such an abstract approach lies in the fact that it works for a variety of
different number systems. In particular, once we’ve shown items 2 and 3, then given any
ring, we only have to show that we can have division with remainder, and it will follow
that it is a UFD. This simultaneously shows unique factorization for Z, K[x], and even
Z[i] = {a+ bi|a, b ∈ Z}.2

In the language of abstract algebra, the above steps are phrased as follows:

1. R is an Euclidean domain.

2The converse is not true; a UFD is not necessarily a PID or Euclidean domain. For example

Z[ 1+
√
−163
2 ] is a UFD but not an Euclidean domain.

10



OMC 2011 Polynomials and Number Theory Lecture 13

2. An Euclidean domain is a principal ideal domain.

3. A principal ideal domain is a unique factorization domain.

We now carry out this program.

4.1 Step 1: Euclidean domains

Definition 4.5: An integral domain R is an Euclidean domain if there is a function
| · | : R→ N0 (called the norm) such that the following hold.

1. |a| = 0 iff a = 0.

2. For any nonzero a, b ∈ R there exist q, r ∈ R such that b = aq + r and |r| < |a|.

Note that both the integers Z and K[x] are Euclidean domains. The norm on Z
is simply the absolute value, while the norm on K[x] is the degree of the polynomial.
Theorem 1.1 shows that K[x] is an Euclidean domain.

4.2 Step 2: Euclidean domain =⇒ PID

We’d like to prove Bézout’s Theorem for an Euclidean domain, that given a, b in R
there exists a greatest common divisor g and s, t so that as + bt = g. Rather than
thinking of this as an equation in variables s, t, we can think of it as an equation in sets
(a) and (b), where (x) denotes the set of multiples of x. For two sets S, T we define
S + T = {s+ t|s ∈ S, t ∈ T}; then it turns out what we want is

(a) + (b) = (g).

(See Lemma 4.8 below.)

Definition 4.6: An ideal in a ring R is a subset I such that if a, b ∈ I then ra, a+ b ∈ I
for any r ∈ R. A principal ideal is an ideal generated by one element, that is, there is a
a such that I = {ra|r ∈ R}. We write I = (a).

A principal ideal domain (PID) is a integral domain where every ideal is principal.

Theorem 4.7: An Euclidean domain is a PID.

Proof. Let R be an Euclidean domain, I ⊆ R and ideal, and b be the nonzero element of
smallest norm in I. Suppose a ∈ I. Then we can write a = qb + r with 0 ≤ r < |b|, but
since b has minimal nonzero norm, r = 0 and b|a. Thus I = (b) is principal.

Lemma 4.8: A PID satisfies Bézout’s Theorem.

Proof. Let R be a PID. Since every ideal in R is principal, for every a, b (not both 0) we
have (a) + (b) = (d) for some d ∈ R. (Note the sum of two ideals is an ideal—check this
for yourself.) This says there exist s, t ∈ R such that

as+ bt = d.

From this, any divisor of a, b must divide d. Furthermore, d must divide both a and b
since a = a+ 0 and b = 0 + b are both in (a) + (b) = (d). In other words, d is the greatest
common divisor of a, b.

11
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4.3 Step 3: PID =⇒ UFD

Theorem 4.9: A PID is a UFD.

Proof. Suppose p is irreducible; we show p is prime. Suppose p|ab but p does not divide
a. Then using Bezout’s Theorem and the fact that a and p are relatively prime, we get
as+ pt = 1 for some s, t. Multiply by b to get

abs+ ptb = b.

Since p|ab|abs, p|ptb, we have p|b. This shows that irreducible elements are prime in Z.
It remains to show factoring terminates.3 Otherwise, there would be an infinite se-

quence of nonassociated elements a1, a2, . . . ∈ R such that ai+1|ai. Then (a1) ⊂ (a2) ⊂
· · · . However,

⋃
i≥1(ai) is an ideal, so it is principal, say generated by b. Then b ∈ (ai)

for some i; this implies that (b) = (ai). Hence (ai) = (ai+1) = · · · , a contradiction.
Since irreducible elements are prime and every nonzero element of R factors into

irreducibles, R is a UFD.

Corollary 4.10: Z and K[x] are UFDs.

4.4 Gauss’s argument

We’ve shown that K[x] is a UFD, but the argument above does not show that Z[x] is a
UFD, because division with remainder fails for Z[x]. We will need a further argument.
The basic idea is that a polynomial factors in Z[x] the same way it does in Q[x], except
with its factors adjusted by constants so the coefficients are in Z.

Let R be a UFD and let K be the field of fractions of R. That is, K consists of the
numbers a

b
where a, b ∈ R and b 6= 0, and we say a

b
= c

d
iff ad = bc. For example, Q is

the field of fractions for Z.

Definition 4.11: A nonzero polynomial f ∈ R[x] is said to be primitive if all its
coefficients do not have a common proper divisor; equivalently, there does not exist a
prime p ∈ R such that p|f .

Lemma 4.12: If R is an integral domain, then so is R[x].

Proof. Take any p, q ∈ R[x] not equal to 0. We can write

p =
m∑
i=0

aix
i, am 6= 0

q =
n∑
i=0

bix
i, bn 6= 0

Then the leading coefficient of pq is ambnx
m+n. It is nonzero because since R is an integral

domain, am, bn 6= 0 imply that ambn 6= 0. Hence pq 6= 0. This shows that R[x] is an
integral domain.

3This argument is not needed for our purposes: Both Z and K[x] are Euclidean domains, and fac-
toring must terminate for them because factors always have smaller norm (absolute value and degree,
respectively).

12
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Lemma 4.13 (Gauss’s lemma): (A) An element of R is prime in R[x] iff it is a prime in
R. Hence if a prime p of R divides a product fg of polynomials in R[x], then p|f or p|g.
(B) The product of primitive polynomials in R[x] is primitive.

Proof. If p ∈ R is nonzero, and a prime in R[x], then it is a prime in the subring R.
Conversely, let p be any prime element in R. Then R/(p) is an integral domain4 so

by lemma 4.12, R/(p)[x] is an integral domain.
Suppose p|fg for f, g ∈ R[x]. Then in R/(p)[x], fg = fg = 0. Since R/(p)[x] is an

integral domain, either f = 0 or g = 0. In other words, either p|f or p|g in R[x]. Thus p
is a prime in R[x].

If f, g are primitive, then p - f and p - g for all primes p ∈ R. Since p is also prime in
R[x], p - fg. Hence fg is not divisible by any prime in R, and it is primitive.

Lemma 4.14: Every nonconstant polynomial f ∈ K[x] can be written uniquely (up to
multiplication by units) in the form f = cf0, where c ∈ K and f0 is a primitive polynomial
in R[x].

Proof. Each coefficient ai of f is in the form pi
qi

, where pi, qi ∈ R. We can find a nonzero

t ∈ R such that t is divisible by each denominator (for, example, take t to be the product
of the denominators). Then we can write

tf = f1,

where f1 ∈ R[x]. Let s ∈ R be a greatest common divisor of the coefficients of f1. Then
we have

f =
s

t
f0

in K[x] where f0 ∈ R[x] and the coefficients of f0 have no common divisor. This gives
the desired representation.

Next we check uniqueness. Suppose

f = cf0 = c′f ′0,

where c, c′ ∈ K and f0, f
′
0 ∈ R[x] are primitive. Multiply by an element of R to “clear

denominators,” to reduce to the case where c, c′ ∈ R. Now take any prime p|c. Since p
is prime in R[x], p|c′ or p|f ′0. The second is impossible since f ′0 is primitive. Hence p|c′,
and we can cancel p. Continuing in this way, we get that c and c′ share the same prime
factors with the same multiplicities. Hence c, c′ are associates.

Lemma 4.15: Let f0 be a primitive polynomial and let g ∈ R[x]. If f0|g in K[x] then
f0|g in R[x].

Proof. If f0|g in K[x], then we can write g = f0h where h ∈ K[x]. We need to show
h ∈ R[x]. By lemma 4.14, we can write h = ch0, where c ∈ K and h0 is primitive. Then
g = cf0h0. By lemma 4.13, the product f0h0 of primitive polynomials is primitive. We

4If I is an ideal, then R/I is the quotient ring: Two elements a, b in R are considered to be the same
in R/I if they differ by an element in I. Keep in mind the example R = Z; then R/(p) is simply the
integers modulo p.

Now R/(p) is an integral domain, because if ab = 0 in R/(p), then ab ∈ (p), i.e. p divides one of a, b.
But since p is prime either p|a or p|b, which translates back into a = 0 or b = 0 in R/(p).

13
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can write c = s
t
, where s, t ∈ R have no common factors. If a prime p in R divides the

denominator t then p - s so p|f0h0, contradicting the fact that f0h0 is primitive. Hence t
is a unit, and c ∈ R. Then h = ch0 ∈ R[x], so f0|g in R[x].

Lemma 4.16: Let f be a nonzero element of R[x]. Then f is an irreducible element of
R[x] iff it is an irreducible element of R or a primitive irreducible polynomial in K[x].

Proof. If f ∈ R, then the only factors of f in R[x] are in R, so f is irreducible in R iff it
is irreducible in R[x]. This proves the lemma for f ∈ R. Now suppose f 6∈ R.

If f ∈ R[x] is a primitive polynomial irreducible in K[x], then it is irreducible in R[x].
If f ∈ R[x] is not primitive, then it is reducible in R[x]. Thus it suffices to show if

f ∈ R[x] is reducible in K[x], then it is reducible in R[x]. Suppose f ∈ R[x], and f = gh
is a proper factorization of f in K[x]. We can write g = cg0, h = c′h0 where c, c′ ∈ K and
g0, h0 are primitive. Since g0 and h0 are both primitive, so is g0h0. Then f = cc′(g0h0),
so by uniqueness in lemma 4.14, cc′ must be in R (and is the gcd of the coefficients of f).
Thus f = (cc′)g0h0 is a proper factorization of f in R[x] as well, as needed.

Theorem 4.17: The ring R[x] is a unique factorization domain.

Proof. It suffices to show that every irreducible element f of R[x] is a prime element,
and that factoring terminates. By Lemma 4.16, f is either irreducible in R or a primitive
irreducible polynomial in K[x]. In the first case f is prime in R (R is a UFD) and hence
prime in R[x] by Lemma 4.13.

In the second case, f is primitive irreducible in K[x], thus a prime in K[x], since K[x]
is a UFD. Hence f |g or f |h in K[x]. By Lemma 4.15, f |g or f |h in R[x]. This shows f
is prime.

A polynomial f ∈ R[x] can only be the product of at most deg(f) many polynomials
pi of positive degree in R[x] because the sum of the degrees of the pi must equal deg(f).
Factor terminates for the factors of f in R because factoring terminates in the UFD R,
and the primes in R dividing f are the primes dividing every coefficient of f .

Hence R[x] is a UFD.

Corollary 4.18: Z[x] is a UFD.
If R is a UFD then R[x1, . . . , xn] is a UFD.

Proof. Since Z is a UFD, so is Z[x]. The second statement follows from Theorem 4.17
by induction.

4.5 More Proofs

Theorem 4.19 (Chinese Remainder Theorem): If polynomials Q1, . . . , Qn ∈ K[x] are
pairwise relatively prime, then the system P ≡ Ri (mod Qi), 1 ≤ i ≤ n has a unique
solution modulo Q1 · · ·Qn.

Proof. Let Q = Q1 · · ·Qn. Note Qi and Q
Qi

are relatively prime. Hence by Bézout’s
Theorem there exist fi and gi so that

fiQi + gi
Q

Qi

= 1.

14
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Now

(1− qifi)Ri = Rigi
Q

Qi

is congruent to Ri modulo Qi, and zero modulo Qj for j 6= i. Hence

P =
n∑
i=1

(1− qifi)Ri

is the desired polynomial.
For uniqueness, suppose P1 and P2 satisfy the conditions of the problem. Then

P1 − P2 is zero modulo Qi. Since the Qi are pairwise relatively prime, P1 − P2 ≡ 0
(mod Q1 · · ·Qn).

Theorem 4.20 (Rational Roots Theorem): Suppose that R is a UFD and K its fraction
field. (For instance, take R = Z and K = Q.) Suppose f(x) = anx

n + · · · + a0 ∈ R[x]
and an 6= 0. Then all roots of f in K are in the form

factor of a0
factor of an

.

In particular, if an = ±1, then all roots of f in K are actually in R.

Proof. Write x = r
s

in simplest terms. Then multiplying through by sn gives

an

(r
s

)n
+ · · ·+ a1

(r
s

)
+ a0 = 0

anr
n = −s(an−1rn−1 + · · ·+ a1rs

n−2 + a0s
n−1).

Since s and r have no common factor, s must divide an. (This uses the fact that R is a
UFD—how?). Rewriting as

a0s
n = −r(anrn−1 + · · ·+ a1s

n−1)

makes it clear r divides a0.

Remark 4.21: In particular, if an = 1, then all roots of f in K are in R. A ring is said
to be normal if whenever t ∈ K is a root of a monic polynomial in R[x], then t ∈ R.
Thus the above shows that UFDs are normal.

4.6 Problems

1. (Bézout bound) Let f(x, y), g(x, y) ∈ C[x, y]. Prove that either f, g have a constant
nonzero factor, or they have finitely many zeros (x, y) in common. (Hard: They
have at most deg(f) deg(g) common zeros.)

2. For a field K, let K(x) be the field of rational functions, that is,

K(x) =

{
p

q
| p, q ∈ K[x]

}
.

Let f and g be rational functions such that f(g(x)) = x. Prove that f and g are
both in the form ax+b

cx+d
with ad 6= bc.
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