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In this lecture we’ll develop some common problem-solving techniques in combina-
torics, and see how they apply to problems with a number theoretic flavor. Finally,
we’ll prove some classic theorems in combinatorial number theory such as the Cauchy-
Davenport Theorem on additive sets modulo p and Van der Waerden’s Theorem on
monochromatic arithmetic progressions.

1 Pigeonhole Principle

The Pigeonhole Principle will be our first main strategy.

Theorem 1.1 (Pigeonhole/Box Principle): Suppose there are more than kn objects
divided into n categories. Then some category must have more than k objects.

Proof. If all of the categories have at most k objects, then there can only be at most kn
objects.

Think of the objects as pigeons and the categories as holes.

Figure 1: From http://en.wikipedia.org/wiki/File:TooManyPigeons.jpg

There are two basic questions to ask when applying the pigeonhole principle:

1. What are the pigeons?
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2. What are the holes?

Often the solution to a difficult problem hinges on the correct answer to these two ques-
tions; sometimes the pigeons and boxes have to be chosen in creative ways!

Example 1.2: Let A be a set of n integers. Prove that A contains a subset such that
the sum of its elements is divisible by n.

Proof. Label the elements of A as a1, . . . , an. Define the partial sums

s0 = 0

s1 = a1

s2 = a1 + a2
...

...

sn = a1 + a2 + · · ·+ an.

Since there are n + 1 numbers and n possible residues modulo n, by the Pigeonhole
Principle two of them, say si and sj, have the same residue modulo n. Suppose without
loss of generality that i < j. Then

sj − si = ai+1 + · · ·+ aj

is divisible by n, as needed.
Here the pigeons are the partial sums, and the holes are the residues modulo n. Note

that we considered the partial sums, so that the difference of two of them is a sum of
elements of A.

Theorem 1.3 (Dirichlet/Kronecker): Let a be a real number and ε > 0. Then there
exists a positive integer p and an integer m such that |pa−m| < ε.

In other words, given any number, we can find a multiple of it that is as close to an
integer as we want.

Proof. Equivalently, we want to find p such that {pa} is either in [0, ε) or (1 − ε, 1),
because then we could either set m = bpac, (pa rounded down to the nearest integer) or
m = dpae (pa rounded up to the nearest integer). Hence we just focus on the fractional
parts of the multiples of a. We note that if {pa} and {qa} are close together, then |p−q|a
will be close to an integer. We make this precise below.

Choose an integer N such that N ≥ 1
ε
. The elements {pa} for 1 ≤ p ≤ N + 1 fall in

one of the N intervals [
0

N
,

1

N

)
,

[
1

N
,

2

N

)
, . . . ,

[
N − 1

N
,
N

N

)
.

By the Pigeonhole Principle, two of the {pα} fall in the same interval, say pα and qα.
Then {|p− q|α} ∈

[
0, 1

N

)
∪
(
N−1
N
, 1
)
⊆ [0, ε) ∪ (1− ε, 1), as needed.

In this problem the pigeons are the fractional parts and the holes are the intervals
above.

Remark 1.4: The above proof shows that one of the numbers a, . . . , Na is at most a
distance of 1

N
away from an integer. Can you show that in fact one of the numbers

a, . . . , (N − 1)a is at most at distance of 1
N

from an integer?
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Problems 1

1. Prove that if one chooses more than n numbers from the set {1, 2, 3, ..., 2n}, then

(a) two of them are relatively prime, and

(b) one number is a multiple of another.

2. Prove that for every n, there is a nonzero Fibonacci number divisible by n. (The
Fibonacci numbers are defined by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn.)

3. A set S of distinct integers each of which is greater than or equal to 1 and less than
or equal to n is given.

(a) If S consists of
⌊
n
2

⌋
+ 1 elements, is it possible that no element of S is the sum

of two distinct elements of S?

(b) If S consists of
⌊
n
2

⌋
+ 2 elements, prove that the largest element of S is the

sum of 2 distinct elements of S and the smallest element is the difference of
two distinct elements of S.

(c) Find the smallest positive integer m (in terms of n) such that if S has m
elements, then some element of S is the sum of 3 distinct elements of S.

4. Prove that any subset of {1, . . . , n} with at least
⌊
n+k
2

⌋
+ 1 elements contains two

elements differing by k.

5. (Putnam 2006/B2) Prove that for every set X = {x1, . . . , xn} of real numbers, there
exists a non-empty subset S of X and an integer m such that∣∣∣∣∣m+

∑
s∈S

s

∣∣∣∣∣ ≤ 1

n+ 1
.

6. (IMO 1972/1) Let S be a set of 10 arbitrary 2-digit numbers. Prove that one can
find two disjoint subsets of S with the same sum of elements.

7. (Romania) Find the greatest positive integer n with the following property: there
exist n nonnegative integers x1, x2, . . . , xn, at least one different from zero, such
that for any numbers a1, a2, . . . , an ∈ {−1, 0, 1}, at least one different from zero, n3

does not divide a1x1 + a2x2 + . . .+ anxn.

8. Given 25 positive integers all of whose prime factors are in the set {2, 3, 5}, prove
that there are 4 numbers whose product is the 4th power of an integer.

9. Let a1, . . . , an be real numbers. Show that for any ε > 0 there exists a positive
integer p and integers mi so that

|pai −mi| < ε

for all i.

10. For a positive real number a, let Sa = {bnac |n ∈ N}. Do there exist a, b, c such
that Sa, Sb, and Sc are disjoint? (Hint: Use the previous problem.)
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11. Let S be a set of n positive integers, and let m be a positive integer. Prove that
there are at least 2n−m+1 subsets of S with sum of elements divisible by m. Include
the empty set in your count.

12. (Romania 1996) Let n be an integer greater than 2 and let S be a 3n2 - element
subset of the set {1, 2, . . . , n3}. Prove that one can find nine distinct numbers
a1, a2, . . . , a9 in S such that the system

a1x+ a2y + a3z = 0

a4x+ a5y + a6z = 0

a7x+ a8y + a9z = 0

has a solution (x0, y0, z0) in nonzero integers.

13. ([6, §7.4]) Let A be a subset of the nonnegative integers N0 containing 0. Let
A(n) denote the number of nonzero elements of A that are at most n, i.e. A(n) =
|A ∩ [1, n]|. Define the Shnirel’man density of A to be1

σ(A) = inf
n≥1

A(n)

n
.

For two sets A,B, define the sumset to be all possible sums of an element in A and
an element in B:

A+B = {a+ b | a ∈ A, b ∈ B}.

(The difference A−B is defined similarly.) Define

nA = A+ · · ·+ A︸ ︷︷ ︸
n

,

i.e. nA consists of numbers that are the sum of n elements of A. We say that A is
a basis of order n if nA = N0. Prove the following:

Theorem 1.5 (Shnirel’man): If σ(A) > 0 then A is a basis of finite order.

Hints:

(a) Show that if σ(A) + σ(B) ≥ 1, then A+B = N0. Conclude that if σ(A) ≥ 1
2
,

then A is a basis of order 2.

(b) Prove that σ(A+ B) ≥ σ(A) + σ(B)− σ(A)σ(B). (Note: it is true, although
harder to prove, that σ(A+B) ≥ min(1, σ(A) + σ(B)).)

(c) Using (b), show that there exists m so that σ(mA) ≥ 1
2
, and using (a), conclude

the theorem.

Shnirel’man density can be used to give a proof of a weaker form of Goldbach’s
conjecture: There exists n so that every integer greater than 1 is the sum of at
most n primes. Letting A be the set of sums of two primes along with 0 and 1, the
first step is showing that A has positive Shnirel’man density. See [6, §7.5].

1The infimum of a set is like the minimum of the set. It is defined as the greatest lower bound for
the set, so unlike the minimum it is always defined. For example, the infimum of the set S = {x|x > 0}
is 0; however the minimum does not exist, because 0 is not in the set itself.
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2 Counting in Two Ways and Probability

Example 2.1: Prove that the set {1, 2, . . . , 2010} can be colored with two colors such
that each of its (nonconstant) arithmetic sequences with 18 terms is not monochromatic.

Proof. It is difficult to explicitly describe such a coloring! Indeed, any coloring we de-
scribe, short of writing out the colors of every single number, will probably have some
pattern to it, and here we want a “disorderly” coloring, one in which long arithmetic
sequences do not have the same color. So instead, we take an indirect approach.

For a coloring C of {1, 2, . . . , 2010} with 2 colors, let f(C) be the number of distinct
nonconstant monochromatic 18-term arithmetic sequences resulting from the coloring.
We want to prove that f(C) = 0 for some coloring C. Consider the sum of f(C) over all
colorings,

∑
C f(C). We will express this sum in another way.

Note that this sum counts the number of pairs (C, {an}18n=1) where C is a coloring of
{1, . . . , 2010} and {an}18n=1 is an 18-term arithmetic sequence monochromatic under C,
by summing over C. We can instead count the number of such pairs by summing over
all valid sequences. To do this we need to answer two questions.

1. How many 18-term arithmetic sequences with values in {1, 2, . . . , 2010} are there?
Suppose the common difference is d, where 1 ≤ d ≤

⌊
2010−1

17

⌋
= 118. In order for

the sequence to have values in {1, . . . , 2010}, we must have a+ 17d ≤ 2010, giving
1 ≤ a ≤ 2010− 17d, i.e. there are 2010− 17d possibilities for a. Summing over d,
the total number of valid sequences is

118∑
d=1

(2008− 17d) =
118

2
(1993 + 4) = 117823.

2. For a given arithmetic sequence, in how many colorings is it monochromatic? The
answer is the same for all sequences: 2 · 22010−18 = 22010−17, since we can color the
sequence in one of 2 colors, and each of the remaining 2010 − 18 elements can be
colored in one of 2 ways.

Thus ∑
C

f(C) = 117823 · 22010−17 < 217 · 22010−17 = 22010.

Since there are 22010 colorings, this means that we must have f(C) < 1 for some C. Then
f(C) = 0, and that C is our desired coloring. (In other words, the number of instances
where a monochromatic 18-term arithmetic sequence appears in a coloring is less than
the number of colorings, so one coloring must have no such sequence.)

It is instructive to look at the above proof in another way, through a more prob-
abilistic lens. We could ask ourselves, what is the expected value of the number of
monochromatic arithmetic sequences, if each number is colored with one of the two col-
ors independently with probability 1

2
? If we prove that the expected value is less than 1,

then we are done. Given a sequence, there is a 1
217

chance that it will be monochromatic
in our coloring, so

E(f(C)) =
117823

217
,

which is less than 1, as needed.
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The two arguments are essentially the same, though there are times when the proba-
bilistic viewpoint is more natural, and furthermore, it allows more advanced probability
theory to be used (see problem 4).

Problems 2
1. For which n does there exist a permutation σ of 1, . . . , n such that σ(i)+ i (mod n)

are all distinct?

2. (ISL 1999/C4) Let A be a set of N residues modulo N2. Prove that there exists a
set B of N residues modulo N2 such that the set A+B contains at least half of all
residues modulo N2. (See Problem 1.12 for an explanation of the notation.)

3. (Erdős, 1965; TST 2001/3) A set A is called sum-free if there do not exist a, b, c ∈ A
(not necessarily distinct) such that a+ b = c. Prove that every set A of n nonzero
integers contains a sum-free subset of size greater than n

3
.

4. ([7, §1]) For a set A ⊆ N0, let rA(n) denote the number of ways to write n as a
sum of two elements of A (order matters). Prove that there exists a basis A ⊆ N0

of order 2 such that rA(n) = Θ(lnn).2 We say such a basis is a thin basis because
it is believed be “smallest” possible basis of order 2. Hints:

(a) Define a set B ⊆ N0 randomly by putting each n ∈ N into B independently

with probability min
(
C
√

lnn
n
, 1
)

, where C is to be chosen later. For a state-

ment S depending on B, define I(S) to be 0 if S is not true, and 1 if S is true.
Let

r′B(n) =
∑

1≤i<n/2

I(i ∈ B)I(n− i ∈ B).

Then we have that
rB(n) = 2r′B(n) + a

where a = 0 or 1. (Why?) Show that the expected value satisfies

E(r′B(n)) = Θ(C2 lnn).

(b) Prove the following lemma.

Lemma 2.2 (Borel-Cantelli): Let E1, E2, . . . be a sequence of events such that∑
n≥1 P (En) is finite. Then there is probability 1 that only finitely many of

the events occur.

(c) Using the following theorem from probability, show that for some choice of C
there are positive constants c1, c2, k such that

P (c1 lnn ≤ r′B(n) ≤ c2 lnn) ≤ k

n2
.

Theorem 2.3 (Chernoff’s inequality): Suppose that X is a sum of indepen-
dent random variables each of which takes the value 0 or 1. Then for any
ε > 0,

P (|X − E(X)| ≥ εE(X)) ≤ 2e−min(ε2/4,ε/2)E(X).

(d) Use (b) to finish the proof.

2For two functions f, g defined on N, we say that f(n) = Θ(g(n)) if there exist positive constants
c1, c2 such that c1g(n) ≤ f(n) ≤ c2g(n) for all n.
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3 Additive Sets

The Cauchy-Davenport Theorem tells us the minimal size of a sumset in Z/pZ.

Theorem 3.1 (Cauchy-Davenport): If p is prime, and A,B are nonempty subsets of
Z/pZ, then

|A+B| ≥ min(|A|+ |B| − 1, p).

Proof. We use induction on |B|. The base case is when |B| = 1; in this case A+B simply
consists of the elements of A translated by the single element in B, so |A+ B| = |A|, as
needed.

Now suppose the theorem is proved for smaller |B|. We try to reduce the size of one
of the sets and increase the size of the other one, so that we may apply the induction
hypothesis. If A ∩B were nonempty, then we find that

A ∩B + A ∪B ⊆ A+B (1)

|A ∩B|+ |A ∪B| = |A|+ |B| (2)

Indeed, if c ∈ A∩B and a ∈ A, then c+a ∈ B+A, and if b ∈ B, then c+b ∈ A+B, so (1)
follows. If A ∩ B had strictly smaller size than B, then we could apply the induction
hypothesis to A ∩B and A ∪B to conclude

|A+B|
(1)

≥ |A ∩B + A ∪B| ≥ |A ∩B|+ |A ∪B| − 1
(2)
= |A|+ |B| − 1.

In the general case, we note that if we replace A by A+ e, then A+B would be shifted
by e but still have the same size. So if we found e so that 0 < |(A + e) ∩ B| < |B|,
then we could apply the above argument to A+ e and B. We choose e ∈ B − A so that
the intersection (A + e) ∩ B is nonempty. Suppose we can’t find e ∈ B − A satisfying
|(A + e) ∩ B| < |B|; then for every e ∈ B − A we have that |(A + e) ∩ B| = |B|. Then
B ⊆ A+ e for all e ∈ B − A, i.e. B + e′ ⊆ A for all e′ ∈ A−B, so

B + (A−B) ⊆ A. (3)

Take any a ∈ A and nonzero c ∈ B−B, such as b1− b2 where b1, b2 are unequal elements
of B. Then from (3) we get a ∈ A, a + c ∈ A, and a + kc ∈ A for all positive integers k
by induction. But since we are working mod p, the multiples of c range over all residues
modulo p. Hence A = Z/pZ. In this case, it is obvious that |A + B| = p and we are
done.

One part of additive number theory is finding inequalities involving the sizes of sumsets
and other combinations of sets; another part is asking the inverse question: What can
we say about the structure of the sets when the minimum (or something close to it) is
attained? In this way Vosper’s Theorem is the inverse theorem to Cauchy-Davenport.

Theorem 3.2 (Vosper): Suppose that p is prime, and A,B are subsets of Z/pZ such
that |A|, |B| ≥ 2 and |A+ B| ≤ p− 2. Then |A+ B| = |A|+ |B| − 1 if and only if A,B
are arithmetic sequences with the same difference.

Note that arithmetic sequences in Z/pZ may be “harder to spot” since they can wrap
around, for example, {2, 4, 5, 7, 8, 10} is an arithmetic sequence modulo 11 with first term
4 and common difference 3.

Proof. The “if” part is easy (and left to the reader). We prove the “only if” part. We
proceed in several steps.
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Step 1: Prove the theorem when A (or by symmetry, B) is an arithmetic sequence.

Suppose that A = {a+ kd | 0 ≤ k < n}. Then

A = {a+ kd | 0 ≤ k < n− 1}+ {0, d}
A+B = {a+ kd | 0 ≤ k < n− 1}+ ({0, d}+B)

so applying Cauchy-Davenport to the two sets on the right, we get

|A+B| ≥ (n− 1) + |B + {0, d}| − 1 = |B + {0, d}|+ (n− 2).

However, we know |A+B| = n+|B|−1, so these two equations give |B|+1 ≥ |B+{0, d}|.
We can partition B into arithmetic sequences with step d, so that none of these sequences
can be extended while staying in B. If there are m such sequences, then we find that
|B + {0, d}| = |B| + m (Why?). Thus m = 1, and B is an arithmetic sequence with the
same step as A.

Step 2: If A+B is an arithmetic sequence with step d, then A,B are arithmetic sequences
with step d.

The idea here is to apply Step 1 with the complement of A + B, −B, and the com-
plement of A.

Note that extending the arithmetic sequence A + B in one direction will give us the
entire set Z/pZ. Hence

C := (Z/pZ)\(A+B) = {c ∈ Z/pZ | c 6= a+ b for any a ∈ A, b ∈ B}

also be an arithmetic sequence with the same step. From the RHS of the above, we
see that c − b 6= a for any a ∈ A, b ∈ B, c ∈ C, i.e. C + (−B) ⊆ (Z/pZ)\A. Now
Cauchy-Davenport says

p− |A| ≥ |C + (−B)| ≥ |C|+ |B| − 1 = (p− |A+B|) + |B| − 1.

However, equality is attained by the given assumption |A + B| = |A| + |B| − 1, so by
Step 1 applied to C,−B, and (Z/pZ)\A, we get that−B and hence B is also an arithmetic
sequence with same step as C. (Note |C| ≥ 2 since |A + B| ≤ p− 2.) Similarly, A is an
arithmetic sequence with the same step.

Step 3: Induct on |B|.
If |B| = 2 then B is automatically an arithmetic sequence so just use Step 1. For the

induction step, we use the same “e-transform” technique we used in Cauchy-Davenport.
Suppose we can find e ∈ B − A so that 1 < |(A + e) ∩ B| < |B|. Now A + (B − e) ⊇
A ∩ (B − e) + A ∪ (B − e) as in (1) so A + B ⊇ (A + e) ∩ B + A ∪ (B − e) (make sure
you see this!). Hence

|A|+ |B| − 1 = |A+B|
≥ |(A+ e) ∩B + A ∪ (B − e)|
≥ |(A+ e) ∩B|+ |A ∪ (B − e)| − 1

= |A ∩ (B − e)|+ |A ∪ (B − e)| − 1

= |A|+ |B − e| − 1.

However equality holds, so

(A+ e) ∩B + A ∪ (B − e) = A+B (4)

8
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and applying the induction hypothesis to (A+e)∩B and A∪ (B−e) gives that (A+e)∩
B,A∪ (B − e), and their sumset (A+ e)∩B +A∪ (B − e) are all arithmetic sequences.
From (4) this means A + B is an arithmetic sequence. Using Step 2, we conclude both
A,B are arithmetic progressions with the same step.

What happens if we can’t find such an e? Let E1 be the set of e so that |(A+e)∩B| =
|B|, and let E2 be the set of e so that |(A + e) ∩ B| = 1. Since these cover all the bad
cases, |E1|+ |E2| = |B−A|. Now e ∈ E1 iff B ⊆ A+ e, or equivalently B− e ⊆ A. Thus
B − E1 ⊆ A. Using Cauchy-Davenport gives |B|+ |E1| − 1 ≤ |A|, that is,

|E1| ≤ |A| − |B|+ 1.

Then

|E2| = |A−B| − |E1| ≥ (|A|+ |B| − 1)− (|A| − |B|+ 1) = 2|B| − 2.

Now (A+e)∩B is a single element inB for any e ∈ E2; |B| > 2 implies 2|B|−2 > |B|, so by
the Pigeonhole Principle, there exist e 6= e′ and b such that (A+e)∩B = (A+e′)∩B = {b}.
Then from (4),

b+ (A ∪ (B − e)) = A+B = b+ (A ∪ (B − e′))
so

A ∪ (B − e) = A ∪ (B − e′).
Hence (B − e)\A = (B − e′)\A. But B − e has only one element in common with A,
as B has only the element b in common with A + e, and ditto with B − e′. Thus B − e
and B − e′ become equal after removing one element from each; we conclude B − e and
B− e′ = B− e+ (e′− e) can only differ in one element, that is, B+{−e,−e′} has |B|+ 1
elements. By Step 1, we get that B is an arithmetic sequence with step e′ − e. Then by
Step 1, A is also an arithmetic sequence with step e′ − e, finishing the proof.

Remark 3.3: Note the |A+B| ≤ p− 2 condition is necessary. A counterexample when
|A+B| = p− 1 is when p = 7, A = {0, 1, 3} and B = {0, 1, 2, 4}.

Problems 3
1. Let A1, . . . , An be nonempty subsets of R. Prove that

|A1 + · · ·+ An| ≥ |A1|+ · · ·+ |An| − n+ 1.

When is equality attained? (Do the n = 2 case first.) Why does this proof not
work for Z/pZ?

2. (USAMO 2009/2) Let n be a positive integer. Determine the size of the largest
subset of {−n,−n + 1, . . . , n − 1, n} which does not contain three elements a, b, c
(not necessarily distinct) satisfying a+ b+ c = 0.

3. Prove the following:

Theorem 3.4 (Erdős-Ginzburg-Ziv): From any 2n − 1 integers we can choose n
integers such that their arithmetic mean is also an integer.

Hint: Prove the theorem for n prime, then show that if the theorem holds for n = a
and n = b, then it holds for n = ab.

4. Let p be a prime and d a positive integer such that p > 2d + 1. Prove that every
residue modulo p is the sum of

⌊
d
2

⌋
+ 1 dth powers modulo p. (For more on this

problem see [4].)
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4 Coloring Numbers

Problems involving coloring numbers are quite common (and fun!). Probably the most
important tip is just “play around with the numbers” and see what you can come up
with...

Example 4.1: The set {1, 2, . . . , 3n} is partitioned into three sets A,B,C with each set
containing n numbers. Then it is always possible to choose one number in each of the
three sets such that one of the numbers is the sum of the other two.

Proof. Suppose that A,B,C do not satisfy the last condition.
A good place to start is to make some “without loss of generality” assumptions.

Suppose 1 ∈ A. 1 is going to be an important player because the color of 1 together with
the color of k influences the color of k± 1. Now suppose that the smallest element not in
A is in B; call this number b. Now C has the largest minimal element of all three sets;
call this number c.

Now, since we are proceeding by way of contradiction, 1 ∈ A, c ∈ C imply that
c − 1 6∈ B. But c − 1 6∈ C either, by our minimality assumption. Hence c − 1 ∈ A. See
the table on the left.

A B C
1
...

b− 1
b

...
...

c− 1
c

A B C
1
...

b− 1
b

...
...

...
c′ − 1− b (?)
c′ − b (?)

...
...

...
c′ − 1
c′

What about for an arbitrary c′ ∈ C? 1 ∈ A, c′ ∈ C imply that c′−1 6∈ B, so c′−1 ∈ A
or c′−1 ∈ C. Let’s consider what happens in the second case. See the table on the right.

Suppose that c′ is minimal so that c′ ∈ C and c′ − 1 ∈ C. We’ve already considered
the pair (1 ∈ A, c′ ∈ C), so now let’s consider the pair (b ∈ B, c′ ∈ C). This gives that
c′− b 6∈ A, i.e. c′− b ∈ B or C. Similarly, b ∈ B, c′− 1 ∈ C give that c′− 1− b ∈ B or C.
We analyze each case. If c′ − b ∈ B then b− 1 ∈ A, c′ − b ∈ B, c′ − 1 ∈ C are in different
sets, a contradiction. If c′ − b ∈ C, then we’ve already shown c′ − 1 − b 6∈ B. However,
the remaining case c′ − b− 1, c′ − b ∈ C cannot occur by our minimality assumption on
c′. Hence there cannot exist c′ so that c′ and c′ − 1 are both in C.

We’ve proven the following key claim.

Claim: If c′ ∈ C then c′ − 1 ∈ A.

Now we use the last piece of information, that |A| = |B| = |C|. By the claim, each
c′ ∈ C is matched up with a distinct element c′ − 1 ∈ A. However, no element of C
is matched up with 1 ∈ A, since 2 6∈ C. Hence |A| > |C|, a contradiction. Thus our
assumption was wrong, and the problem statement follows.

10
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Now we’ll prove a two famous theorems in combinatorial number theory, following the
approach in [7, §6.3]. The proofs will take quite a bit of work! For convenience, when we
write [a, b], we will mean {x ∈ Z|a ≤ x ≤ b}.

4.1 Schur’s Theorem and Ramsey Theory

Theorem 4.2 (Schur): Given c, k ≥ 1, there exists N = S(c, k) such that if the integers
in [1, N ] are colored with c colors, then there exist (not necessarily distinct) x1, . . . , xk ∈
[1, N ] such that x1, . . . , xk, x1 + · · ·+ xk all have the same color.

To prove this, we recast the theorem in graph theoretic terms. Consider the graph
with vertices labeled by 1, . . . , N + 1, and with an edge between i, j assigned the color of
|i−j|. Then we are looking for a complete subgraph with k+1 vertices, all of whose edges
have the same color. Indeed, if we have such a subgraph, whose vertices are labeled with
v1 < · · · < vk+1, then we can set xi = vi+1− vi. Then the xi and x1 + · · ·+xk = vk+1− v1
all have the same color.

So Schur’s Theorem will follow from a more general theorem about graphs:

Theorem 4.3 (Ramsey): Given any positive integers n1, . . . , nc, there exists N such
that if a complete graph with N vertices is colored with c colors 1, . . . , c, then there is a
complete subgraph with ni vertices, all of whose edges are colored with color i, for some
i.

For short, we say that a subgraph all of whose edges are colored with i, is of color i.
We define R(n1, . . . , nc; c) to be the least value of N that works above.

For Schur’s Theorem, we can take S(c, k) = R(k+ 1, . . . , k+ 1; c)− 1; then the graph
we considered above will have R(k + 1, . . . , k + 1; c) vertices, and so be forced to have a
subgraph with k + 1 vertices, with all edges the same color.

Now we prove Ramsey’s Theorem.

Proof. The case c = 1 is trivial; the case c = 2 will be the base case of our induction.
For c = 2, we induct on m+ n. When either m or n is 1 (say n = 1), then the claim

is trivial as any subgraph with 1 vertex has no edges, and we may take R(m,n; 2) = 1.
Now suppose the claim proved for m′ + n′ < m+ n. We show that

R(m,n; 2) ≤ R(m− 1, n; 2) +R(m,n− 1; 2). (5)

Take any graph with R(m−1, n; 2)+R(m,n−1; 2) vertices, whose edges are colored in 2
colors, say red and blue. Take any vertex V . There are R(m−1, n; 2)+R(m,n−1; 2)−1
edges leading out of it. Thus either at least R(m − 1, n; 2) of those edges are red, or at
least R(m,n − 1; 2) of those edges are blue. We consider the first case; the second case
follows by the same argument. Let V1, . . . , Vi be the vertices that V is connected to by
a red edge, and consider the subgraph induced by V1, . . . , Vi. Since i ≥ R(m − 1, n; 2),
either it has a complete red subgraph with m−1 vertices, or a complete blue subgraph of
n vertices. In the second case we are done; in the first case, adjoining V gives a complete
red subgraph of m vertices, as needed.

Now we induct on c. Supposing c > 2 and that the theorem is true for c− 1, we show

R(n1, . . . , nc; c) ≤ R(R(n1, . . . , nc−1; c− 1), nc; 2).

Take a graph with R(R(n1, . . . , nc−1; c − 1), nc; 2) vertices and colored in c colors, say
blah, blah, . . . , and purple. Temporarily recolor the first c − 1 colors with gray. Then

11
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there exists a gray subgraph with R(n1, . . . , nc−1; c − 1) vertices, or a purple subgraph
with nc vertices. We are done in the second case; in the first case, we scrape off the gray
paint, revealing that all edges in our subgraph are one of the first c− 1 colors. Then by
definition of R, there is a subgraph of color i, with ni vertices, for some 1 ≤ i ≤ c − 1,
and we are again done.

Note that (5) and Pascal’s Identity give that R(m,n; 2) ≤
(
m+n−2
m−1

)
.

4.2 Van der Waerden’s Theorem

Theorem 4.4 (Van der Waerden): For every c ≥ 1 and every n ≥ 1, there exists N
so that if the integers in [0, N ] are colored with c colors, then there is a monochromatic
arithmetic sequence of length n.

As a corollary, if the nonnegative integers are colored with a finite number of colors,
then there exists arbitrarily long monochromatic arithmetic sequences.

One way to prove this is to recast this problem into a higher-dimensional problem!3

Consider the integers in [0, nd) for some large d. By writing an integer in this interval in
base n, we can view it as a point in a d-dimensional hypercube with side length n − 1.
Specifically, identify ad−1n

d−1+· · ·+a1n+a0 with the point (a0, a1, . . . , ad−1) ∈ [0, n−1]d.
If n points in this hypercube are on the same line and spaced equally apart (in which
case we say they are in arithmetic sequence), then they correspond to a n-term arithmetic
sequence in [0, nd). Hence it suffices to prove the following stronger theorem.

Theorem 4.5 (Hales-Jewett): Given c, n ≥ 1, there exists an integer d = d(n, c) such
that if [0, n−1]d is colored with c colors, then there is a nonconstant arithmetic progression
a + [0, n − 1]v = {a, a + v, . . . , a + (n − 1)v} of length n, for some a ∈ [0, n − 1]d and
v ∈ [0, 1]d.

For example, if a = (0, 0, 1), v = (1, 1, 0), and n = 3, then a + [0, n − 1]v is the
sequence (0, 0, 1), (1, 1, 1), (2, 2, 1). This theorem basically says we can force the existence
of arithmetic progressions by making the dimension of the hypercube large enough. After
we find d as in the theorem, taking N = nd − 1 will do for Van der Waerden’s Theorem.

To prove Hales-Jewett, we will prove a yet more general statement, by double induc-
tion. Define a stick of length n to be a n-term nonconstant monochromatic arithmetic
sequence a + [0, n − 1]v. Define a rainbow m-fan of length n to be a m + 1-tuple
(a, v1, . . . , vm) such that the (n− 1)-term sequence a+ [1, n− 1]vi is monochromatic of a
different color for each i. We call a the base of the fan, the a + [1, n − 1]vi the m sticks
of the fan (of length n− 1), and the colors of a+ [1, n− 1]vi the colors of the fan.

Claim 4.6: Let c, n ≥ 1 and 1 ≤ m ≤ c. Then there exists d = d(n, c,m) such that if
[0, n− 1]d is colored with c colors, then there exists a stick or a rainbow m-fan of length
n.

Taking m = c recovers the Hales-Jewett Theorem: If there exists a stick of length n
we are done; else there is a rainbow c-fan. But any rainbow c-fan must contain all the
colors, and in particular the color of the base. So one of the sticks (of length n − 1) is
the same color as the base, giving a stick of length n (i.e. a monochromatic arithmetic
sequence of length n), as needed. Now we prove the claim.

Proof. The outer induction is on n, and the inner induction is on m. The base case n = 1
is trivial (the hypercube is just the point 0). Assume the theorem proved for n− 1.

3It is possible to proceed more directly; see http://www.math.uga.edu/~lyall/REU/VW.pdf
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Now we enter the inner induction, on m.

1. The base case m = 1: The Hales-Jewett Theorem for n − 1 is a statement about
the hypercube [0, n−2]d. By shifting, it says that there is a (n−1)-term arithmetic
sequence a + [0, n − 2]v contained in [1, n − 1]d, with v ∈ [0, 1]d. Then taking
a′ = a − v, we see that (a, v) is a rainbow 1-fan (a somewhat degenerate fan with
only one stick).

2. The induction step: Assume the claim true for m− 1. Now set

d1 = d(n, c,m−1), d2 = d(n−1, cmnd2m) = d(n−1, cmnd2m, cmnd2m), d = d1+d2.

(The choice for d2 will become clear later.) Each element of [0, n−1]d can be written
as (x1, x2), where x1 ∈ [0, n − 1]d1 and x2 ∈ [0, n − 1]d2 . Fixing x2, we get a cross
section of [0, n−1]d which is just a d1-dimensional hypercube. We identify [0, n−1]d1

with the cross section {(x1, x2) | x1 ∈ [0, n− 1]d1}. By definition of d1, we can find
a stick a1 + [0, n − 1]v in [0, n − 1]d1 , or a rainbow (m − 1)-fan (a1, v1, . . . , vm−1)
whose sticks are colored differently from the base (if the base is the same color as
a stick we are in the first case). In the first case, we get a stick for [0, n− 1]d where
the [0, n − 1]d2-coordinates are constant, namely (a1, x2) + [0, n − 1](v, 0), and we
are done. So suppose the second case holds for every x2; we need to make our
(m−1)-fan into a m-fan. We do this by extending it via the [0, n−1]d2-coordinate.

Now for each x2 we have the following pieces of data.

13
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(a) The base a1 and vectors v1, . . . , vm−1 in [0, n − 1]d1 as defined above: There
are at most (nd1)m possibilities for these.

(b) The colors C,Ci of the base a1 and the sticks a1 + [1, n− 1]vi, 1 ≤ i ≤ m− 1:
There are at most cm choices for these colors.

Hence there are at most cmnd1m possibilities for the combined data. Color the
points of [0, n− 1]d2 with cmnd1m colors based on the associated data.

By the choice of d2, there is a stick of length n − 1, say (by shifting as in part 1)
a2+[1, n−1]w. Let the common data for the n−1 points in the bar a2+[1, n−1]w be
a1, v1, . . . , vm−1, C, C1, . . . , Cm−1. Now let a = (a1, a2); extend the vectors vi in the
v-direction by setting wi = (vi, w), and include the additional vector wm = (0, w).
See the picture.

We claim that (a, w1, . . . , wm) is a rainbow m-fan of length n (in the original col-
oring). Indeed, the stick a + [1, n − 1]wi = (a1, a2) + [1, n − 1](vi, w) has the color
Ci, the color of corresponding stick in the common cross section. Furthermore, the
color of a+ [1, n− 1]wm = a+ [1, n− 1](0, w) is just C, the color of the base of the
common fan in the cross sections, which is different from the colors C1, . . . , Cm−1.
Hence we get a rainbow m-fan of length n, as needed, completing the induction
step.

It is an interesting exercise to find an explicit value of N that works in Van der Waer-
den’s Theorem by following the above argument.

Problems 4

1. If the nonnegative integers are colored with a finite number of colors, does there
necessarily exist an infinite monochromatic arithmetic sequence?

2. (HMMT 2009) Find the smallest number of colors needed to color the nonnegative
integers so that a, b have different colors whenever |a− b| is a power of 2.

3. (UM 2006) Each positive integer is assigned one of three colors. Show that there
exist distinct positive integers x, y such that x and y have the same color and |x−y|
is a perfect square.

4. (IMO 1978/6) An international society has members from six different countries.
The list of members contains 1978 names, numbered 1, 2, . . . , 1978. Prove that there
is at least one member whose number is the sum of the numbers of two members,
not necessarily distinct, of his or her own country.

5. (ISL 1999/C6) Suppose that every integer has been given one of the colors red,
blue, green, yellow. Let x and y be odd integers such that x 6= y. Show that there
are two integers of the same color whose difference is one of the following values:
x, y, x+ y, x− y.

6. (ISL 1995/N7) Does there exist an integer n > 1 that satisfies the following condi-
tion?
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The set of positive integers can be partitioned into n nonempty subsets such that
an arbitrary sum of n− 1 integers, one taken from each of any n− 1 of the subsets,
lies in the remaining subset.

7. (ISL 1999/A4) Prove that the set of positive integers cannot be partitioned into
three nonempty subsets such that for any two integers x, y taken from two different
subsets, the number x2 − xy + y2 belongs to the third subset.

8. (Gallai’s Theorem) Given k, d, c ≥ 1 and v1, . . . , vk ∈ Zd, prove that there exists
N such that when the points of [1, N ]d are colored with c colors, there exist x and
r ∈ Z− {0} such that x+ rv1, . . . , x+ rvk all have the same color.
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