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1 Values and Zeros

1. This time it’s easier to guess the solution. The polynomial

Q(x) =
n∑

i=0

(
x

i

)
(r − 1)i

has degree n and by the Binomial Theorem, satisfies the given conditions. Since
P (x) = Q(x) for n + 1 values of x, actually P,Q are the same polynomial, and

P (n + 1) = Q(n + 1) =

(
n+1∑
i=0

(
n + 1

i

)
(r − 1)i

)
− (r − 1)n+1 = rn+1 − (r − 1)n+1.

2. Letting ray OQ1 be the positive real axis, Qi represent the nth roots of unity ωi

in the complex plane. Hence PQi equals |2 − ωi|. The roots of xn − 1 = 0 are
just the nth roots of unity, so xn − 1 =

∏n−1
i=0 (x − ωi). Plugging in x = 2 gives∏n

k=1 |PQi| = 2n − 1.

3. The given condition says

f(x)2 = x(x− 1) · · · (x− n)Q(x) + x2 + 1 (1)

for some polynomial f(x) of degree at most n. Plugging x = 0, 1, . . . , n into (1)
gives

f(x) = ±
√
x2 + 1, when x = 0, 1, . . . , n. (2)

The following is key: Given n + 1 points (x0, y0), . . . , (xn, yn) with distinct x-
coordinates, there exists exactly one polynomial f of degree at most n so that
f(xi) = yi for i = 0, 1, . . . , n.

Applying this to (2) we get 2n+1 possibilities for f(x) since we have 2 choices of
sign for each of x = 0, 1, . . . , n. If f(x) is a solution to (2) then so is −f(x); we get
2n possibilities for f(x)2. Solve (1) to get 2n possibilities for Q(x):

Q(x) =
f(x)2 − x2 − 1

x(x− 1) · · · (x− n)

Each such polynomial is a valid solution because f(x)2 − x2 − 1 is zero at x =
0, 1, . . . , n and hence is divisible by x(x− 1) · · · (x− n).
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4. Clearing denominators,

5∑
i=1

[
aix

∏
i 6=j,1≤j≤5

(x + j)

]
− (x + 1)(x + 2)(x + 3)(x + 4)(x + 5) = 0

for x = 1, 4, 9, 16, 25. Let f(x) denote the LHS. Since f(x) = 0 has the roots
x = 1, 4, 9, 16, 25, we conclude that (x − 1)(x − 4) · · · (x − 25) divides f(x). Since
f(x) has degree at most 5,

f(x) = k(x− 1)(x− 4)(x− 9)(x− 16)(x− 25)

for some constant k. However, equating

f(0) = [−(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)]x=0 = −5!

and f(0) = −k · 5!2 gives k = 1
5!

. Thus

f(x) =
1

5!
(x− 1)(x− 4)(x− 9)(x− 16)(x− 25).

Then

5∑
i=1

ai
62 + i

=
f(62)

x(x + 1)(x + 2)(x + 3)(x + 4)(x + 5)|x=62
− 1

62

=
187465

6744582
.

5. Given two points (x1, y1) and (x2, y2) the equation

y − y1
y2 − y1

=
x− x1

x2 − x1

=⇒ (y − y1)(x2 − x1) = (x− x1)(y2 − y1)

represents the line passing through these two points (it is a linear equation satisfied
by the coordinares of the two points). It follows that three points (x1, y1), (x2, y2)
and (x3, y3) lie on the same line if and only if the condition

(y3 − y1)(x2 − x1) = (x3 − x1)(y2 − y1) (3)

holds. Now suppose that (x1, y1), (x2, y2) and (x3, y3) represent the (changing)
coordinates of the three ducks as they waddle along their paths. Each coordinate
is a linear function of time t, so (3) is an equation in t of degree at most 2 (i.e., is
a quadratic). If such an equation has more than 2 solutions then it must reduce to
an identity and thus hold true for all values of t. That is, if the ducks are in a row
at more than two times, then they are always in a row.

6. Note that g(x) is one of the 16 integer divisors of 2008 for each of the 81 integer
roots. There must be at least 6 roots of f(x) for which g(x) has the same value.
Since g(x) is nonconstant, its degree must be greater than 5.
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7. (Official solution) Let p(x) be the monic real polynomial of degree n. If n = 1, then
p(r) = r + a for some real number a, and p(x) is the average of x and x + 2a, each
of which has 1 real root. Now we assume that n > 1. Let

g(x) = (x− 2)(x− 4) · · · (x− 2(n− 1)).

The degree of g(x) is n− 1. Consider the polynomials

q(x) = xn − kg(x), r(x) = 2p(x)− q(x) = 2p(x)− xn + kg(x).

We will show that for large enough k these two polynomials have n real roots. Since
they are monic and their average is clearly p(x), this will solve the problem.

Consider the values of the polynomial g(x) at n points x = 1, 3, 5, . . . , 2n−1. These
values alternate in sign and are at least 1 (since at most two of the factors have
magnitude 1 and the others have magnitude at least 2). On the other hand, there is
a constant c > 0 such that for 0 ≤ x ≤ n, we have |xn| < c and |2p(x)−xn| < c. Take
k > c. Then we see that q(x) and r(x) evaluated at n points x = 1, 3, 5, . . . , 2n− 1
alternate in sign. Thus q(x) and r(x) each has at least n − 1 real roots. However
since they are polynomials of degree n, they must have n real roots, as desired.

8. Without loss of generality, suppose deg(f) < deg(g). Let r1, . . . , rk be the distinct
roots of f and let s1, . . . , sl be the distinct roots of f − 1.

We claim that k + l ≥ deg(n) + 1. Indeed, suppose

f(x) = (x− r1)
p1 · · · (x− rk)pk .

Then

(x− r1)
p1−1 · · · (x− rk)pk−1 | f ′.

Similarly, if

f(x)− 1 = (x− s1)
q1 · · · (x− sl)

ql ,

then

(x− s1)
q1−1 · · · (x− sl)

ql−1 | f ′.

Since the roots of f and f − 1 are distinct,

(x− r1)
p1−1 · · · (x− rk)pk−1(x− s1)

q1−1 · · · (x− sl)
ql−1 | f ′.

Since f ′ has degree n− 1,

(p1 − 1) + . . . + (pk − 1) + (q1 − 1) + . . . (ql − 1) ≤ n− 1.

Since p1 + . . . + pk = q1 + . . . + ql = n, this gives (n − k) + (n − l) ≤ n − 1, or
k + l ≥ n + 1.

Now f−g has degree at most n and has at least n+1 distinct roots r1, r2, . . . , rk, s1, . . . , sl,
so it must be identically 0, and f = g.
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2 Symmetric Polynomials and Vieta’s Formulas

1. Note the polynomial has degree 2000 since the x2001 terms cancel out. By the

Binomial Theorem, the coefficients of x2000 and x1999 are 2001
(
1
2

)
and −

(
2001
2

) (
1
2

)2
,

respectively. By Vieta’s formula the sum of the roots is

−
−
(
2001
2

) (
1
2

)2
2001

(
1
2

) = 500.

2. Using Vieta’s formulas with the roots ri,(∑ 1

r21

)
=

(∑ 1

r1

)2

− 2

(∑ 1

r1r2

)
=

(∑
r1r2r3r4

r1r2r3r4r5

)2

− 2

( ∑
r1r2r3

r1r2r3r4r5

)
=

92

(−11)2
− 2(−7)

−11
= − 73

121

3. (a) The roots r1, r2, r3 satisfy the equation
(
1
x

)3
+ a

(
1
x

)2
+ b
(
1
x

)
+ c = 0. Clearing

denominators, they are roots to cx3 + bx2 + ax + 1, and hence to

x3 +
b

c
x2 +

a

c
x +

1

c
.

(b) By Vieta’s formula, r1 + r2 + r3 = −a, r1r2 + r2r3 + r3r1 = b, and r1r2r3 = −c.
We calculate the elementary symmetric sums in r1 + r2, r2 + r3, r3 + r1:

(r1 + r2) + (r2 + r3) + (r3 + r1) = −2a

(r1 + r2)(r2 + r3) + (r2 + r3)(r3 + r1)

+(r3 + r1)(r1 + r2) = (r1 + r2 + r3)
2 + (r1r2 + r2r3 + r3r1)

= a2 + b

(r1 + r2)(r2 + r3)(r3 + r1) = (r1 + r2 + r3)(r1r2 + r2r3 + r3r1)− r1r2r3

= −ab + c

Hence by Vieta’s formulas (using the roots to get the coefficients), r1 +r2, r2 +
r3, r3 + r1 are roots of

x3 + 2ax2 + (a2 + b)x + (ab− c).

(c) We calculate the elementary symmetric sums in r21, r
2
2, r

2
3:

r21 + r22 + r23 = (r1 + r2 + r3)
2 − 2(r1r2 + r2r3 + r3r1) = a2 − 2b

r21r
2
2 + r22r

2
3 + r23r

2
1 = (r1r2 + r2r3 + r3r1)

2 − 2r1r2r3(r1 + r2 + r3) = b2 − 2ac

r21r
2
2r

2
3 = c2

Hence by Vieta’s formulas, r21, r
2
2, r

2
3 are roots of

x3 + (2b− a2)x2 + (b2 − ac)x− c2.
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4. The coefficient of x2 is 0 so r + s + t = 0. Using rst = −2008
8

, we get

(r + s)3 + (s + t)3 + (t + r)3 = 2(r + s + t)3 − 3(r + s + t)(rs + st + tr)− 3rst

= −3

(
−2008

8

)
= −753.

5. Let y = 2111x; the equation becomes 1
4
y3 + 4y = 2y2 + 1 which rearranges to

y3 − 8y2 + 16y − 4 = 0. Let y1, y2, y3 be the roots of this equation and x1, x2, x3 be
the solutions to the original equation. Then

2111(x1+x2+x3) = y1y2y3 = 4

by Vieta’s formula so x1 + x2 + x3 = 1
111

log2 4 = 2
111

and the answer is 113.

6. To simplify the calculation, we first divide P (x) by Q(x) to obtain

P (x) = Q(x)(x2 + 1) + x2 − x + 1.

Thus

4∑
i=1

P (zi) =
4∑

i=1

Q(zi)(z
2
i + 1) +

4∑
i=1

(z2i − zi + 4) =
4∑

i=1

(z2i − zi + 4).

The first and second elementary symmetric sums equal 1 and −1 by Vieta. Hence
the above sum equals(

4∑
i=1

zi

)2

− 2
∑

1≤i<j≤4

zizj −
4∑

i=1

zi + 4 = 1 + 2− 1 + 4 = 6.

3 Fundamental Theorem of Algebra

1. Write the equation as

(g(x) + ih(x))(g(x)− ih(x)) =
x20 − 1

x2 − 1
.

Counting the number of possibilities for (f(x), g(x)) is the same as counting the
number of possibilities for f(x) = g(x) + ih(x). Thus we need to count the number
of complex polynomials f(x) such that

f(x)f̄(x) =
x20 − 1

x2 − 1
.

The zeros of x20−1
x2−1 can be split in complex conjugate pairs P1, . . . , P9, since they are

the nonreal 20th roots of unity. If r is a zero of f(x) then r̄ is a zero of f̄(x). Thus
f(x) must have as a zero one number in each pair Pi, and f̄(x) has as its zeros the
other number in each pair Pi. There are 29 = 512 choices for which zeros in each
pair to choose as zeros of f(x). The answer is 512.
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