Goemans-Williamson
Posted: 2016-04-02 , Modified: 2016-04-02
Tags: none
Posted: 2016-04-02 , Modified: 2016-04-02
Tags: none
See also SoS.
(From Algorithms 15)
Relaxing a combinatorial optimization to a SDP: let \(x_i\) be unit vectors instead of \(-1,1\). Recover by partitioning with a random hyperplane. Ex. for min-cut, \(\sum_{\{i,j\}\in E}\rc 4|v_i-v_j|^2\).
We find \[ \E(\text{cut edges})=\sum_{ij\in E}\fc{\te_{ij}}{\pi}\ge\ub{\min_{\te\in [0,\pi]}\fc{2\te}{\pi(1-\cos\te)}}{\approx .878} \sum_{ij\in E} \rc2(1-\cos\te_{ij}). \]
For MAX-2SAT, have a dummy vector \(u_0\) for true (so that variable assignments correspond to \(u_i=\pm u_0\)), maximize \[\begin{align} OPT=\sum1-\rc4(u_0-u_{k1})(u_0-u_{k2})&=\sum \rc 4(1+u_0\cdot u_{k1})+\rc 4(1+u_0\cdot u_{k2})+\rc 4(1 - u_{k1}\cdot u_{k2})\\ &=\sum \rc4(1 +\cos \fc{\te_{0,k1}}{\pi})+\cdots \\ \E&=\sum\rc 4(1-\fc{\te_{0,k1}}{\pi})+\cdots\\ &\ge \min_{\te\in[0,\pi]}\fc{2(\pi-\te)}{\pi(1+\cos\te)}\cdot OPT, \end{align}\]so we get .878-approximation.