Recursive Fourier Sampling

Posted: 2016-02-29 , Modified: 2016-02-29

Tags: none

Definition

FS

\(FS_n:B^{2^{n+1}} \to \{0,1,*\}\) is defined by \[ FS_n(f,g)=\begin{cases} g(s),&\text{if }\exists s\in B^n, f(x)=x\cdot s\\ *,&\text{else.} \end{cases} \] \(FS_n^g\) is where \(g\) is fixed.

RFS

Define by recurrence

\[\begin{align} RFS_{n,1}(s,g)&=g(s)\\ RFS_{n,h}&: B^{n2^{n(h-1)} +\sumo j{h-1}} \to \{0,1,*\}\\ RFS_{n,h}(R_0,\ldots, R_{2^n-1},g) &=\begin{cases} g(s),&\exists s\in B^n, \forall \si\in B^n, RFS_{n,h-1}(R_\si)=\si \cdot s\\ *,&\text{else}. \end{cases}\\ \pat{Example}\; RFS_{n,2}(R_0,\ldots, R_{2^n-1},g) &=\begin{cases} g(s),&\exists s\in B^n, \forall \si\in B^n, g(R_\si) = \si \cdot s\\ *,&\text{else}. \end{cases} \end{align}\]