Posted: 2016-03-04
, Modified: 2016-03-04
Tags: SDP, duality
Duality
Summary
The following SDP’s are dual: \[
\max_{X\succeq 0,\an{A_i,X}=b_i}\an{C,X} \lra \min_{\nu, \sum \nu_iA_i\succeq C} \nu^Tb.
\] (When are they equal? When there is a strictly feasible point.)
Derivation
- First write as a convex program. Replace the condition \(X\succeq 0\) by \[
\la_{\min}(X)=\min_{\Tr(A)=1, A\succeq 0}\an{A,X}\ge 0.
\] (Use (2) in duality.)
- Simplify, using minimax as a key step.
\[\begin{align}
g(\la,\nu) &= \max_X(\an{C,X} + \la \min_{\Tr(A)=1, A\succeq 0}\an{A,X} - \sum \nu_i (\an{A_i,X}-b_i)\\
&=\max_X\min_{\Tr(A)=1}\an{\ub{C-\sum \nu_iA_i}{Z}+\la A,X} + \nu^Tb\\
&=\max_X\min_{\Tr(A)=\la}\an{Z + A,X} + \nu^Tb\\
&= \min_{\Tr(A)=\la}\max_X \an{Z+A,X}\\
&=\pa{\begin{cases}
0,&\Tr(Z)=-\la, Z\preceq 0\\
\iy,&\text{else.}
\end{cases}}-\nu^Tb
\end{align}\]
using minimax, then noting the inside \(\max\) forces the condition \(Z=-A\).
- Taking \(\min\) of this, \(Z\preceq 0\) turns into a constraint.
See notes.